Discrete-ordinates cost optimization of weight-dependent variance reduction techniques for Monte Carlo neutral particle transport

dc.contributor.authorSolomon, Clell J. Jr.
dc.date.accessioned2010-12-16T21:55:56Z
dc.date.available2010-12-16T21:55:56Z
dc.date.graduationmonthDecember
dc.date.issued2010-12-16
dc.date.published2010
dc.description.abstractA method for deterministically calculating the population variances of Monte Carlo particle transport calculations involving weight-dependent variance reduction has been developed. This method solves a set of equations developed by Booth and Cashwell [1979], but extends them to consider the weight-window variance reduction technique. Furthermore, equations that calculate the duration of a single history in an MCNP5 (RSICC version 1.51) calculation have been developed as well. The calculation cost, defined as the inverse figure of merit, of a Monte Carlo calculation can be deterministically minimized from calculations of the expected variance and expected calculation time per history.The method has been applied to one- and two-dimensional multi-group and mixed material problems for optimization of weight-window lower bounds. With the adjoint (importance) function as a basis for optimization, an optimization mesh is superimposed on the geometry. Regions of weight-window lower bounds contained within the same optimization mesh element are optimized together with a scaling parameter. Using this additional optimization mesh restricts the size of the optimization problem, thereby eliminating the need to optimize each individual weight-window lower bound. Application of the optimization method to a one-dimensional problem, designed to replicate the variance reduction iron-window effect, obtains a gain in efficiency by a factor of 2 over standard deterministically generated weight windows. The gain in two dimensional problems varies. For a 2-D block problem and a 2-D two-legged duct problem, the efficiency gain is a factor of about 1.2. The top-hat problem sees an efficiency gain of 1.3, while a 2-D 3-legged duct problem sees an efficiency gain of only 1.05. This work represents the first attempt at deterministic optimization of Monte Carlo calculations with weight-dependent variance reduction. However, the current work is limited in the size of problems that can be run by the amount of computer memory available in computational systems. This limitation results primarily from the added discretization of the Monte Carlo particle weight required to perform the weight-dependent analyses. Alternate discretization methods for the Monte Carlo weight should be a topic of future investigation. Furthermore, the accuracy with which the MCNP5 calculation times can be calculated deterministically merits further study.
dc.description.advisorJ. Kenneth Shultis
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Mechanical and Nuclear Engineering
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/7014
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectMonte Carlo
dc.subjectdeterministic
dc.subjecthybrid
dc.subjectvariance reduction
dc.subjectoptimization
dc.subjecttransport
dc.subject.umiEngineering, Nuclear (0552)
dc.titleDiscrete-ordinates cost optimization of weight-dependent variance reduction techniques for Monte Carlo neutral particle transport
dc.typeDissertation

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
ClellSolomon2010aux.zip
Size:
4.56 MB
Format:
WinZIP, PKZIP, ZIP-It, etc.
Description:
Auxiliary files including source and input files
Loading...
Thumbnail Image
Name:
ClellSolomon2010.pdf
Size:
2.9 MB
Format:
Adobe Portable Document Format
Description:
The main dissertation

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.61 KB
Format:
Item-specific license agreed upon to submission
Description: