Discrete-ordinates cost optimization of weight-dependent variance reduction techniques for Monte Carlo neutral particle transport

Date

2010-12-16

Journal Title

Journal ISSN

Volume Title

Publisher

Kansas State University

Abstract

A method for deterministically calculating the population variances of Monte Carlo particle transport calculations involving weight-dependent variance reduction has been developed. This method solves a set of equations developed by Booth and Cashwell [1979], but extends them to consider the weight-window variance reduction technique. Furthermore, equations that calculate the duration of a single history in an MCNP5 (RSICC version 1.51) calculation have been developed as well. The calculation cost, defined as the inverse figure of merit, of a Monte Carlo calculation can be deterministically minimized from calculations of the expected variance and expected calculation time per history.The method has been applied to one- and two-dimensional multi-group and mixed material problems for optimization of weight-window lower bounds. With the adjoint (importance) function as a basis for optimization, an optimization mesh is superimposed on the geometry. Regions of weight-window lower bounds contained within the same optimization mesh element are optimized together with a scaling parameter. Using this additional optimization mesh restricts the size of the optimization problem, thereby eliminating the need to optimize each individual weight-window lower bound. Application of the optimization method to a one-dimensional problem, designed to replicate the variance reduction iron-window effect, obtains a gain in efficiency by a factor of 2 over standard deterministically generated weight windows. The gain in two dimensional problems varies. For a 2-D block problem and a 2-D two-legged duct problem, the efficiency gain is a factor of about 1.2. The top-hat problem sees an efficiency gain of 1.3, while a 2-D 3-legged duct problem sees an efficiency gain of only 1.05. This work represents the first attempt at deterministic optimization of Monte Carlo calculations with weight-dependent variance reduction. However, the current work is limited in the size of problems that can be run by the amount of computer memory available in computational systems. This limitation results primarily from the added discretization of the Monte Carlo particle weight required to perform the weight-dependent analyses. Alternate discretization methods for the Monte Carlo weight should be a topic of future investigation. Furthermore, the accuracy with which the MCNP5 calculation times can be calculated deterministically merits further study.

Description

Keywords

Monte Carlo, deterministic, hybrid, variance reduction, optimization, transport

Graduation Month

December

Degree

Doctor of Philosophy

Department

Department of Mechanical and Nuclear Engineering

Major Professor

J. Kenneth Shultis

Date

2010

Type

Dissertation

Citation