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Abstract
A method for deterministically calculating the population variances of Monte Carlo particle

transport calculations involving weight-dependent variance reduction has been developed. This
method solves a set of equations developed by Booth and Cashwell [1979], but extends them to
consider the weight-window variance reduction technique. Furthermore, equations that calculate
the duration of a single history in an MCNP5 (RSICC version 1.51) calculation have been de-
veloped as well. The calculation cost, defined as the inverse figure of merit, of a Monte Carlo
calculation can be deterministically minimized from calculations of the expected variance and ex-
pected calculation time per history.

The method has been applied to one- and two-dimensional multi-group and mixed material
problems for optimization of weight-window lower bounds. With the adjoint (importance) function
as a basis for optimization, an optimization mesh is superimposed on the geometry. Regions of
weight-window lower bounds contained within the same optimization mesh element are optimized
together with a scaling parameter. Using this additional optimization mesh restricts the size of the
optimization problem, thereby eliminating the need to optimize each individual weight-window
lower bound.

Application of the optimization method to a one-dimensional problem, designed to replicate the
variance reduction iron-window effect, obtains a gain in efficiency by a factor of 2 over standard
deterministically generated weight windows. The gain in two dimensional problems varies. For
a 2-D block problem and a 2-D two-legged duct problem, the efficiency gain is a factor of about
1.2. The top-hat problem sees an efficiency gain of 1.3, while a 2-D 3-legged duct problem sees an
efficiency gain of only 1.05.

This work represents the first attempt at deterministic optimization of Monte Carlo calculations
with weight-dependent variance reduction. However, the current work is limited in the size of
problems that can be run by the amount of computer memory available in computational systems.
This limitation results primarily from the added discretization of the Monte Carlo particle weight
required to perform the weight-dependent analyses. Alternate discretization methods for the Monte
Carlo weight should be a topic of future investigation. Furthermore, the accuracy with which the
MCNP5 calculation times can be calculated deterministically merits further study.
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Chapter 1

Introduction and Background

The Monte Carlo method is extensively applied to a wide variety of radiation transport calcula-
tions. Because of its ability to utilize continuous-energy cross sections and to transport particles
in all, rather than discrete, directions, the Monte Carlo method has some distinct advantages over
traditional deterministic S n and Pn methods. One disadvantage of Monte Carlo is that it lacks the
general ability to obtain statistically-sound results at distances far away from the simulated radia-
tion source, and, for this reason, many variance reduction techniques have been been developed to
obtain better results for this class of problems.

Study of the theory of Monte Carlo uncertaintiess began in the late 1970s with work by Amster
and Djomehri [1976]. In Amster and Djomehri’s work, a set of equations is developed for the
moments of the score distribution resulting from a Monte Carlo tally. Equally important to theory
of Monte Carlo uncertainties is Amster and Djomehri’s proof that the equations developed are ad-
joint to the linearized Boltzmann transport equation commonly used to describe radiation transport
processes. The first moment equation is equivalent to the solution of the adjoint transport equation
and provides the expected score of a particle. The second moment, along with the first, provides
the population variance of the underlying score distribution the Monte Carlo seeks to estimate.

The work of Amster and Djomehri was later independently generalized by Booth and Cashwell
[1979] and Sarkar and Prasad [1979] to include the variance reduction schemes current to that day.
The result of these two works was a set of equations that not only offered a means of calculating
the population variance of a Monte Carlo score distribution but one that does so with the inclusion
of multiple variance reduction effects. The work of Sarkar and Prasad took the additional step of
considering the optimization of the Monte Carlo calculation specifically for the exponential trans-
form game. In Sarkar and Prasad’s work, the number of collisions was used as an approximation
of the required calculation time. With an estimate of the calculation time and variances from P1

calculations, predictions about the minimum Monte Carlo calculation cost were made in one-group
1-D slab problems. Shortly after the works by Booth and Cashwell and Sarkar and Prasad, Lux
[1980] made analytical predictions about a novel expected leakage estimator and quasi-optimum
rouletting parameters using the history-score moment equations and compared the predictions to
actual Monte Carlo calculations.

Similar calculations to those of Sarkar and Prasad were performed by Juzaitis [1982]. In these
calculations the optimum locations of one and two splitting surfaces were determined for one-
group, 1-D slabs. Again, using the expected number of collisions as a replacement for the calcula-
tion time, Juzaitis was able to determine the location of splitting surfaces that provides a minimum
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Monte-Carlo cost using the S n method. Neither Sarkar and Prasad nor Juzaitis [1982] considered
the case of weight-dependent variance reduction schemes, e.g. weight windows, in their work.

Current state-of-the-art variance reduction techniques generally employ the importance (ad-
joint) function as basis for determining a set of variance reduction techniques. This importance
function may be calculated using either deterministic [Wagner and Haghighat, 1998] or Monte
Carlo [Booth, 1982; Booth and Hendricks, 1984] methods. Using the importance function for
Monte Carlo biasing has proved very applicable to a wide range of problems. However, the im-
portance function provides information only about the expected score a Monte Carlo particle will
make and contains no information about the variance introduced by that particle nor the additional
calculation time introduced by the biasing process. Thus, simple application of the importance
function for biasing offers no insight into the efficiency of the calculation until after the calculation
has been performed.

The works of Sarkar and Prasad and Juzaitis [1982] provided an initial investigation into the
deterministic optimization of Monte Carlo transport problems. However, little record of any ad-
ditional attempts to predict the cost of Monte Carlo calculations with deterministic calculations
was found. Perhaps one reason for the lack of additional work with the deterministic methods
was the development of the Monte Carlo weight-window generator [Booth, 1982] that made the
calculation of importance estimations possible directly in the Monte Carlo. Methods to predict
variances and minimize calculation costs directly in the Monte Carlo calculation were considered
by Dubi [1985a; 1985b] for splitting games at surfaces. Dubi’s initial work was later generalized to
the Direct Statistical Approach (DSA) [Dubi et al., 1985, 1986], and even later extended by Burn
[1992, 1995, 1997] to include a cell importance model, particle bifurcation between surfaces, and
a weight-dependent approach.

Burn’s modification of the DSA method to include weight dependence was the first consider-
ation of weight-dependent variance reduction with respect to the score distribution moments and
optimization. Similarly, this work seeks to optimize Monte Carlo cost with weight-dependent
variance-reduction parameters using strictly deterministic calculations. Specifically, this work is
interested in the optimization of weight-window lower bounds for the weight-window game in
MCNP5 [X-5 Monte Carlo Team, 2003]. Though optimization of weight-window lower bounds is
the ultimate goal of this work, the method developed to solve the moment equations and predict
the Monte Carlo cost is shown to be applicable to other variance reduction techniques as well.

As this work was being completed, a similar study was presented that considers
weight-dependent variance reduction as well [van Wijk and Hoogenboom, 2010]. Despite some
similarities in the work, the work by van Wijk and Hoogenboom considers extremely simplified
versions of the transport equation, namely bi-directional transport in a slab and inifinte medium
solutions. Furthermore, the definition of weight window employed by van Wijk and Hoogenboom
is not that typically used in production codes such as MCNP. Furthermore, the practical imple-
mentation into the PARTISN [Alcouffe et al., 2008] code presented by van Wijk and Hoogenboom
is limited to a single weight window uniform across energy and space, which is nearly never the
case. van Wijk and Hoogenboom’s multigroup considerations are limited to cases for which the
weight window in one group is an exact multiple of that in another, which is also generally not the
case, and an infinite medium. Finally, van Wijk and Hoogenboom’s work is limited to collisional
estimators. van Wijk and Hoogenboom’s work does provide useful analytical results for the cases
of bidirectional transport in a slab and a two group infinite medium problem.

This work seeks a general numerical solution method for the history-score moment equations.

2



The moment equations defined by Booth and Cashwell [1979] are extended to consider the weight
window as implimented by general transport codes such as MCNP. Moreover, the one-dimensional
transport problems considered here are not limited to simple bidirectional transport, and this work
considers even two-dimensional transport problems. The method developed herein has no restric-
tion on the weight windows in multiple energy groups and does not require that the weight window
be uniform in space and energy for a practical implementation. Furthermore, this work attempts
to directly calculate the expected time to process a single history rather than using the number of
collisions directly as a stand-in for the calculation effort.

The remainder of this work is structured as follows. Chapter 2 derives the history-score mo-
ment equations being solved following the work of Booth and Cashwell [1979]. Furthermore, the
integral equations developed by Booth and Cashwell are converted to an integro-differential form
for solution by an S n code specifically written for this work. Chapter 2 also extends the history-
score moment equations to consider the weight-window game as defined by the MCNP transport
code [X-5 Monte Carlo Team, 2003].

Chapter 3 shows how the moment equations are discretized using discrete ordinates. Chapter 3
introduces the discretization applied to the Monte Carlo particle weight and illustrates how indi-
vidual variance reduction games affect the particle weight domain. Finally, Chapter 3 derives an
expected track-length estimator and describes its application and limitations to discrete ordinates
solutions of the history-score moment equations.

Chapter 4 presents the development of the equations used to estimate the time required to
perform an MCNP5 (RSICC version 1.51) calculation. The timing studies of MCNP5 required to
obtain estimates of the calculation times and the effects different variance reduction games have on
the calculations times are also presented in Chapter 4.

Optimization results are given in Chapter 5. The optimization proceedure utilized is described
along with how the optimization parameter domain is reduced. Results of 1-D one-group and two-
group optimizations and 2-D one-group optimization are given. Chapter 6 sumarizes this work and
suggests future work to be pursued.

Appendix A contains an extensive amount of verification data to show that the discrete or-
dinates code written for this work is capable of variance calculations for a substantial number of
variance-reduction methods and combinations of variance-reduction methods. Appendix B demon-
strates the inverse relationship between the integro-differential streaming operator and the integral
transition operator necessary for some of the derivations in Chapter 2.
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Chapter 2

Derivation and Extension of the
History-Score Moment Equations

This work is concerned with the deterministic calculation of variances in Monte Carlo particle
transport calculations and the optimization of the efficiencies of these calculations. In this chapter,
Monte Carlo fundamentals and their application to particle transport are outlined. Moreover, vari-
ance reduction techniques commonly applied to particle-transport Monte Carlo are discussed and
the deterministice equations governing the variances, originally developed by Booth and Cashwell
[1979], are derived and extended to the weight-window variance reduction technique.

2.1 Monte Carlo Fundamentals
This section highlights the basics of the Monte Carlo method. Statistical considerations pertinent
to the Monte Carlo method are discussed with particular focus on the moments of probability
distribution functions. Also, the general application of the Monte Carlo method to particle transport
is summarized along with some variance reduction techniques.

2.1.1 Statistics Considerations
The Monte Carlo method fundamentally seeks to determine a generally unknown probability dis-
tribution function (PDF). The average, or mean, of the PDF is typically the quantity of interest,
and, unlike other numerical methods, the Monte Carlo technique provides a quantification of the
uncertainty in the mean. From samples of the unknown PDF, the properties of the PDF may be
determined. In this section, a few fundamental properties of PDFs are discussed along with the
mathematical theorems that make the Monte Carlo method possible.

Probability Distribution Functions

Consider the function f (x) where x ∈ V . This function is a PDF if

1. f (x) ≥ 0 ∀ x, and

2.
∫

V
dx f (x) = 1.
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The first requirement indicates the relative likelihood of an event in a differential region about x
cannot be less than zero. The second requirement indicates that, when all possibilities x times the
likelihood of that possibility, f (x), are summed, represented here by an integral, then the result
must be unity. In other words, the probability that one of the possible events x will occur is unity.

Moments of Probability Distribution Functions

Most important to this work are moments of probability distribution functions and their relationship
to the mean and variance of the PDF. If one considers a PDF of a single variable f (x), then the rth
moment Mr of the PDF with respect to some function z(x) is defined as

Mr[z(x)] =

∫ ∞

−∞

dx zr(x) f (x). (2.1)

Of special interest for the Monte Carlo method are the first and second moments of the probability
distribution function. The population, or true, mean µ is defined to the be the first moment of the
PDF, i.e.,

µ[z(x)] = M1[z(x)] =

∫ ∞

−∞

dx z(x) f (x). (2.2)

The population variance σ2[z(x)] is defined as

σ2[z(x)] =

∫ ∞

−∞

dx (x − µ)2 f (x), (2.3)

and is equivalent to
σ2[z(x)] = M2[z(x)] − M2

1[z(x)]. (2.4)

By calculating the first two moments of a known probability distribution function, both the popu-
lation mean and population variance can be determined.

Estimation of Moments by Monte Carlo

In order to determine the moments of a PDF, as outlined above, one must know the PDF being ran-
domly sampled. Often the PDF is not known and, even if it is, many PDFs do not lend themselves
to simple analytic integration. It is in these cases that the Monte Carlo method for estimating the
moments of a PDF is quite useful. Rather than calculate the exact population mean and popula-
tion variance of a PDF, the Monte Carlo technique estimates the population mean and population
variance with the sample mean z and sample variance v2(z)1, respectively. The sample mean and
sample variance are obtained by repeated random sampling, obtaining individual data points, of
the PDF. In such a manner the moments of a non-integrable or unknown PDF can be estimated as

M̂r[z(x)] =
1
N

N∑
i=1

zr(xi), (2.5)

1Traditionally, the notation s2 is used to represent sample variance; however, to avoid confusion with s, which is used
here to represent the score to a tally, this alternative notation is utilized.
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where N is the number of random samples, xi is the ith random sample from the PDF, and M̂r

indicates the rth sample moment. The sample mean and first sample moment are equal and given
by

z = M̂1[z(x)] =
1
N

N∑
i=1

z(xi), (2.6)

and the sample variance is given by

v2(z) = M̂2[z(x)] − z2, (2.7)

where M̂2[z(x)] is the second sample moment given by

M̂2[z(x)] =
1
N

N∑
i=1

z2(xi). (2.8)

Although the population variance is a fundamental property of a distribution, independent of
the number of samples and the sample variance is an estimate of the population variance, the
variance of the sample mean v2(z) decreases with the number of histories as [Dunn and Shultis,
2008]

v2(z) = v2(z)/N. (2.9)

To simplify the quantification of uncertainty of the mean, the sample standard deviation of the
mean v(z) =

√
v2(z) =

√
v2(z)/N or relative error R = v(z)/z is typically employed.

Success of the Monte Carlo method is rooted in two fundamental mathematical theorems, stated
here without proof. The first is the law of large number which states that in the limit as the number
of random samples approaches infinity, the sample moments of a PDF approach the population
moments, i.e., [Dunn and Shultis, 2008]

lim
N→∞

1
N

N∑
i=1

zr(xi) =

∫ ∞

−∞

dx zr(x) f (x). (2.10)

Therefore, for a sufficiently large number of samples, the sample mean and sample variance will
be a “good” approximation of the population mean and population variance. How “good” that
approximation is quantified by the second important theorem, the central limit theorem.

In one form, the central limit theorem states that, in the limit that the number of random samples
approaches infinity, the probability that the sample mean differs from the population mean by less
than or equal to an amount λ is distributed as a Gaussian distribution, namely [Dunn and Shultis,
2008]

lim
N→∞

Prob

 |M̂r[z(x)] − Mr[z(x)]|√
σ2[z(x)]/N

≤ λ

 =
1
√

2π

∫ λ

−λ

du e−u2/2. (2.11)

With the central limit theorem, it is possible to quantify the probability that the sample mean is
within some tolerance of the population mean. The denominator in the probability contains the
population variance, which is unknown but also can be estimated by Monte Carlo as discussed
above. However, given an estimate of the sample variance alone, it is unknown how accurately
the sample variance represents the population variance. To know how well the sample variance
approximates the population variance, the variance of the variance must also be determined and
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the central limit theorem applied to the sample variance. Only with a low variance of the variance
is it known that the sample variance accurately approximates the population variance and, in turn,
the sample mean accurately approximates the population mean.

2.1.2 Monte Carlo Neutral Particle Transport
The Monte Carlo method has been used for almost 70 years to simulate neutral particle radiation
transport [Carter and Cashwell, 1975]. The stochastic behavior of radiation particles traversing a
medium lends itself well to a solution by stochastic means. Based on the probabilities involved in
all the processes a radiation particle can undergo, e.g., sourcing the particle, computing distances
to collisions, computing collision events, etc., a solution to the linearized Boltzmann transport
equation can be estimated.

Typically, the Monte Carlo procedure of generating a random sample for radiation transport is
as follows. A particle’s starting position, energy, and direction are sampled from a given source
PDF. The distance to the next collision event is sampled from another PDF, and the properties
of the particle(s) emerging from the collision event, if any, are sampled from yet another PDF.
This process of sampling distances to collision events and then sampling the properties of parti-
cles emerging from the event continues until either the particle leaves the problem domain or is
terminated by some natural, e.g., absorption, or artificial, e.g., variance reduction, event. Then, the
entire process, called a histroy, is repeated for another initial particle.

Quantities of interest, such as flux talies, current tallies, reaction rate tallies, etc., are estimated
during the process described above. As the particle progresses through the randomly sampled
transport process, it may enter regions or cross surfaces over which quantities of interest are desired
and contribute a score to the tally or tallies. Even though a particle may contribute to a tally
multiple times during the transport process for a single history, it is the sum of these multiple
contributions that is the score for that history, not each separate event. In this way, each history
has associated with it a single score. If a particle never reaches a tally, the score is zero. Therefore,
each history has a probability of contributing a score s described by an unknown PDF p(s) known
as the history-score distribution function. The probability that a history contributes a score in ds
about s is then given by p(s)ds, and, from the properties of PDFs, the probability that some score
results from a history is ∫ ∞

−∞

ds p(s) = 1. (2.12)

Typically, tallies are chosen such that they produce purely positive scores and the bounds of the
above integral are instead [0,∞).

The history-score distribution function is unknown a priori, hence the transport simulation
process described above is used to obtain samples of the distribution. As samples are obtained,
the history-score distribution function may be inferred, but, more importantly, moments of the
history-score distribution function can be calculated as

Mr[s] =
1
N

N∑
i=1

sr. (2.13)

From these moments the sample mean and sample variance of a tally can be determined. With a
sufficiently high number of samples, application of the law of large numbers, and the central limit
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theorem, the accuracy with which the sample mean and variance represent the population mean
and variance can be determined.

2.1.3 Efficiency of Monte Carlo Techniques
Ideally, a description of the Monte Carlo simulation is desired such that every history contributes a
score and the set of scores is sampled proportionately from the history-score distribution function.
Describing the problem in such a manner is often difficult. Consider an isotropic source and a tally
100 mean free paths away. It is highly unlikely that a particle emitted from the source will traverse
all 100 mean free paths and contribute a non-zero score to the tally. A direct or analog simulation
of the such a problem is inefficient.

A metric commonly used to evaluate the efficiency of a Monte Carlo simulation is the figure of
merit (FOM), defined as

FOM =
1

R2T
, (2.14)

where R is the relative error obtained from sampling the history-score distribution for a given tally
and T is the amount of time (typically computational) required to obtain that relative error. Because
R2 decreases as 1/N and T is proportional to the number of histories N, one can see that the FOM
should be roughly constant

FOM =
z2

v2(z)
N Nτ

=
z2

v2(z)τ
, (2.15)

where τ is the expected time required to process a single history. Alternatively, the cost C of a
Monte Carlo calculation is the inverse of the FOM, namely

C =
v2(z)τ

z2 . (2.16)

Provided the sample mean and sample variance are adequate representations of the population
mean and population variance, respectively, the cost may be written

C '
σ2τ

µ2 , (2.17)

or in terms of the fundamental moments of the history-score distribution

C '
(M2[s] − M2

1[s])τ
M2

1[s]
. (2.18)

2.1.4 Variance Reduction Techniques of Particle Transport
Variance reduction is the process by which the underlying PDF being sampled in a Monte Carlo
process is fairly altered such that the first moment or mean of the distribution remains unchanged
and the second moment of the distribution is reduced, thereby reducing the variance. Many dif-
ferent variance reduction techniques, or “non-analog games,” have been developed for applica-
tion to radiation-particle transport Monte Carlo. Typically, the usefulness of any one technique is
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problem dependent, although the weight-windows technique [X-5 Monte Carlo Team, 2003] has
demonstrated its applicability to a wide variety of problems.

In particle transport Monte Carlo, variance reduction games are typically implemented by al-
tering the probabilities of certain events. To maintain the fairness of the game, i.e., preserve the
first moment, a non-physical quantity called particle weight w is introduced. Typically, particles
from an unbiased source are born with unit weight. As the particle progresses through the transport
process discussed above, aspects of the process may be biased to promote specific outcomes, and
the particle weight is reduced in proportion to the magnitude of the bias so that the means of the
tallies are preserved.

Generally, the penalty for using variance reduction is an increased computational time per
history and, correspondingly, an increased computational cost, as indicated in Eq. (2.18). There
is a balance between the variance reduction methods employed and the time required to perform
the calculation. In some situations, a variance reduction technique does not reduce the variance
commensurately with the additional time introduced by the technique. One common example is
excessive splitting where most of the particles follow nearly the same random walk from the point
of the split onward.

Variance reduction methods can be categorized into two types: weight-independent methods
and weight-dependent methods. Weight-independent techniques, such as implicit capture, expo-
nential transform, and importance splitting/rouletting, act on the particle regardless of the particle’s
weight. Weight-dependent games, such as weight cutoff and weight windows, only act on a parti-
cle if its weight meets some criterion. The following subsections discuss some particle transport
variance reduction methods with which this work is concerned. This work compares exclusively
to the Monte Carlo N-Particle (MCNP) transport code [X-5 Monte Carlo Team, 2003]. The im-
plementations of the variance reduction techniques discussed is that of MCNP and other transport
codes may have different implementations.

Implicit Capture

The implicit capture game biases the Monte Carlo transport process by assuming that the particle is
never captured resulting in a termination. The probability that a particle is captured when colliding
is Σc/Σ, where Σc and Σ are the macroscopic capture and total cross sections, respectively. When
a particle collides and the implicit capture game is being played the particle always survives the
collision, and, to compensate for the bias, the new weight of the surviving particle w′ is modified
as

w′ = w (1 − Σc/Σ) . (2.19)

If the medium the particle undergoes a collision in is highly absorbing, then the ratio Σc/Σ is
nearly unity. In such a case, the new weight of the particle is reduced. On the other hand, if the
medium is very diffuse, then Σc ≈ 0 and the new weight is approximately that of the initial weight.
When this latter situation is the case, the additional time introduced by the implicit capture game
does not produce a benefit.

Weight Cutoff

The weight-cutoff game is actually a time reduction technique not a variance reduction technique,
and, in general, increases the variance of a Monte Carlo calculation. The weight cutoff method
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utilizes two user-specified parameters: the cutoff weight ωc and the survival weight ωs. If during
the transport process a particle’s weight w drops below the cutoff weight, then with a probability
w/ωs the particle’s weight is promoted to ωs, otherwise the particle is fairly terminated. Such a
technique prevents the further processing of low weight particles that will simply consume com-
putational effort and contribute little to either the means or variances of tallies.

The fact that the weight cutoff technique is variance increasing can be seen by considering
a batch of particles, some with weights just above and some with weights just below the cutoff

weight. Those particles with weights below the cutoff weight will undergo the weight cutoff game
and a fraction of them will have their weights promoted to the survival weight. This introduces a
nearly bimodal distribution of particle weights. One mode is those particles with weights slightly
above the weight cutoff that did not experience the weight cutoff game, and the second mode is
those particles now at the survival weight. The introduction of this weight discrepancy introduces
greater variances in scores contributing to tallies.

Exponential Transform

The exponential transform game biases the distance particles travel between collisions, increasing
that distance in some preferred direction and decreasing it in the opposite direction. The proba-
bility that a particle undergoes a collision a distance dh about h away from its current location is
Σ exp(−Σh)dh. The exponential transform method introduces a parameter p such that −1 ≤ p ≤ 1
and creates a new fictitious total cross section Σ′ based on the original as Σ′ = Σ(1− pµ). The effect
is a stretching of the collision distance. Here, µ is the cosine of the angle between the particle’s
direction of travel Ω and some desired direction Ωd, i.e., µ = Ω·Ωd. The weight correction wc

must be such that
Σe−Σhdh = wcΣ

′e−Σ′hdh, (2.20)

to preserve the expected collided weight. Solving for wc one obtains exp(−pµΣh)/(1 − pµ).
Because this method depends on the particle’s direction of travel, the exponential transform

game can introduce extreme variances in the weights of particles in regions where this technique
is employed. These extreme differences in turn can lead to substantial variances in the score
contributions to tallies. For this reason, good Monte Carlo practitioners always recommend that
weight control methods be combined with the exponential transform technique.

Importance Splitting/Rouletting

The importance splitting and rouletting game biases the transport process by splitting individual
particles into more particles of lesser weight when a particle traverses from a user-defined low-
importance region to a high importance region. Contrarily, when a particle transitions from a
user-defined high-importance region to a low importance region the particle’s weight is increased
in proportion to the importances or terminated.

Consider two regions, one with importance a and the other with importance b such that b > a.
When a particle transitions from importance a to importance b it is split. With a probability a/b the
split produces bb/ac2 particles and with a probability (1−a/b) the split produces db/ae particles. In

2The notation bcc indicates the floor of c or the maximum integer less than c. Similarly, the notation dce indicates the
ceiling of c or the minimum integer greater than c. If c is itself an integer, then bcc = dce.
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either case the weight w′ of the new particles or the surviving particle is w′ = wa/b, where w is the
weight of the original particle. Assigning the new particles’ weights in such a manner decreases
the dispersion of particle weights and helps to minimize variances in contributions to scores.

When a particle transitions from importance b to importance a, then with a probability of
(1 − a/b) the particle is rouletted (terminated). If the particle is not rouletted, then it survives with
a probability a/b and its new weight w′ becomes w′ = wb/a.

Weight Windows

The weight-window technique essentially combines the weight cutoff technique with a weight
dependent splitting game. The weight window game requires four user specified parameters: the
weight-window lower bound ωl, the weight-window upper bound ωu, a weight-window survival
weight ωs such that ωl ≤ ωs ≤ ωu, and a maximum splitting/rouletting parameter K. Particles
entering into a weight window region and/or experiencing a collision in the weight window region
will do one of five things depending on their weight.

If the particle’s weight is such that ωl ≤ w ≤ ωu then the particle continues with weight
unchanged. If the particles weight is such that w < ωl/K, then with a probability 1/K the particle
survives and its new weight becomes w′ = Kw. If the particle’s weight is such that ωl/K < w < ωl,
then with a probability w/ωs the particle survives and its new wight becomes ωs. If the particle’s
weight is such that ωu < w < Kωu then the particle is split into dw/ωue particles and the new
weight of each particle is w′ = w/dw/ωue. Finally, if the particle’s weight is such that w > Kωu

then the particle is split into K particles and the new weight of each particle is w′ = w/K.
The weight window method seeks to control the weight distribution of particles in a region.

Ideally, the window maintains each particle’s weight between ωl and ωu. However, particles with
weights less than ωl/K will not be rouletted into the window, nor will particles with weights in
excess of Kωu be split into the window. The cap on rouletting prevents an excessive introduc-
tion of variances in the particle weights and the cap on splitting prevents an excessive number of
particles being created that need to be tracked and, thereby, prevents excessive additions to the
computational time.

2.2 Derivation of the History-Score Moment Equations
Although the underlying PDF the Monte Carlo process seeks to sample may not be known a priori,
the distribution and its moments typically exist. Booth and Cashwell [1979]3 have derived a set
of integral equations for the moments of the history-score distribution function which account for
particle bifurcation by importance splitting/rouletting, implicit capture, and weight cutoff methods.
The section that follows reproduces and adds helpful details to their derivation as it is essential to
the understanding of this work.

2.2.1 Description of the Scoring Functions and Transport Kernels
This section derives an integral equation for the history-score moment equations (or simply mo-
ment equations) by first developing an equation for the history-score distribution and then deriving

3A similar derivation, though somewhat less complete, was concurrently published by Sarkar and Prasad [1979]
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moments of that distribution. Before the integral form of the moment equation can be derived,
the scoring functions and integral kernels describing the transition of score probability must be
described.

Phase Space

The phase space P is defined as position r, direction Ω, energy E, and particle weight w, namely

P = (r,Ω, E,w). (2.21)

Time t is considered separately. The subset of phase space R ∈ P is defined as position r, direction
Ω, and energy E, namely

R = (r,Ω, E), (2.22)

such that
P = (R,w). (2.23)

For this derivation, P+ represents phase space after a transition but before collision, P′ represents
phase space after collision but before the effects of the collision, P′′ represents phase space after
collision and its effects, and Pc represents phase space after collision and variance reduction applied
at collision.

Scoring Functions

Each of the following scoring functions describes the probability that a particle contributes a score
s in ds in its next event:

pd(P,P′, s)ds =
probability of a score in ds about s for a collisionless free
flight from P to P′ , (2.24)

p0(P,P′, s)ds =
probability of a score in ds about s for a departure from P
followed directly by absorption at P′ , (2.25)

p1(P,P′, s)ds =
probability of a score in ds about s for a departure from P
followed directly by a scattering at P′ , (2.26)

pk(P,P′, s)ds =
probability of a score in ds about s for a departure from P
followed directly by a collision at P′ that produces k particles , (2.27)

psk(P,P′, s)ds =
probability of a score in ds about s for a departure from P
followed by a k-for-one split at P′ , (2.28)

pr(P,P′, s)ds =
probability of a score in ds about s for a departure from P
followed by a rouletting game at P′ . (2.29)
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Weight Multiplication Functions

For nonanalog games, the quantity ω(R,R′) describes the factor by which a particle’s weight is
multiplied for a specific transition event. Note that these factors are independent of the particle’s
initial weight.

ωt(R,R′) =
factor by which the particle’s weight is multiplied for
an eventless transition from R to R′

, (2.30)

ωΣ(R′) =
factor by which the particle’s weight is multiplied if
the particle collides at R′ , (2.31)

ωε1(R
′,R′′) =

factor by which the particle’s weight is multiplied if
the particle collides at R′ and exits at R′′ , (2.32)

ωεk(R
′,R1, . . . ,Rk) =

factor by which the k secondary particles’ weights
resulting from the collision of a single particle at R′
are multiplied

, (2.33)

ωc =
the weight cutoff—no particle may exit a collision
with a weight less than ωc

, (2.34)

ωs =
survival weight assigned to a particle if it survives a
weight cutoff game . (2.35)

Transport Kernels

The following transport kernels describe the probability of transitioning from one phase space
region to another. Not all phase-space variables change in each kernel.

Transmission Kernel:

T (P,P+)dΩ+dE+dw+ = T (R,R+)δ(w+ − ωtw)dR+dw+

= T (r, r+, E,Ω)δ(E+ − E) δ(Ω+ −Ω)δ(w+ − ωtw)dE+dΩ+dw+

=

the probability that a particle at r will transition to r+

while maintaining a constant energy E and direction
Ω. Upon arrival at r+ the weight of the particle is
multiplied by ωt

. (2.36)

Collision Kernel:

Σ(P+,P′)dr+dP′ = Σ(r+)δ(r′ − r+)δ(E′ − E+)δ(Ω′ −Ω+)δ(w′ − ωΣw+)
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=

the probability that a particle at r+ will collide in dr+ about
r+ and emerge in dP′ about P′. The particle’s position, en-
ergy, and direction remain unchanged and only the particle’s
weight may change. Σ(r+) is the total macroscopic cross sec-
tion

. (2.37)

Splitting Kernel:

S k(P+)dr+ =
the probability that a particle at r+ traveling in direction Ω+

with energy E+ and weight w+ will undergo a k-for-one split
in dr+ about r+

. (2.38)

Russian Roulette Probability:

Ro(r+)dr+ =
the probability that a particle at r+ traveling in direction Ω+

with energy E+ and weight w+ will play Russian roulette in
dr+ about r+

. (2.39)

Collisionless Free-Flight (Drift) Probability:

D(P,P+, t)dr+ = T (P, P+)δ(|r+ − r| − v(E)t)dr+ (2.40)
= T (r, r+,Ω, E)δ(Ω+ −Ω)δ(E+ − E)δ(|r+ − r| − v(E)t)
×δ(w+ − ωtw)dr+dΩ+dE+dw+

=

the probability that a particle departing P will undergo a col-
lisionless flight (drift) for time t with energy E along direc-
tion Ω and with weight w and end up in dr+ about r+ with
the same energy and direction, but a modified weight

. (2.41)

Absorption Probability:

A(P′) =
the probability that a particle is absorbed when colliding at
P′

. (2.42)

Multiplication Probability:

εk(P′,P1, . . . ,Pk)dP1 . . . dPk = εk(E′,Ω′, E1,Ω1, . . . , Ek,Ωk)
×δ(r1 − r′) . . . δ(rk − r′)δ(w1 − ωεkw

′) . . . δ(wk − ωεkw
′)

×dr1dΩ1dE1dw1 . . . drkdΩkdEkdwk

=

the probability that a particle colliding at P′
produces k secondaries, the jth of which ends
up in dP j about P j

. (2.43)
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Scattering Probability:

E(P′,P′′)dP′′ = ε1(P′,P1)dP1

= E(E′,Ω′, E′′,Ω′′)δ(r′′ − r′)δ(w′′ − ωε1w
′)dr′′dΩ′′dE′′dw′′

=
the probability that a particle colliding at P′ will scatter into
dP′′ about P′′

. (2.44)

Splitting Weight Change Probability:

Bsk(P+,P′′)dP′′ = δ(r′′ − r+)δ(Ω′′ −Ω+)δ(E′′ − E+)
×δ(w′′ − w+/k)dr′′dΩ′′dE′′dw′′

=

the probability that a particle experiencing a k-for-one split
ends up in dP′′ about P′′, where only the weight has been
divided by k

. (2.45)

Russian Roulette Weight Change Probability:

Bo(α,P+,P′′)dP′′dα = δ(r′′ − r+)δ(Ω′′ −Ω+)δ(E′′ − E+)
×

[
αδ(w′′ − w+/α) + (1 − α)δ(w′′)

]
dr′′dΩ′′dE′′dw′′dα

=

the probability that a particle undergoing Russian
roulette with a survival probability of α exits in dP′′
about P′′, where the particle is either killed (w′′ = 0)
with a probability of (1−α) or the weight is increased
by a factor of 1/α with a probability of α

. (2.46)

Weight Cutoff Weight Change Probability:

Bc(P′′,Pc)dPc = δ(rc − r′′)δ(Ωc − δ′′)δ(Ec − E′′)
× {Θ(w′′ − ωc)δ(wc − w′′) + [1 − Θ(w′′ − ωc)]
× [(w′′/ωe)δ(wc − ωc) + (1 − w′′/ωe)δ(wc)]} drcdΩcdEcdwc

=

the probability that a particle exiting a collision at r′′ will
undergo weight cutoff and have resulting phase space coor-
dinates in dPc about Pc

. (2.47)

2.2.2 Derivation of the History-Score Distribution Function
The history-score distribution function ψ(P, s), the probability that a particle at P and all its progeny
will yield a score in ds about s, is derived by considering a probability balance of all the possible
ways a particle in P at time to can end a free flight by time t > to. There are six possible ways to
end the free flight as illustrated in Fig. 2.1:

1. stream for the entire time t − to and arrive at P+ at time t,
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2. be absorbed at time t′ ∈ (to, t) upon arriving at P′ at time t′,

3. undergo Russian roulette at time t′ ∈ (to, t) upon arriving at P+ at time t′ and surviving with
probability α,

4. split k-to-one at time t′ ∈ (to, t) upon arriving at P+ at t′ and all progeny begin at P+ and time
t′ with weight w/k,

5. scatter at time t′ ∈ (to, t) upon arriving at P′ at time t′.

6. multiply at time t′ ∈ (to, t) upon arriving at P′ at time t′ and all progeny begin at P′ and t′

with weight w.

Each of the above possibilities is a probability of the form

probability of event
occurring ×

probability that event
contributes a score in

ds′ about s′
×

probability that all subsequent
events experienced by the

particle and progeny lead to a
score in ds about s − s′ in the

remaining time t − t′

, (2.48)

and each will now be considered in terms of the transport kernels presented above.

Case 1: Stream for Entire Time t − to

The probability of the event occurring is D(P,P+, t)dP+. The probability of a score in ds′ about s′

is pd(P,P+, s′)ds′. The probability that the particle and progeny produce a score in ds about s − s′

in the remaining time is δ(s − s′)ds, because no time remains. Thus we have the expected score
distribution for a free flight from P is[

D(P,P+, t)dP+] × [
pd(P,P+, s′)ds′

]
×

[
δ(s − s′)ds

]
. (2.49)

Case 2: Absorption at Time t′ after Transition from P to P′

The probability of the event occurring is the probability of transition from P to P+, T (P,P+)dP+,
times the probability of collision at P+, Σ(P+,P′)dP′, times the probability that the collision is an
absorption event, A(P′). The probability of generating a score in ds′ about ds is p0(P,P′, s′)ds′,
and, because absorption ends the history, the probability that the particle and progeny produce a
score in ds about (s − s′) is δ(s − s′)ds. Thus, the expected score distribution from absorption is[

T (P,P+)Σ(P+,P′)A(P′)dP+dP′
]
×

[
p0(P,P′, s′)ds′

]
×

[
δ(s − s′)ds

]
. (2.50)

Case 3: Russian Roulette at Time t′ after Transition from P to P+

The probability of the event occurring is the probability of transition from P to P+, T (P,P+)dP+,
times the probability of Russian roulette at P+, Ro(P+), times the probability of surviving Russian
roulette and exiting at dP′′, Bo(α,P+,P′′)dαdP′′. The probability of generating a score in ds′ about
s′ before the rouletting game is pr(P,P+, s′)ds′. The probability that a total score in ds about (s−s′)
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Figure 2.1. the possible methods a particle can end its free flight (not all possible sources of weight
change, such as changing during transition, are depicted). Numbers in circles correspond to the six
cases of Section 2.2.2.
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by all particles surviving roulette is then ψ(P′′, t− t′, s− s′)ds. Thus, the expected score distribution
from Russian roulette is [

T (P,P+)Ro(P+)Bo(α,P+,P′′)dP+dαdP′′
]

×
[
pr(P,P+, s′)ds′

]
×

[
ψ(P′′, t − t′, s − s′)ds

]
. (2.51)

Case 4: Splitting at Time t′ after Transition from P to P+

The probability of the event occurring is the probability of transition from P to P+, T (P,P+)dP+,
times the probability of splitting k-to-one at P+, S k(P+), times the weight change from splitting
Bsk(P+,P′′)dP′′. The score generated in ds′ about s′ for the k-to-one split before the split is
psk(P,P+, s′)ds′. The probability that the total score generated by the progeny is in ds about (s− s′)
is the probability that the first k − 1 progeny produce scores in ds j about s j and the kth progeny
produces a score in ds about (s− (s′+ s1 + . . .+ sk−1)). Because each progeny produced is a separate
random sample, the result is the product of probabilities for each particle, namely

k−1∏
j

ψ(P′′, t − t′, s j)ds j × ψ(P′′, t − t′, s − (s′ + s1 + . . . + sk−1))ds.

The total expected score distribution resulting from a split is therefore[
T (P,P+)S k(P+)Bsk(P+,P′′)dP+dP′′

]
×

[
psk(P,P+, s′)ds′

]
× k−1∏

j

ψ(P′′, t − t′, s j)ds j × ψ(P′′, t − t′, s − (s′ + s1 + . . . + sk−1))ds

 . (2.52)

Case 5: Scattering at Time t′ after Transition from P to P′ Followed by Weight-Cutoff Rus-
sian Roulette

The probability of the event occurring is the probability of transition from P to P+, T (P,P+)dP+,
times the probability of colliding at P+, Σ(P+,P′)dP′), times the probability that the collision yields
a single particle E(P′,P′′)dP′′, times the probability of surviving weight-cutoff Russian roulette,
Bc(P′′,Pc)dPc. The probability that a score in ds′ about s′ is generated before the weight-cutoff

game is p1(P,P′, s′)ds′. The probability that the recoiling particle generates a score in ds about
(s − s′) in the remaining amount of time t − t′ is ψ(Pc, t − t′, s − s′)ds. The total score distribution
resulting from a scatter is then[

T (P,P+)Σ(P+,P′)E(P′,P′′)Bc(P′′,Pc)dP+dP′dP′′dPc]
×

[
p1(P,P′, s′)ds′

]
×

[
ψ(Pc, t − t′, s − s′)ds

]
. (2.53)

Case 6: Multiplication at Time t′ after Transition from P to P′ Followed by Weight-Cutoff

Russian Roulette of all the Progeny

The probability of the event occurring is the probability of transition from P to P+, T (P,P+)dP+,
times the probability of colliding at P+, Σ(P+,P′)dP′), times the probability the collision produces
k progeny, the j of which is in dP j, εk(P′,P1, . . . ,Pk)

∏k
j=1 dP j, times the probability that each

18



of the j particles survives the weight-cutoff game,
∏k

j=1 Bc(P j,Pc
j)dPc

j. The score in ds′ about s′

generated by the collision is pk(P,P′, s′)ds′. The score distributions generated by the progeny are,
for the same reasons as Case 4 above,

k−1∏
j

ψ(Pc
j, t − t′, s j)ds j × ψ(Pc

k, t − t′, s − (s′ + s1 + . . . + sk−1))ds.

Thus, the score distribution generated for a multiplying event isT (P,P+)Σ(P+,P′)εk(P′,P1, . . . ,Pk)

 k∏
j=1

Bc(P j,Pc
j)

 dP+dP′
 k∏

j=1

dP j


 k∏

j=1

dPc
j




×
[
pk(P,P′, s′)ds′

]
×

 k−1∏
j

ψ(Pc
j, t − t′, s j)ds j

× ψ(Pc
k, t − t′, s − (s′ + s1 + . . . + sk−1))ds

 . (2.54)

The History-Score Distribution Function ψ(P, t, s)

The total score distribution function is obtained by summing the individual cases from the previous
section and integrating over all phase space variables and over time from to to t, namely

ψ(P, t, s)ds =

∫ t

to
dt′

∫
dP+D(P,P+, t)

∫ ∞

−∞

ds′pd(P,P+, s′)δ(s − s′)ds

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

ds′p0(P,P′, s′)δ(s − s′)ds

+

∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds′pr(P,P+, s′)

×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)ψ(P′′, t − t′, s − s′)ds

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds′psk(P,P+, s′)

×

∫
dP′′Bsk(P+,P′′)

∫ ∞

−∞

ds1 . . .

∫ ∞

−∞

dsk−1ψ(P′′, t − t′, s1) . . .

×ψ(P′′, t − t′, sk−1)ψ(P′′, t − t′, s − (s′ + s1 + . . . + sk−1))ds

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′p1(P,P′, s′)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)ψ(Pc, t − t′, s − s′)ds

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′pk(P,P′, s′)
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×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

×

∫ ∞

−∞

ds1 . . .

∫ ∞

−∞

ds jψ(Pc
1, t − t′, s1) . . .

×ψ(Pc
k−1, t − t′, sk−1)ψ(Pc

k, t − t′, s − (s′ + s1 + . . . + sk−1))ds. (2.55)

2.2.3 Derivation of the History-Score Moment Equations
The rth moment of the score distribution function can be obtained by multiplying Eq. (2.55) by sr

and integrating over all score s. Each of the seven terms (one on the left hand side of the equal sign
and 6 on the right hand side of the equal sign) of Eq. (2.55) will be handled separately.

Moment of the Score Distribution

The moment of the total score distribution is defined as follows:∫ ∞

−∞

ds srψ(P, t, s) = Mr(P, t). (2.56)

Moment of the Streaming Term

The moment of the streaming term is obtained as follows∫ t

to
dt′

∫
dP+D(P,P+, t)

∫ ∞

−∞

ds′pd(P,P+, s′)
∫ ∞

−∞

ds srδ(s − s′)

=

∫ t

to
dt′

∫
dP+D(P,P+, t)

∫ ∞

−∞

ds′ s′r pd(P,P+, s′)

=

∫ t

to
dt′

∫
dP+D(P,P+, t)

∫ ∞

−∞

ds sr pd(P,P+, s). (2.57)

Moment of the Absorption Term

The moment of the absorption term is obtained as follows:∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

ds′p0(P,P′, s′)
∫ ∞

−∞

ds srδ(s − s′)

=

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

ds′s′r p0(P,P′, s′)

=

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

dssr p0(P,P′, s). (2.58)
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Moment of the Russian-Roulette Term

The moment of the Russian roulette term is obtained as follows:∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds′pr(P,P+, s′)

×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

∫ ∞

−∞

ds srψ(P′′, t − t′, s − s′)

Now, define q = s − s′ such that

sr = (q + s′)r

=

r∑
n=0

 r

n

 qns′r−n.

Insertion of q into the expression above for the moment of the Russian roulette term one obtains∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds′pr(P,P+, s′)

×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

∫ ∞

−∞

dq
r∑

n=0

s′r−nqnψ(P′′, t − t′, q)

=

∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds′pr(P,P+, s′)

×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

r∑
n=0

 r

n

 s′r−nMn(P′′, t − t′)

=

∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds pr(P,P+, s)

×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

r∑
n=0

 r

n

 sr−nMn(P′′, t − t′). (2.59)

Moment of the Splitting Term

The moment of the splitting term is obtained as follows:

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds′psk(P,P+, s′)

×

∫
dP′′Bsk(P+,P′′)

∫ ∞

−∞

ds1 . . .

∫ ∞

−∞

dsk−1ψ(P′′, t − t′, s1) . . .

×ψ(P′′, t − t′, sk−1)
∫ ∞

−∞

ds srψ(P′′, t − t′, s − (s′ + s1 + . . . + sk−1)).
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Define a = s′ + s1 + . . . + sk−1 and q = s − a, such that

sr = (q + a)r

=

r∑
n1=0

 r

n1

 qn1ar−n1 .

Insertion of this binomial expansion into the equation for the moment of the splitting term above,
yields

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds′psk(P,P+, s′)

×

∫
dP′′Bsk(P+,P′′)

∫ ∞

−∞

ds1 . . .

∫ ∞

−∞

dsk−1ψ(P′′, t − t′, s1) . . .

×ψ(P′′, t − t′, sk−1)
∫ ∞

−∞

dq
r∑

n1=0

 r

n1

 ar−n1qn1ψ(P′′, t − t′, q)

=

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds′psk(P,P+, s′)

×

∫
dP′′Bsk(P+,P′′)

∫ ∞

−∞

ds1 . . .

∫ ∞

−∞

dsk−1ψ(P′′, t − t′, s1) . . .

×ψ(P′′, t − t′, sk−1)
r∑

n1=0

 r

n1

 (s′ + s1 + . . . + sk−1)r−n1 Mn1(P
′′, t − t′).

Next, define b = s′ + s1 + . . . + sk−2 so that

(s′ + s1 + . . . + sk−1)r−n1 = (sk−1 + b)r−n1

=

r−n1∑
n2=0

r − n1

n2

 sn2
k−1br−n1−n2 ,

and insertion of this binomial expansion into expression for the moment gives

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds′psk(P,P+, s′)

×

∫
dP′′Bsk(P+,P′′)

∫ ∞

−∞

ds1 . . .

∫ ∞

−∞

dsk−2ψ(P′′, t − t′, s1) . . . ψ(P′′, t − t′, sk−2)

×

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′)

r−n1∑
n2=0

r − n1

n2

 br−n1−n2

∫ ∞

−∞

dsk−1sn2
k−1ψ(P′′, t − t′, sk−1)

=

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds′psk(P,P+, s′)

×

∫
dP′′Bsk(P+,P′′)

∫ ∞

−∞

ds1 . . .

∫ ∞

−∞

dsk−2ψ(P′′, t − t′, s1) . . . ψ(P′′, t − t′, sk−2)
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×

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′)

r−n1∑
n2=0

r − n1

n2

 (s′ + s1 + . . . + sk−2)r−n1−n2 Mn2(P
′′, t − t′).

Repeated replacement of all further terms s1 through sk−2 with binomial expansions yields

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds′psk(P,P+, s′)

×

∫
dP′′Bsk(P+,P′′)

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′) . . .

r−n1−...−nk−1∑
nk=0

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t − t′)s′r−n1−...−nk .

=

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds psk(P,P+, s)

×

∫
dP′′Bsk(P+,P′′)

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′)

. . .

r−n1−...−nk−1∑
nk=0

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t − t′)sr−n1−...−nk . (2.60)

Moment of the Scattering Term

The moment of the scattering term is obtained as follows:∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′p1(P,P′, s′)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

∫ ∞

−∞

ds srψ(Pc, t − t′, s − s′).

Again, define q = s − s′ with

sr = (q + s′)r

=

r∑
n=0

 r

n

 qns′r−n,

and substitute this binomial expression into the moment of the scattering term above to obtain∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′p1(P,P′, s′)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

∫ ∞

−∞

dq
r∑

n=0

 r

n

 qns′r−nψ(Pc, t − t′, q)
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=

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′p1(P,P′, s′)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

r∑
n=0

 r

n

 s′r−nMn(Pc, t − t′)

=

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds p1(P,P′, s)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

r∑
n=0

 r

n

 sr−nMn(Pc, t − t′). (2.61)

Moment Equation for the Multiplication Term

The moment equation for the multiplication term is obtained as follows:

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′pk(P,P′, s′)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

×

∫ ∞

−∞

ds1 . . .

∫ ∞

−∞

ds jψ(Pc
1, t − t′, s1) . . .

×ψ(Pc
k−1, t − t′, sk−1)

∫ ∞

−∞

ds ψ(Pc
k, t − t′, s − (s′ + s1 + . . . + sk−1)),

where repeated application of binomial expansions to s and s1 through sk−1 yields

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′pk(P,P′, s′)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

×

r∑
n1=0

Mn1(P
′′, t − t′) . . .

r−n1−...−nk−1∑
nk

Mnk(P
′′, t − t′)s′r−n1−...−nk

=

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds pk(P,P′, s)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′)
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. . .

r−n1−...−nk−1∑
nk

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t − t′)sr−n1−...−nk . (2.62)

The Moment Equations

The moment equation is obtained by equating the moment equation for the left hand side of
Eq. (2.55) to the sum of the moment equations for the terms on the right hand side, namely

Mr(P, t) =

∫ t

to
dt′

∫
dP+D(P,P+, t)

∫ ∞

−∞

ds pd(P,P+, s)sr

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

dsp0(P,P′, s)sr

+

∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds pr(P,P+, s)

×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

r∑
n=0

 r

n

 Mn(P′′, t − t′)sr−n

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds psk(P,P+, s)

×

∫
dP′′Bsk(P+,P′′)

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′)

. . .

r−n1−...−nk−1∑
nk=0

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t − t′)sr−n1−...−nk

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds p1(P,P′, s)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

r∑
n=0

 r

n

 Mn(Pc, t − t′)sr−n

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds pk(P,P′, s)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′)

. . .

r−n1−...−nk−1∑
nk

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t − t′)sr−n1−...−nk . (2.63)

This equation can be somewhat simplified by extraction of all terms that do not have an Mr(P′′, t−t′)
dependence and their combination into a single term Qr(P, t). This equation is given by Booth and
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Cashwell, is

Mr(P, t) =

∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)Mr(P′′, t − t′)

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫
dP′′Bsk(P+,P′′)kMr(P′′, t − t′)

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫
dP′′E(P′,P′′)

×

∫
dPcBc(P′′,Pc)Mr(Pc, t − t′)

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

×

k∑
j=1

Mr(P′′, t − t′)

+ Qr(P, t), (2.64)

where

Qr(P, t) =

∫ t

to
dt′

∫
dP+D(P,P+, t)

∫ ∞

−∞

ds pd(P,P+, s)sr

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

dsp0(P,P′, s)sr

+

∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds pr(P,P+, s)

×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

r−1∑
n=0

 r

n

 Mn(P′′, t − t′)sr−n

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds psk(P,P+, s)

×

∫
dP′′Bsk(P+,P′′)

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′)

. . .

r−n1−...−nk−1∑
nk=0

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t − t′)sr−n1−...−nk

k∏
j=1

(1 − δn j,r)

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds p1(P,P′, s)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

r−1∑
n=0

 r

n

 Mn(Pc, t − t′)sr−n
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+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds pk(P,P′, s)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

r∑
n1=0

 r

n1

 Mn1(P
′′, t − t′)

. . .

r−n1−...−nk−1∑
nk

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t − t′)sr−n1−...−nk

×

k∏
j=1

(1 − δn j, r). (2.65)

Generally, one is interested in only the first and second moments. For the special case that
r = 1, the source term becomes [Booth and Cashwell, 1979]

Q1(P, t) =

∫ t

to
dt′

∫
dP+D(P,P+, t)

∫ ∞

−∞

ds pd(P,P+, s)s

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

dsp0(P,P′, s)s

+

∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds pr(P,P+, s)s

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds psk(P,P+, s)s

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds p1(P,P′, s)

×

∫
dP′′E(P′,P′′)s

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds pk(P,P′, s)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)s, (2.66)

and for the case r = 2 the source term becomes [Booth and Cashwell, 1979]

Q2(P, t) =

∫ t

to
dt′

∫
dP+D(P,P+, t)

∫ ∞

−∞

ds pd(P,P+, s)s2

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

dsp0(P,P′, s)s2

+

∫ t

to
dt′

∫
dP+T (P,P+)Ro(P+)

∫ ∞

−∞

ds pr(P,P+, s)

27



×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

1∑
n=0

2

n

 Mn(P′′, t − t′)s2−n

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)S k(P+)

∫ ∞

−∞

ds psk(P,P+, s)

×

∫
dP′′Bsk(P+,P′′)

[
s2 + 2skM1(P′′, t − t′) + k(k − 1)M2

1(P′′, t − t′)
]

+

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds p1(P,P′, s)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

1∑
n=0

2

n

 Mn(Pc, t − t′)s2−n

+

∞∑
k=2

∫ t

to
dt′

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds pk(P,P′, s)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

. . .

s2 + 2s
k∑

j=1

M1(Pc
j, t − t′) + 2

k∑
j=2

M1(Pc
j, t − t′)

j−1∑
l=1

M1(Pc
j, t − t′).

(2.67)

2.3 The Integro-Differential form of the Moment Equations
Appendix B demonstrates that the differential removal operator L defined as

L =
1
v
∂

∂t
+ Ω·∇ + Σ(r, E),

is inverse to the integral transition operator

T =

∫
dP′T (P′,P),

such that, for a function F(P),[
1
v
∂

∂t
+ Ω·∇ + Σ(r, E)

] ∫
dP′T (P′,P)F(P′) = L

{
T [F(P)]

}
= F(P).

It is known that the adjoint integral transition operator is [Bell and Glasstone, 1970]

T † =

∫
dP′T (P,P′), (2.68)
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where the order of the phase-space variables in the kernel are interchanged. Similarly, the adjoint
removal operator is known to be Bell and Glasstone [1970]

L† = −
1
v
∂

∂t
−Ω·∇ + Σ(r, E). (2.69)

It follows that, for an arbitrary function F†(P),[
−

1
v
∂

∂t
−Ω·∇ + Σ(r, E)

] ∫
dP′T (P,P′)F†(P′) = L†

{
T †

[
F†(P)

]}
= F†(P). (2.70)

The integro-differential moment equation Eq. (2.64) was shown to be adjoint to the linearized
Boltzmann transport equation by Amster and Djomehri [1976]. Therefore, the integro-differential
form of the history-score moment equations may be obtained by operation on Eq. (2.64) with L†.
Keep in mind that P in Appendix B is defined to be (r,Ω, E, t), although for the moment equations
P is defined to be (r,Ω, E,w). Then operation on the moment equations with the adjoint removal
operator gives

−
1
v

dMr

dt
−Ω·∇Mr(r,Ω, E, t) + Σ(r, E)Mr(r,Ω, E, t)

=

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)Ro(P+)

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)Mr(P′′, t)

+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)S k(P+)

∫
dP′′Bsk(P+,P′′)kMr(P′′, t)

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫
dP′′E(P′,P′′)

×

∫
dPcBc(P′′,Pc)Mr(Pc, t)

+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

×

k∑
j=1

Mr(P′′, t)

+ Q̂r(P, t), (2.71)

where

Q̂r(P, t) =

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫ ∞

−∞

ds pd(P,P+, s)sr

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

dsp0(P,P′, s)sr

+

∫
dw+δ(w+ − ωtw)Ro(P+)

∫
dR+δ(R+ − R)

∫ ∞

−∞

ds pr(P,P+, s)

29



×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

r−1∑
n=0

 r

n

 Mn(P′′, t)sr−n

+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)S k(P+)

∫ ∞

−∞

ds psk(P,P+, s)

×

∫
dP′′Bsk(P+,P′′)

r∑
n1=0

 r

n1

 Mn1(P
′′, t)

. . .

r−n1−...−nk−1∑
nk=0

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t)sr−n1−...−nk

k∏
j=1

(1 − δn j,r)

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds p1(P,P′, s)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

r−1∑
n=0

 r

n

 Mn(Pc, t)sr−n

+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds pk(P,P′, s)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

r∑
n1=0

 r

n1

 Mn1(P
′′, t)

. . .

r−n1−...−nk−1∑
nk

r − n1 − . . . − nk−1

nk

 Mnk(P
′′, t)sr−n1−...−nk

×

k∏
j=1

(1 − δn j, r). (2.72)

The integro-differential first and second moment sources are, respectively,

Q̂1(P, t) =

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫ ∞

−∞

ds pd(P,P+, s)s

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

dsp0(P,P′, s)s

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)Ro(P+)

∫ ∞

−∞

ds pr(P,P+, s)s

+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)S k(P+)

∫ ∞

−∞

ds psk(P,P+, s)s

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds p1(P,P′, s)

×

∫
dP′′E(P′,P′′)s
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+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds pk(P,P′, s)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)s, (2.73)

and

Q̂2(P, t) =

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫ ∞

−∞

ds pd(P,P+, s)s2

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)A(P′)

∫ ∞

−∞

dsp0(P,P′, s)s2

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)Ro(P+)

∫ ∞

−∞

ds pr(P,P+, s)

×

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)

1∑
n=0

2

n

 Mn(P′′, t)s2−n

+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)S k(P+)

∫ ∞

−∞

ds psk(P,P+, s)

×

∫
dP′′Bsk(P+,P′′)

[
s2 + 2skM1(P′′, t) + k(k − 1)M2

1(P′′, t)
]

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds p1(P,P′, s)

×

∫
dP′′E(P′,P′′)

∫
dPcBc(P′′,Pc)

1∑
n=0

2

n

 Mn(Pc, t)s2−n

+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds pk(P,P′, s)

×

∫
dP1 . . .

∫
dPkεk(P′,P1, . . . ,Pk)

×

∫
dPc

1Bc(P1,Pc
1) . . .

∫
dPc

kBc(Pk,Pc
k)

. . .

s2 + 2s
k∑

j=1

M1(Pc
j, t) + 2

k∑
j=2

M1(Pc
j, t)

j−1∑
l=1

M1(Pc
j, t)

 (2.74)

The moment equations have been cast in an integro-differential form so that common solution
methods in neutral particle transport can be applied. Specifically this work is interested in the ap-
plication of the discrete ordinates (S n) solution method discussed in Chapter 3. Of special interest
in the integro-differential form is the integration over weight∫

dw+ δ(w+ − ωtw), (2.75)

preceeding each term. The differential removal operator is inverse to the integral transition oper-
ator for phase space (r,Ω, E, t), but not w. In practice, the only variance reduction method that
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continuously modifies particle weight during transition is the exponential transform. The changes
in weight resulting from exponential transform can be accounted for in the deterministic solution of
the moment equations. However, such a deterministic solution requires that the spatial differencing
(discussed in Chapter 3) become increasingly small as the magnitude of the exponential transform
stretching parameter p approaches unity. Because the iteration time increases considerably with
an increase in the spatial resolution, the application of the S n method to optimizing exponential
transform parameters is prohibited by the cost of a single calculation.

2.4 Weight-Separable Cases of the rth Moment
In certain instances, the weight-dependence of the rth moment is separable Booth and Cashwell
[1979]. In particular, the weight-dependence is separable when exclusively weight-independent
variance reduction games are employed. When only weight-independent variance reduction is
utilized, the rth moment can be expressed as

Mr(P,Ω, E,w) = wr Mr(P,Ω, E,w = 1). (2.76)

With Eq. (2.76), the first moment can be expressed as

M1(P,Ω, E,w) = wM1(P,Ω, E,w = 1). (2.77)

The first moment, but not higher moments, always scales as Eq. (2.77), even for weight-dependent
variance reduction. If the first moment did not scale with weight, the expected score a particle
would make would not either.

With Eq. (2.76), the second moment can be expressed as

M2(P,Ω, E,w) = w2M2(P,Ω, E,w = 1). (2.78)

Using exclusively weight-independent variance reduction greatly simplifies the calculation by re-
moving the necessity to treat the weight dependence explicitly. With a solution of both the first
and second moments for w = 1, the moments for other weights can be calculated by scaling the
moment for w = 1. It is this scaling relationship that the work by Juzaitis [1982] and Sarkar
and Prasad [1979] used to perform optimizations. This work solves the moments using weight-
dependent variance reduction, specifically the weight-window variance reduction technique, and
cannot assume the scaling relationships. Rather, the weight-dependence of the moments must be
resolved explicitly.

2.5 Extension of the Moment Equations to Weight-Window Vari-
ance Reduction

When Booth and Cashwell [1979] developed the history-score moment equations, just derived in
the preceding section, the weight window technique had not yet been invented. Therefore, the
moment equations that describe the effects of the weight window had not been developed. The
following section derives the moment equation for the weight window variance reduction method.
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2.5.1 Deduction of the Weight-Window Kernel
Before deduction of the weight window kernel, a couple of definitions are required. Along with
ωl, ωs, ωu, and K defined in Section 2.1.4, the following probabilities, kernels, and functions are
defined:

• P = phase space (r,Ω, E,w, t)

• S k(P)dP = the probability that a particle at P will undergo a k : 1 split

• C(P)dP = the probability that a particle at P crosses a weight window surface

• Bsk(P,P′)dP′ = the probability that a particle at P experiencing a k : 1 split ends up in dP′
about P′

• Br(P,P′;α)dP′ = The probability that a particle at P will undergo Russian roulette and end
up in dP′ about P′ given a survival probability of α

• Θ(w) = the Heaviside step function such that

Θ(w) =


0, w < 0

1, w ≥ 0

• pws(P,P′, s)ds = the probability that a particle contributes a score in ds about s before un-
dergoing the weight window check after crossing a weight window surface

• pwc(P,P′, s)ds = the probability that a particle contributes a score in ds about s before un-
dergoing a collision

Note that although these probabilities, kernels, and functions are written generally in terms of
P, the only variable affected by the weight window kernel is w. Furthermore, ωl, ωs, and ωu

generally depend on the phase space location, but this dependence has been omitted for brevity
and is implicitly assumed.

When the weight is less than ωs/K then the particle undergoes Russian roulette with a survival
probability of 1/K. This term may be expressed as

[1 − Θ(w − ωs/K)] Br(P,P′; 1/K)dw. (2.79)

If the weight is greater than ωs/K and less than ωl, then the Russian roulette term is

Θ(w − ωs/K) [1 − Θ(w − ωl)] Br(P,P′; w/ωs). (2.80)

If the particle is inside the window then the weight of the particle remains unchanged. Thus,
the term that describes the transition of particles inside the window is

Θ(w − ωl) [1 − Θ(w − ωu)] δ(P′ − P). (2.81)
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For particles with weights greater than the upper window bound but less than K times the same
bound, the particles are split dw/ωue : 1. Thus, the term for particles having these weights is

Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)Bsk(P,P′), (2.82)

where

S k(P) =


1, k =

⌈
w
ωu

⌉
0, otherwise

(2.83)

Finally, particles having weights in excess of Kωu undergo a K : 1 split regardless of their weight,
and the corresponding term is

Θ(w − Kωu)BsK(P,P′). (2.84)

Assembling all of the terms above, one arrives at the weight window kernel, namely

Bw(P,P′) = [1 − Θ(w − ωs/K)] Br(P,P′; 1/K)
+ Θ(w − ωs/K) [1 − Θ(w − ωl)] Br(P,P′; w/ωs)
+ Θ(w − ωl) [1 − Θ(w − ωu)] δ(P′ − P) +

+

K−1∑
k=2

Θ(w − (k − 1)ωu) [1 − Θ(w − kωu)] S k(P)Bsk(P,P′)

+ Θ(w − Kωu)BsK(P,P′). (2.85)

2.5.2 Derivation of Weight Window Moment Equations
The moment equations that result from the weight-window kernel can be derived. Only a time-
independent case, P = (r,Ω, E,w), without physical multiplication, namely (n,f), is considered for
simplicity. Furthermore, all scoring and kernels considered by Booth and Cashwell [1979] are be
ignored, and only the effects of weight windows are considered.

First, the history-score distribution function ψ(P, s) for the weight-windows is derived. Three
cases are possible for weight windows because they may be checked at surface crossings or colli-
sion:

1. the particle IS NOT crossing a surface where weight windows are checked

2. the particle IS crossing a surface where weight windows are checked

3. the particle collides and weight windows are checked after the collision

The three possibilities above indicate that ψ(P, s)ds will have three terms and can be written as

ψ(P, s)ds =

∫
dP+T (P,P+)[1 −C(P+)]ψ(P+, s)ds

+

∫
dP+T (P,P+)C(P+)

∫ ∞

−∞

ds′pws(P,P+, s′)
∫

dP′Bw(P+,P′)ψ(P′, s − s′)ds
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+

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′pwc(P,P′, s′)
∫

dP′E(P′,P′′)

×

∫
dP′′Bw(P′′,Pc)ψ(Pc, s − s′)ds. (2.86)

The first term on the right side of the equation above describes particles that move from P to P+,
do not cross a weight window surface nor collide, and continue from that point. The second term
on the right hand side of the equation describes particles that move from P to P+, cross a weight
window surface, potentially contributing a score, and then undergo the weight window game. The
third term describes particles that move from P to P+, collide and exit in P′ and as a result of that
collision scatter into P′′, potentially contributing a score, and then undergo the weight window
game. This expression is not completely accurate because splitting may result from the weight
window games. To see the effect of splitting the weight window kernel must be expanded into its
five components, so, from this point on, only the term∫

dP′Bw(P+,P′)ψ(P′, s − s′)ds, (2.87)

is considered. This term arises in both the surface and collisional weight window terms.
Expansion of the weight window kernel term gives∫

dP′Bw(P,P′)ψ(P′, s − s′)ds

= [1 − Θ(w − ωs/K)]
∫

dP′Br(P,P′; 1/K)ψ(P′, s − s′)

+ Θ(w − ωs/K) [1 − Θ(w − ωl)]
∫

dP′Br(P,P′; w/ωs)ψ(P′, s − s′)

+ Θ(w − ωl) [1 − Θ(w − ωu)]
∫

dP′δ(P′ − P)ψ(P′, s − s′)

+ Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)

×

k−1∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j × ψ(P′, s − (s′ + s1 + . . . + sk−1))ds

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)
k−1∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j

×ψ(P′, s − (s′ + s1 + . . . + sk−1))ds. (2.88)

The product terms originate from the fact that of the k particles produced in a split the first k− 1 of
these particles will produces scores in ds j about s j where j = 1, . . . , k − 1. The kth particle from
the split must contribute a score s − (s′ + s1 + . . . + sk−1) for the entire score to sum to s, where s′

was the score, if any, generated at the surface crossing or collision where the weight window game
is occurring.

Now, the moments of each of these expressions can be determined, where the rth moment Mr

is defined to be
Mr(P) =

∫ ∞

−∞

ds srψ(P, s). (2.89)
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Multiplication of the terms above by sr and integrating over all s, yields

[1 − Θ(w − ωs/K)]
∫

dP′Br(P,P′; 1/K)
∫ ∞

−∞

ds srψ(P′, s − s′)

+ Θ(w − ωs/K) [1 − Θ(w − ωl)]
∫

dP′Br(P,P′; w/ωs)
∫ ∞

−∞

ds srψ(P′, s − s′)

+ Θ(w − ωl) [1 − Θ(w − ωu)]
∫

dP′δ(P′ − P)
∫ ∞

−∞

ds srψ(P′, s − s′)

+ Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)

×

k−1∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j ×

∫ ∞

−∞

ds srψ(P′, s − (s′ + s1 + . . . + sk−1))

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)
K−1∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j

×

∫ ∞

−∞

ds srψ(P′, s − (s′ + s1 + . . . + sK−1)). (2.90)

The first three terms of the above expression can be simplified with the substitution q = s − s′,
so that

sr = (q + s′)r =

r∑
n=0

 r

n

 qns′r−n. (2.91)

With this substitution, these three terms become

[1 − Θ(w − ωs/K)]
∫

dP′Br(P,P′; 1/K)
∫ ∞

−∞

dq
r∑

n=0

 r

n

 s′r−nqnψ(P′, q)

+ Θ(w − ωs/K) [1 − Θ(w − ωl)]
∫

dP′Br(P,P′; w/ωs)
∫ ∞

−∞

dq
r∑

n=0

 r

n

 s′r−nqnψ(P′, q)

+ Θ(w − ωl) [1 − Θ(w − ωu)]
∫

dP′δ(P′ − P)
∫ ∞

−∞

dq
r∑

n=0

 r

n

 s′r−nqnψ(P′, q), (2.92)

or

[1 − Θ(w − ωs/K)]
∫

dP′Br(P,P′; 1/K)
r∑

n=0

 r

n

 s′r−nMn(P′)

+ Θ(w − ωs/K) [1 − Θ(w − ωl)]
∫

dP′Br(P,P′; w/ωs)
r∑

n=0

 r

n

 s′r−nMn(P′)

+ Θ(w − ωl) [1 − Θ(w − ωu)]
∫

dP′δ(P′ − P)
r∑

n=0

 r

n

 s′r−nMnψ(P′). (2.93)
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The remaining two terms can be simplified by use of a = s′ + s1 + . . . + sk−1 and q = s − a, so
that

sr = (q + a)r

=

r∑
n1=0

 r

n1

 qn1ar−n1 . (2.94)

Insertion of this binomial expansion into the remaining two terms produces

Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)

×

k−1∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j ×

∫ ∞

−∞

dq
r∑

n1=0

 r

n1

 ar−n1qn1ψ(P′, q)

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)
K−1∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j

×

∫ ∞

−∞

dq
r∑

n1=0

 r

n1

 ar−n1qn1ψ(P′, q), (2.95)

or

Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)

×

k−1∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j ×

r∑
n1=0

 r

n1

 (s′ + s1 + . . . + sk−1)r−n1 Mn1(P
′)

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)
K−1∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j

×

r∑
n1=0

 r

n1

 (s′ + s1 + . . . + sK−1)r−n1 Mn1(P
′). (2.96)

Next, define b = s′ + s1 + . . . + sk−2, so that

(s′ + s1 + . . . + sk−1)r−n1 = (sk−1 + b)r−n1 =

r−n1∑
n2=0

r − n1

n2

 sn2
k−1br−n1−n2 . (2.97)

Insertion of this binomial expansion into the two terms gives

Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)
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×

k−2∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j ×

r∑
n1=0

 r

n1

 Mn1(P
′)

×

r−n1∑
n2=0

r − n1

n2

 (s′ + s1 + . . . + sk−2)r−n1−n2 Mn2(P
′)

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)
K−2∏
j=1

∫ ∞

−∞

ds j ψ(P′, s j)ds j

×

r∑
n1=0

 r

n1

 Mn1(P
′)

r−n1∑
n2=0

r − n1

n2

 (s′ + s1 + . . . + sK−2)r−n1−n2 Mn2(P
′). (2.98)

Repeated application of similar binomial expansions gives, in the end,

Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)

×

r∑
n1=0

 r

n1

 Mn1(P
′) . . .

r−n1−...−nk−1∑
nk=0

r − n1 − . . . − nk−1

nk

 Mnk(P
′)s′r−n1−...−nk

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)
r∑

n1=0

 r

n1

 Mn1(P
′) . . .

r−n1−...−nK−1∑
nK=0

r − n1 − . . . − nK−1

nK

 MnK (P′)s′r−n1−...−nK . (2.99)

Finally, the terms for the weight window moment equation can be combined to obtain

[1 − Θ(w − ωs/K)]
∫

dP′Br(P,P′; 1/K)
r∑

n=0

 r

n

 s′r−nMn(P′)

+ Θ(w − ωs/K) [1 − Θ(w − ωl)]
∫

dP′Br(P,P′; w/ωs)
r∑

n=0

 r

n

 s′r−nMn(P′)

+ Θ(w − ωl) [1 − Θ(w − ωu)]
∫

dP′δ(P′ − P)
r∑

n=0

 r

n

 s′r−nMn(P′)

+ Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)

×

r∑
n1=0

 r

n1

 Mn1(P
′) . . .

r−n1−...−nk−1∑
nk=0

r − n1 − . . . − nk−1

nk

 Mnk(P
′)s′r−n1−...−nk

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)
r∑

n1=0

 r

n1

 Mn1(P
′) . . .
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r−n1−...−nK−1∑
nK=0

r − n1 − . . . − nK−1

nK

 MnK (P′)s′r−n1−...−nK . (2.100)

With the procedure of Booth and Cashwell [1979], the terms involving only the rth moment can
be separated from the rest, namely,

[1 − Θ(w − ωs/K)]
∫

dP′Br(P,P′; 1/K)Mr(P′)

+ Θ(w − ωs/K) [1 − Θ(w − ωl)]
∫

dP′Br(P,P′; w/ωs)Mr(P′)

+ Θ(w − ωl) [1 − Θ(w − ωu)]
∫

dP′δ(P′ − P)Mr(P′)

+ Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)kMr(P′)

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)KMr(P′).

+ Qr(P), (2.101)

where

Qr(P) = [1 − Θ(w − ωs/K)]
∫

dP′Br(P,P′; 1/K)
r−1∑
n=0

 r

n

 s′r−nMn(P′)

+ Θ(w − ωs/K) [1 − Θ(w − ωl)]
∫

dP′Br(P,P′; w/ωs)
r−1∑
n=0

 r

n

 s′r−nMn(P′)

+ Θ(w − ωl) [1 − Θ(w − ωu)]
∫

dP′δ(P′ − P)
r−1∑
n=0

 r

n

 s′r−nMn(P′)

+ Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)

×

r∑
n1=0

 r

n1

 Mn1(P
′) . . .

r−n1−...−nk−1∑
nk=0

r − n1 − . . . − nk−1

nk

 Mnk(P
′)s′r−n1−...−nk

×

k∏
i=1

(1 − δnir)

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)
r∑

n1=0

 r

n1

 Mn1(P
′) . . .

r−n1−...−nK−1∑
nK=0

r − n1 − . . . − nK−1

nK

 MnK (P′)s′r−n1−...−nK

K∏
i=1

(1 − δnir). (2.102)
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For the special case that r = 1, one has

Q1(P′) = [1 − Θ(w − ωs/K)] s′

+ Θ(w − ωs/K) [1 − Θ(w − ωl)] s′

+ Θ(w − ωl) [1 − Θ(w − ωu)] s′

+ Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)s′

+ Θ(w − Kωu)s′

= s′ (2.103)

and for r = 2

Q2(P) = [1 − Θ(w − ωs/K)]
∫

dP′Br(P,P′; 1/K)
1∑

n=0

2

n

 Mn(P′)s′2−n

+ Θ(w − ωs/K) [1 − Θ(w − ωl)]
∫

dP′Br(P,P′; w/ωs)
1∑

n=0

2

n

 Mn(P′)s′2−n

+ Θ(w − ωl) [1 − Θ(w − ωu)]
∫

dP′δ(P′ − P)
1∑

n=0

2

n

 Mn(P′)s′2−n

+ Θ(w − ωu) [1 − Θ(w − Kωu)]
K∑

k=2

S k(P)
∫

dP′Bsk(P,P′)

×[s′2 + 2s′kM1(P′) + k(k − 1)M2
1(P′)]

+ Θ(w − Kωu)
∫

dP′BsK(P,P′)[s′2 + 2s′kM1(P′) + k(k − 1)M2
1(P′)] (2.104)

Now, with insertion of these derived terms into Eq. (2.86), one obtains the full weight-window
moment equation

Mr(P) =

∫
dP+T (P,P+)[1 −C(P+)]Mr(P+)

+

∫
dP+T (P,P+)C(P+)

{[
1 − Θ(w+ − ωs/K)

] ∫
dP′Br(P+,P′; 1/K)Mr(P′)

+ Θ(w+ − ωs/K)
[
1 − Θ(w+ − ωl)

] ∫
dP′Br(P+,P′; w+/ωs)Mr(P′)

+ Θ(w+ − ωl)
[
1 − Θ(w+ − ωu)

] ∫
dP′δ(P′ − P+)Mr(P′)

+ Θ(w+ − ωu)
[
1 − Θ(w+ − Kωu)

] K∑
k=2

S k(P)
∫

dP′Bsk(P+,P′)kMr(P′)

+ Θ(w+ − Kωu)
∫

dP′BsK(P+,P′)KMr(P′)
}
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+

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫
dP′′E(P′,P′′)

×

{[
1 − Θ(w′′ − ωs/K)

] ∫
dPcBr(P′′,Pc; 1/K)Mr(Pc)

+ Θ(w′′ − ωs/K)
[
1 − Θ(w′′ − ωl)

] ∫
dPcBr(P′′,Pc; w′′/ωs)Mr(Pc)

+ Θ(w′′ − ωl)
[
1 − Θ(w′′ − ωu)

] ∫
dPcδ(Pc − P′′)Mr(Pc)

+ Θ(w′′ − ωu)
[
1 − Θ(w′′ − Kωu)

] K∑
k=2

S k(P)
∫

dPcBsk(P′′,Pc)kMr(Pc)

+ Θ(w′′ − Kωu)
∫

dPcBsK(P′′,Pc)KMr(Pc)
}

+ Qr(P). (2.105)

The full source terms Q1 and Q2 are, with the dummy variable s′ replaced by s, then

Q1(P) =

∫
dP+T (P,P+)C(P+)

∫ ∞

−∞

dspws(P,P+, s)s

+

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

dspwc(P,P′, s)
∫

dP′E(P′,P′′)s (2.106)

and

Q2(P) =

∫
dP+T (P,P+)C(P+)

∫ ∞

−∞

dspws(P,P+, s)

×

[1 − Θ(w+ − ωs/K)
] ∫

dP′Br(P+,P′; 1/K)
1∑

n=0

2

n

 Mn(P′)s2−n

+ Θ(w+ − ωs/K)
[
1 − Θ(w+ − ωl)

] ∫
dP′Br(P+,P′; w+/ωs)

1∑
n=0

2

n

 Mn(P′)s2−n

+ Θ(w+ − ωl)
[
1 − Θ(w+ − ωu)

] ∫
dP′δ(P′ − P+)

1∑
n=0

2

n

 Mn(P′)s2−n

+ Θ(w+ − ωu)
[
1 − Θ(w+ − Kωu)

] K∑
k=2

S k(P+)
∫

dP′Bsk(P+,P′)

×[s2 + 2skM1(P′) + k(k − 1)M2
1(P′)]

+ Θ(w+ − Kωu)
∫

dP′BsK(P+,P′)[s2 + 2skM1(P′) + k(k − 1)M2
1(P′)]

}
+

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

∫ ∞

−∞

ds′pwc(P,P′, s′)
∫

dP′E(P′,P′′)

×

[1 − Θ(w′′ − ωs/K)
] ∫

dPcBr(P′′,Pc; 1/K)
1∑

n=0

2

n

 Mn(Pc)s2−n
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+ Θ(w′′ − ωs/K)
[
1 − Θ(w′′ − ωl)

] ∫
dPcBr(P′′,Pc; w′′/ωs)

1∑
n=0

2

n

 Mn(Pc)s2−n

+ Θ(w′′ − ωl)
[
1 − Θ(w′′ − ωu)

] ∫
dPcδ(Pc − P′′)

1∑
n=0

2

n

 Mn(Pc)s2−n

+ Θ(w′′ − ωu)
[
1 − Θ(w′′ − Kωu)

] K∑
k=2

S k(P′′)
∫

dPcBsk(P′′,Pc)

×[s2 + 2skM1(Pc) + k(k − 1)M2
1(Pc)]

+ Θ(w′′ − Kωu)
∫

dPcBsK(P′′,Pc)[s2 + 2skM1(Pc) + k(k − 1)M2
1(Pc)]

}
.(2.107)

42



Chapter 3

Discrete Ordinates Solution of the History
Score Moment Equations

This chapter describes the method by which the history-score moment equations are solved. Solu-
tions are obtained by using a multigroup adjoint discrete ordinates (S n) solution with the additional
new discretization of the Monte Carlo particle weight. As shown, this new discretization can lead
to many difficulties with the solution’s accuracy and is probably an area where future work sould
be directed.

The following sections provide a brief outline of the basic S n discretization procedure and
the multi-group approximation. Then, the discretization of the Monte Carlo particle weight is
discussed. Finally, how different Monte Carlo variance reduction games affect the weight domain
of the deterministic calcualation are discussed and shown graphically.

3.1 Discrete-Ordinates Discretization of the History-Score Mo-
ment Equations

This discretization begins by considering Eq. (2.71) for the time-independent, non-multiplying
case with the addition of the weight-window terms developed in Section 2.5, namely1

−Ω·∇Mr(r,Ω, E) + Σ(r, E)Mr(r,Ω, E)

=

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)Ro(P+)

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′)Mr(P′′)

+

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)S k(P+)

∫
dP′′Bsk(P+,P′′)kMr(P′′)

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫
dP′′E(P′,P′′)

1Equation (3.1) is not rigorously correct. Practically, it is possible to use the weight-window method together with
importance splitting, rouletting, and weight cutoff variance reduction methods. In practice, however, rarely is the
weight window method combined with these other methods because it embodies the others. This equation is therefore
written with the assumption that, if splitting, rouletting, and weight cutoff are used, then weight windows are not, and
vice versa.
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×

∫
dPcBc(P′′,Pc)Mr(Pc)

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)C(R+)

{
×

[
1 − Θ(w+ − ωs/K)

] ∫
dP′Br(P+,P′; 1/K)Mr(P′)

+ Θ(w+ − ωs/K)
[
1 − Θ(w+ − ωl)

] ∫
dP′Br(P+,P′; w+/ωs)Mr(P′)

+ Θ(w+ − ωl)
[
1 − Θ(w+ − ωu)

] ∫
dP′δ(P′ − P+)Mr(P′)

+ Θ(w+ − ωu)
[
1 − Θ(w+ − Kωu)

] K∑
k=2

S k(P)
∫

dP′Bsk(P+,P′)kMr(P′)

+ Θ(w+ − Kωu)
∫

dP′BsK(P+,P′)KMr(P′)
}

+

∫
dw+δ(w+ − ωtw)

∫
dR+δ(P+ − P)

∫
dP′Σ(P+,P′)

∫
dP′′E(P′,P′′)

×

{[
1 − Θ(w′′ − ωs/K)

] ∫
dPcBr(P′′,Pc; 1/K)Mr(Pc)

+ Θ(w′′ − ωs/K)
[
1 − Θ(w′′ − ωl)

] ∫
dPcBr(P′′,Pc; w′′/ωs)Mr(Pc)

+ Θ(w′′ − ωl)
[
1 − Θ(w′′ − ωu)

] ∫
dPcδ(Pc − P′′)Mr(Pc)

+ Θ(w′′ − ωu)
[
1 − Θ(w′′ − Kωu)

] K∑
k=2

S k(P)
∫

dPcBsk(P′′,Pc)kMr(Pc)

+ Θ(w′′ − Kωu)
∫

dPcBsK(P′′,Pc)KMr(Pc)
}

+ Q̂r(P). (3.1)

Here, a more compact operator notation is introduced so as not to carry all the integrals through
the discretization procedure. The following operators are defined: the rouletting operator

R{·} =

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)Ro(P+)

∫
dP′′

∫ 1

0
dαBo(α,P+,P′′){·},

the splitting operator

S{·} =

∞∑
k=2

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)S k(P+)

∫
dP′′Bsk(P+,P′′)k{·},

the collision operator

C{·} =

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)

∫
dP′Σ(P+,P′)

∫
dP′′E(P′,P′′)

×

∫
dPcBc(P′′,Pc){·}, (3.2)

44



the surface-weight-window operator

Ws{·} =

∫
dw+δ(w+ − ωtw)

∫
dR+δ(R+ − R)C(R+)

{
×

[
1 − Θ(w+ − ωs/K)

] ∫
dP′Br(P+,P′; 1/K){·}

+ Θ(w+ − ωs/K)
[
1 − Θ(w+ − ωl)

] ∫
dP′Br(P+,P′; w+/ωs){·}

+ Θ(w+ − ωl)
[
1 − Θ(w+ − ωu)

] ∫
dP′δ(P′ − P+){·}

+ Θ(w+ − ωu)
[
1 − Θ(w+ − Kωu)

] K∑
k=2

S k(P)
∫

dP′Bsk(P+,P′)k{·}

+ Θ(w+ − Kωu)
∫

dP′BsK(P+,P′)K{·}
}
, (3.3)

and the collision-weight-window operator

Wc{·} =

∫
dw+δ(w+ − ωtw)

∫
dR+δ(P+ − P)

∫
dP′Σ(P+,P′)

∫
dP′′E(P′,P′′)

×

{[
1 − Θ(w′′ − ωs/K)

] ∫
dPcBr(P′′,Pc; 1/K){·}

+ Θ(w′′ − ωs/K)
[
1 − Θ(w′′ − ωl)

] ∫
dPcBr(P′′,Pc; w′′/ωs){·}

+ Θ(w′′ − ωl)
[
1 − Θ(w′′ − ωu)

] ∫
dPcδ(Pc − P′′){·}

+ Θ(w′′ − ωu)
[
1 − Θ(w′′ − Kωu)

] K∑
k=2

S k(P)
∫

dPcBsk(P′′,Pc)k{·}

+ Θ(w′′ − Kωu)
∫

dPcBsK(P′′,Pc)K{·}
}
. (3.4)

With these operator definitions, the history-score moment equation becomes

−Ω·∇Mr(r,Ω, E,w) + Σ(r, E)Mr(r,Ω, E,w) =

R{Mr(r′′,Ω′′, E′′,w′′)} + S{Mr(r′′,Ω′′, E′′,w′′)}
+ C{Mr(rc,Ωc, Ec,wc)} +Ws{Mr(r′,Ω′, E′,w′)}
+ Wc{Mr(rc,Ωc, Ec,wc)} + Qr(r,Ω, E,w). (3.5)

3.1.1 Energy Multi-group Discretization
In Eq. (3.5) changes to the energy variable E occur exclusively through operators on the right-
hand-side of the equation. Specifically, the collision operator C and the collision-weight-window
operator Wc are the only operators that elicit an energy change, while the splitting operator S,
rouletting operator R, and the surface-weight-window operatorWs leave the energy unchanged.
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Within the collision operator and the collision-weight-window operator it is the E(P′,P′′) ker-
nel that causes the energy change. Recalling that this kernel may be explicitly written as

E(P′,P′′)dP′′ = Ps(r′′, E′′,Ω′′ → E′,Ω′)dE′′dΩ′′δ(w′′ − w′)dw′′δ(r′′ − r′)dr′′, (3.6)

where Ps(r′′, E′′,Ω′′ → E′,Ω′) is the doubly differential scattering probability, the continuous
energy transition from E′′ to E′ is replaced by a discrete transition from energy group Eg′′ to energy
group Eg′ . In this way, the integral over the continuous kernel E is replaced by a summation over
the number of energy groups G as∫

dP′′ E(P′,P′′)⇒
G∑

g′′=1

∫
dΩ′′

∫
dw′′

∫
dr′′ Pg′′→g′

s (r′′,Ω′′ → Ω′)δ(w′′ − w′)δ(r′′ − r′).

(3.7)

For all kernels other than E, the continuous integrations over delta functions of energy may be
replaced by summations with Kronecker delta functions of the energy group. Namely energy
integrals in other kernels are replaced as∫

dE δ(E′ → E)⇒
G∑

g′=1

δg′,g. (3.8)

The energy groups g are formed by dividing the energy domain into a number of bins with
widths Eg−1/2 − Eg+1/2 ≡ ∆Eg, g = 1, 2, . . . ,G. Conventionally, an increase in group number
corresponds to a decrease in energy such that E1 > E2 > . . . > EG. With this energy domain
discretization, the moment equation can then be expressed as [O’Dell and Alcouffe, 1987]

−Ω·∇Mg
r (r,Ω,w) + Σg(r)Mg

r (r,Ω,w) = R{Mg′′
r (r′′,Ω′′,w′′)} + S{Mg′′

r (r′′,Ω′′,w′′)} +
+ C{Mgc

r (rc,Ωc,wc)} +Ws{Mg′
r (r′,Ω′,w′)}

+ Wc{Mgc

r (rc,Ωc,wc)} + Qg
r (r,Ω,w), (3.9)

where Mg
r (r,Ω,w) is the rth moment carried by particles in direction Ω at position r with weight

w and within energy group g, and

Mg
r (r,Ω,w) =

∫ Eg−1/2

Eg+1/2

dE Mr(r,Ω, E,w), (3.10)

Σg(r,Ω,w) =

∫ Eg−1/2

Eg+1/2
dE Mr(r,Ω, E,w)Σ(r, E)∫ Eg−1/2

Eg+1/2
dE Mr(r,Ω, E,w)

=

∫ Eg−1/2

Eg+1/2
dE Mr(r,Ω, E,w)Σ(r, E)

Mg
r (r,Ω,w)

, (3.11)
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Pg′→g
s (r′,Ω′ → Ω,w) =

∫ Eg′−1/2

Eg′+1/2
dE′

∫ Eg−1/2

Eg+1/2
dE Ps(r′, E′,Ω′ → E,Ω,w′)Mr(r′,Ω′, E′,w′)∫ Eg′−1/2

Eg′+1/2
dE′ Mr(r′,Ω′, E′,w′)

=

∫ Eg′−1/2

Eg′+1/2
dE′

∫ Eg−1/2

Eg+1/2
dE Ps(r′,′ , E′,Ω′ → E,Ω,w′)Mr(r′,Ω′, E′,w′)

Mg′
r (r′,Ω′,w′)

, (3.12)

and

Qg
r (r,Ω,w) =

∫ Eg−1/2

Eg+1/2

dE Qr(r,Ω, E,w). (3.13)

Unfortunately, in order to compute the group-averaged cross sections Σg(r,Ω,w) and group-
averaged scattering probabilities Pg′→g

s (r′,Ω′ → Ω,w) one must know the group averaged mo-
ments, which in turn requires knowing the moments a priori. For standard flux and adjoint flux
type deterministic calculations, determining a representative set of group-averaged cross sections
involves first assuming a set and solving the moment equations, using the solutions to generate a
new set of cross sections, and repeating this process iteratively until the solution converges. This
can be a quite tedious and time consuming operation for deterministic calculations that can be
avoided in Monte Carlo transport by use of a continuous energy representation of the cross sec-
tions. Moreover, the multi-group cross sections for the moment equations could also be dependent
on the Monte Carlo particle weight. For the deterministic calculations contained herein, group-
averaged cross sections are not generated from realistic continuous energy counterparts. Here,
all cross sections are fictitious and specified in a multi-group format to avoid the aforementioned
problem. Also, the cross sections are assumed to be independent of particle weight such that
Σg(r,Ω,w) = Σg(r,Ω) and Pg′→g

s (r′,Ω′ → Ω,w) = Pg′→g
s (r′,Ω′ → Ω).

3.1.2 Sn Angular Discretization
Consider a particle at the center of a unit sphere. If all the possible directions that the particle
may travel are represented with rays extending from the center of the unit sphere to the surface of
the unit sphere, then there are infinitely many rays. The S n angular discretization method, which
is truly an angular quadrature scheme, approximates the infinitely many directions by a discrete
number proportional to n. A quadrature weight qn is associated with each of the discrete directions
Ωn such that a specific set of requirements are met by the quadrature scheme. Perhaps, the most
standard requirements of an S n quadrature set are that the quadrature weights sum to unity and
exactly integrate a certain number of spherical harmonics. However, these requirements can be
relaxed in favor of others, such as having an ordinate that points along a specific direction.

Each discrete direction Ωn represents a ray from the center of the unit sphere to a point on the
unit sphere. Each ray has associated with it a unique set of direction cosines µn, ηn, and ξn given
by

µn = Ωn·î, ηn = Ωn·ĵ, and ξn = Ωn·k̂, (3.14)

where î, ĵ, and k̂ are unit vectors in the x, y, and z directions, respectively. Figure 3.1 depicts the
points on the unit sphere representing quadrature ordinates for a fully-symmetric (µ1 = η1 = ξ1,
µ2 = η2 = ξ2, etc.) quadrature set.
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Figure 3.1. A fully-symmetric S 6 quadrature points in the first
octant of the unit sphere

With an S n discretization, integrals over an angular function f (Ω) become a simple summation,
namely ∫

4π
dΩ f (Ω)⇒

∑
n

qn f (Ωn). (3.15)

Furthermore, the discrete ordinates method provides a way of computing the amount of history-
score moment changing directions at a scattering event.

For the majority of scattering from materials with random or isotropic structure, the transition
probability Ps(r′, E′,Ω′ → E,Ω) depends only on the cosine of the angle between the two direc-
tions. In such a case, Ps simplifies to Ps(r′, E′ → E,Ω′·Ω) or Ps(r′, E′ → E, µs), where µs = Ω′·Ω

is the cosine of the scattering angle. Legendre moments of the scattering probabilities with respect
to a spherical harmonic function Rm(µs, ψ) can be computed. These spherical harmonic functions
are dependent on the geometry being considered and are discussed in depth by O’Dell and Alcouffe
[1987]. The Legendre moments Pl

s(r′, E′ → E) are computed as2

Pl
s(r
′, E′ → E) =

∫
4π

dΩPs(r′, E′ → E, µs)Rm(µs, ψ). (3.16)

Using the S n discretization, the above integral may be approximated as

Pl
s(r
′, E′ → E) =

∑
n

qnPs(r′, E′ → E, µn)Rm(Ωn). (3.17)

Similarly, the spherical harmonic moments of the rth moment of the history-score moment equa-

2Really, the Legendre moments need not be computed with respect to every spherical harmonic function. The Rm are
defined such that they represent a spherical harmonic without any imaginary values. However, because the scattering
is assumed to be azimuthally symmetric, all moments with respect to Rm that contain azimuthal dependence vanish in
the integration leaving only terms that integrate over the Legendre polynomials. For this reason, each m moment has
a single corresponding l value, and while not explicitly stated a summation over m implies that any l value within the
summation is that corresponding to the m value.
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tions Mm
r (r′, E′) can be evaluated as

Mm
r (r′, E′,w′) =

∫
4π

dΩ′Mr(r′, E′,Ω′,w′)Rm(Ω′), (3.18)

which, again by application of the S n discretization, becomes

Mm
r (r′, E′,w′) =

∑
n′

qn′Mn′
r (r′, E′,w′)Rm(Ωn′). (3.19)

Finally, the scattering contributions may be computed by folding the spherical harmonic moments
of the history-score moment together with the scattering moments [O’Dell and Alcouffe, 1987]

Mn
r (r, E,w) =

∑
m

(2l + 1)Pl
s(r
′, E′ → E)Mm

r (r′, E′,w′)Rm(Ωn). (3.20)

The above expression still contains the continuous transition probability from energy E′ to E. By
applying the multi-group approximation discussed in the previous section, a final expression for
the amount of rth history-score moments changing direction and energy at a scattering event is
obtained, namely,

Mn,g
r (r,w) =

∑
m

(2l + 1)Pl,g′→g
s (r′)Mm,g′

r (r′,w′)Rm(Ωn). (3.21)

Application of the multi-group and S n approximations to the original operator form of the
moment equations yields

−
[
Ω·∇Mg

r (r,Ω,w)
]n

+ Σg(r)Mn,g
r (r,w) = R{Mn′′,g′′

r (r′′,w′′)} + S{Mn′′,g′′
r (r′′,w′′)} +

+ C{Mnc,gc

r (rc,wc)} +Ws{Mn′,g′
r (r′,w′)}

+ Wc{Mnc,gc

r (rc,wc)} + Qn,g
r (r,w). (3.22)

The term in square brackets, the streaming term, is dependent on the geometry on which the so-
lution is being determined. Until that geometry is specified, the exact form cannot be written, but
Duderstadt and Martin [1978] provides the form of the streaming term for various geometries. The
form of the operator considered in this work is for Cartesian geometries.

As with the energy variable, the direction of the particles change only at collisions, mathemat-
ically represented by the E(P,P′) kernel contained in the C andWc operators. When the moment
transitions from one energy and direction to another, the spherical harmonic moments of the mo-
ment are computed and folded together with the group scattering probability moments as detailed
above. This computation must be performed for all Monte Carlo particle weights being accounted
for in the problem.

3.1.3 Monte Carlo Particle Weight Discretization
The above discretizations are standard to solutions of deterministic solutions of transport problems.
However, the transport calculations being performed herein are different from standard calculations
in that they also require the Monte Carlo particle weight w. In general, the range of weight required
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for a problem is unknown a priori, and potentially extends from zero to infinity. However, for prac-
tical implementation of a deterministic solution algorithm, the weight domain must be truncated at
some lower truncation weight wtl and some upper truncation weight wtu.

For the calculations, the weight domain between wtl and wtu is discretized with a comb dis-
cretization. Rather than solving for the rth moment of history-score distribution at all weights
between wtl and wtu, the rth moment is only calculated at specific weights wk such that w1 = wtl <
w2 < . . . < wk−1 < wk = wtu. It is an important distinction that the weight discretization is not a
distribution and has no quadrature weight associated with it. Furthermore, the weight domain is
not integrated over, rather specific evaluations of the history-score moments is made at one of the
comb weights.

When a Monte Carlo particle of weight wo is subjected to a variance reduction game, the result-
ing weight of the particle is a deterministic function of some set of parameters and even potentially
the particle’s weight itself. Although a particle’s weight may change in multiple manners, once the
method by which the particle changes weights is known, the new weight is known. For example,
in the rouletting of a particle with weight wo to a survival weight of ωs the particle survives and
is promoted to weight ωs with a probability of wo/ωs, otherwise it is given a weight of zero, i.e.,
terminated. Even though two possible weight outcomes exist, once it is known if the particle sur-
vives or not, the new weight of the particle is known. It is for this reason that the rth moment of
the history-score distribution carried by a particle of weight wo can be thought of as transitioning
to another unique weight with a given probability.

Monte Carlo Particle Weight at Tallies

To understand how the rth moment changes as a function of Monte Carlo particle weight, it is
necessary to first understand sources of the rth moment. Because the history-score moment equa-
tions are adjoint to the transport equation [Amster and Djomehri, 1976], the source for the moment
equations originates at the tallies. When a Monte Carlo particle reaches a tally, it does so with a
weight w. The score s the particle of weight w contributes to that tally is proportional to the weight,
i.e., s = Aw, where A is some constant of proportionality. Thus, as the score increases linearly with
the particle weight, the first moment source Q1 does so as well.

For the second moment, the source is slightly more complicated. If the tally is a terminal
estimator, that is a particle can contribute only a single score and then is terminated, then the
source contribution to the second moment is s2 = A2w2. If the tally is non-terminal, then there
are additions to this source amount, but this is an unneeded complication to understanding how
moment transitions across the weight domain.

For simplicity, consider the case A = 1, which is equivalent to a current tally in MCNP. In this
case, the first moment source varies as w and the second moment source varies as w2. If w = 1,
then the first moment source and second moment source are exactly the same, but for w < 1 the
second moment source is less than the first moment source and for w > 1 the second moment
source is greater than the first moment source as shown in Fig. 3.2.

Transition of Moment Resulting from Variance Reduction

With an understanding of how the first and second moments at tallies behave, the transition of
moment from one weight to another can be considered. Consider the instance of a n-to-1 split or
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Figure 3.2. Comparison of first and second moment sources for
a terminal current tally

a particle with weight wo. In the forward sense, the particle splits into n particles of weight wo/n.
In the adjoint formulation of the moment equations, the event must be considered in the reverse
direction. In this case, the moment carried by a particle of weight wo/n is multiplied by n, because
that is how many particles there were, and this is now the moment carried by a particle of weight
wo.

Consider now the above case applied to the unattenuated source presented in Fig. 3.2 such
that wo = 1. Because the score varies linearly with w [Booth and Cashwell, 1979], the first mo-
ment carried by a particle of weight wo/n is 1/n times that carried by a particle of weight wo, or
Q1(wo/n) = Q1(wo)/n. When the particles, each carrying a moment of Q1(wo/n) = Q1(wo)/n,
split, the resulting first moment for a particle at weight wo is Q1(wo)/n × n = Q1(wo) and remains
unchanged. This is exactly as expected because unbiased variance reduction games should not
change the first moment of the distribution.

The second moment however does change as a result of this splitting game. For the second
moment, the score varies as the weight squared. Thus, the second moment carried by a source
particle from the tally of weight wo/n is 1/n2 that carried by a particle of weight wo, or Q2(wo/n) =

Q2(wo)/n2. In the adjoint process, the n particles, each carrying second moment of Q2(wo/n),
become the single particle with weight wo, and the second moment carried by a particle of weight
wo is nQ2(wo/n) = n × Q2(wo)/n2 = Q2(wo)/n. Therefore the second moment carried by a particle
at weight wo is a factor of n less than without the split, i.e., n = 1. Figure 3.3 shows how the source
moments presented in Fig. 3.2 would change were they to undergo a 5-to-1 split. Whereas before,
particles with unit weight carried the same first and second moments, now particles of unit weight
have a lower second moment Q′2(w) resulting from the split.

Effectively, the second moment weight distribution has shifted to the right. In this case the
entire distribution shifts because a splitting game is weight independent. Weight-dependent games,
such as weight cutoff, only affect portions of the weight distribution. Because weight-dependent
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Figure 3.3. Comparison of first and second moment sources for
a terminal current tally after a 5-to-1 split

games affect only a portion of the weight domain, they introduce discontinuities into the weight
domain. With such discontinuities, the generalization above for the second moment Q2(wo/n) =

Q2(wo)/n2 does not apply and therefore the weight dependence must be tracked explicitly. The
effect of different variance reduction games, both weight-dependent and weight-independent are
detailed in the Section 3.5.

Transition of Moment with Discretized Weight

The weight domain is discretized by specifying upper and lower truncation weights wtu and wtl,
respectively, and the moment for specific weights wk between wtl and wtu is followed. Because the
moment is tracked only at these specific weights, the values of the moment between the discrete
weights are not known. For example, in the splitting case above moment transitions from weight
wo/n to wo. If wo corresponds to one of the discretized wk then, in general, it is unlikely that wo/n
also corresponds to one of the wk.

To solve this problem, a simple interpolation scheme is used. Continuing with the example
of the n-to-1 split, is is assumed that each wk is like the wo discussed in the previous section. k′

is found such that wk′−1 < wk/n = wo/n < wk′ . If wk/n < wtl or wk/n > wtu, then no interpo-
lation is performed and the moment is simply assigned the moment at wtl or wtu, respectively. If
wk/n < wk′−1 + 0.25(wk′ − wk′−1), the interpolated moment is simply set equal to the moment at
wk′−1, and if wk/N > wk′−1 + 0.75(wk′ − wk′−1) the interpolated moment is given the value wk′ , oth-
erwise the interpolated moment is set to (wk′−1 + wk′)/2. Such an interpolation scheme may seem
excessively simplistic, but many other more sophisticated interpolation methods were attempted
with little or no benefit to the result and with a higher computational cost. Furthermore, no inter-
polation scheme attempted was able to overcome the problem of interpolation at discontinuities in
the weight domain discussed later in this chapter.

With this method of discretizing the weight domain and the ability to appropriately transition
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moment from one weight to another, the operator form of the moment equations can be adjusted
for the weight discretization as

−
[
Ω·∇Mg,w

r (r,Ω)
]n

+ Σg(r)Mn,g,w
r (r) = R{Mn′′,g′′,w′′

r (r′′)} + S{Mn′′,g′′,w′′
r (r′′)} +

+ C{Mnc,gc,wc

r (rc)} +Ws{Mn′,g′,w′
r (r′)}

+ Wc{Mnc,gc,wc

r (rc)} + Qn,g,w
r (r), (3.23)

where the index w indicates one of the specific weight values between the truncation weights. As
with the energy and direction variables, all modifications to the weight occur via the operators on
the right-hand-side of this equation.

3.1.4 Cartesian Discretization of the Spatial Domain
For Cartesian geometry, the streaming term may be written [Lewis and Miller, 1993] as

−
[
Ω·∇Mg,w

r (r,Ω)
]n
⇒ −

[
µn
∂Mn,g,w

r (x, y, z)
∂x

+ ηn
∂Mn,g,w

r (x, y, z)
∂y

+ ξn
∂Mn,g,w

r (x, y, z)
∂z

]
. (3.24)

The Cartesian geometry has the distinct advantage that there are no angular derivatives. Angular
derivatives do however arise in cylindrical and spherical geometries and must be treated differently.
Such discussion is beyond the scope of this section.

For simplicity, only the 1-D spatial discretization will be derived, and the 2-D discretization
will be simply quoted as the derivations are very similar. Also, the notation for the entire right-
hand-side of Eq. (3.23) is denoted by Q̃n,g,w

r (x, y, z), i.e.,

Q̃n,g,w
r (x, y, z) = R{Mn′′,g′′,w′′

r (r′′)} + S{Mn′′,g′′,w′′
r (r′′)} +

+ C{Mnc,gc,wc

r (rc)} +Ws{Mn′,g′,w′
r (r′)}

+ Wc{Mnc,gc,wc

r (rc)} + Qn,g,w
r (r). (3.25)

With this simplification and the 1-D form of the streaming operator, Eq. (3.23) becomes

− µn
∂Mn,g,w

r (x)
∂x

+ Σg(x)Mn,g,w
r (x) = Q̃n,g,w

r (x). (3.26)

Consider a 1-D slab divided into I cells with a cell-center node at the center of each cell and
cell-edge nodes at the border of each cell as shown in Fig. 3.4. The cell-center nodes are labeled
with a whole-integer index and the cell-edge nodes are labeled with a half-integer index. The
discretization of the x domain is obtained by integrating Eq. (3.26) over a single cell from its left
edge to the right edge, namely∫ xi+1/2

xi−1/2

dx µn
∂Mn,g,w

r (x)
∂x

+

∫ xi+1/2

xi−1/2

dx Σg(x)Mn,g,w
r (x) =

∫ xi+1/2

xi−1/2

Q̃n,g,w
r (x). (3.27)

The negative sign, present because the history-score moment equation is adjoint to the transport
equation, has been dropped as the standard method of solving adjoint transport equations is to
solve them as a forward problem and then reverse the direction of the solution. Evaluation of the
first integral gives the differences of the moments at the endpoints. The other two integrals are
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approximated by the difference of the edge locations times the value at the center, so the above
equation becomes

µn
[
Mn,g,w

r (xi+1/2) − Mn,g,w
r (xi−1/2)

]
+ ∆xiΣ

g(xi)Mn,g,w
r (xi) = ∆xiQ̃n,g,w

r (xi), (3.28)

where ∆xi = xi+1/2 − xi−1/2.

Figure 3.4. 1D slab divided into I cells having I cell-centered nodes
and with I + 1 cell-edge nodes

Transport-like equations are usually solved deterministically by the method of sweeps. How-
ever, only one of the cell-edge values is typically known. Therefore, it is necessary to introduce
an auxiliary relationship between Mn,g,w

r (xi±1/2) and Mn,g,w
r (xi). Perhaps the most commonly used

relationship is the diamond difference scheme, where it is assumed that the cell-center value is the
average of the cell-edge values, i.e.,

Mn,g,w
r (xi) =

1
2

[
Mn,g,w

r (xi−1/2) + Mn,g,w
r (xi+1/2)

]
. (3.29)

With this additional relationship, the 1-D sweep method can be established.
The slab is now assumed to have vacuum boundary conditions. This assumptions requires that

Mn,g,w
r (x1/2) = 0, µn > 0 and (3.30)

Mn,g,w
r (xI+1/2) = 0, µn < 0 (3.31)

because there is no way for particles leaving the slab to reenter the slab. Therefore, two similar, yet
different, equations are developed to solve for the cases µn > 0 and µn < 0. For µn > 0, Eq. (3.28)
and Eq. (3.29) are used to eliminate Mn,g,w

r (xi+1/2), giving

Mn,g,w
r (xi) =

[
2|µn|

∆xi
+ Σg(xi)

]−1 [
2|µn|

∆xi
Mn,g,w

r (xi−1/2) + Q̃n,g,w
r (xi)

]
, (3.32)

and then Mn,g,w
r (xi+1/2) is obtained from

Mn,g,w
r (xi+1/2) = 2Mn,g,w

r (xi) − Mn,g,w
r (xi−1/2). (3.33)

Now, because it is known that Mn,g,w
r (x1/2) = 0 from the boundary conditions, Mn,g,w

r (x1) can be
determined from Eq. (3.32) and then Mn,g,w

r (x3/2 can be found from Eq. (3.33). These equations
can be repeatedly applied is a sweep from the left side of the slab to the right side until values of
Mn,g,w

r have been determined for all cell-center and cell-edge nodes such that µn > 0.
In a similar fashion, sweep equations for the right to left sweep can be determined. They are

Mn,g,w
r (xi) =

[
2|µn|

∆xi
+ Σg(xi)

]−1 [
2|µn|

∆xi
Mn,g,w

r (xi+1/2) + Q̃n,g,w
r (xi)

]
, (3.34)
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and
Mn,g,w

r (xi−1/2) = 2Mn,g,w
r (xi) − Mn,g,w

r (xi+1/2)., (3.35)

subject to µn < 0. Thus, because Mn,g,w
r (xI+1/2) = 0 from the boundary conditions, Mn,g,w

r (xI) can
be determined by Eq. (3.34) and then Mn,g,w

r (xI−1/2) can be found by Eq. (3.33). A sweep from the
right side of the slab to the left side of the slab then yields values of Mn,g,w

r for all cell-center and
cell-edge nodes such that µn < 0.

For two dimensions, the sweep procedure becomes slightly more complicated. Rather than
having simply two sweep directions, there are four sweep directions: µn > 0 and ηn > 0, µn < 0
and ηn > 0, µn < 0 and ηn < 0, and µn > 0 and ηn < 0. For the case µn > 0 and ηn > 0, the sweep
equations are

Mn,g,w
r (xi, y j) =

[
2|µn|

∆xi
+

2|ηn|

∆y j
+ Σg(xi, y j)

]−1

×[
2|µn|

∆xi
Mn,g,w

r (xi−1/2, y j) +
2|ηn|

∆y j
Mn,g,w

r (xi, y j−1/2) + Q̃n,g,w
r (xi, y j)

]
, (3.36)

and

Mn,g,w
r (xi+1/2, y j) = 2Mn,g,w

r (xi, y j) − Mn,g,w
r (xi−1/2, y j) (3.37)

Mn,g,w
r (xi, y j+1/2) = 2Mn,g,w

r (xi, y j) − Mn,g,w
r (xi, y j−1/2). (3.38)

Figure 3.5 shows the order in which the individual nodes are solved. The cell-center nodes are
always evaluated using Eq. (3.36) while the cell-edge nodes are evaluated using Eq. (3.37) or
Eq. (3.38) for the x or y directions, respectively.

Because of the spatial discretization and how well exponential attenuation is represented across
a cell, it is possible for cell-edge values computed during a sweep to be negative, which is not
physically reasonable. Many different negative-flux fixups have been developed, all introducing
varying amounts of error to the solution. For 1-D calculations, negative-flux fixups are unneeded
because a positive edge-node flux is guaranteed when [Lewis and Miller, 1993]

∆xi <
2min(|µn|)

Σg(xi)
. (3.39)

However, in higher dimensions there is no defined spacing that guarantees positivity of the solution.
This work utilizes the set to zero and recalculate negative-flux fixup scheme. For the sweep

direction illustrated in Fig. 3.5, the moments Mn,g,w
r (xi−1/2, y j) and Mn,g,w

r (xi, y j−1/2) are known when
updating cell i, j. The cell-center moment Mn,g,w

r (xi, y j) is calculated with Eq. (3.36) and is never
negative. However, using Eq. (3.37) and Eq. (3.38) it is possible for one or both of Mn,g,w

r (xi+1/2, y j)
and Mn,g,w

r (xi, y j+1/2) to be negative. When Mn,g,w
r (xi+1/2, y j) or Mn,g,w

r (xi, y j+1/2) is found to be neg-
ative, then its value is set to zero and the cell-center moment value is recomputed as

Mn,g,w
r (xi, y j) =

Mn,g,w
r (xi−1/2, y j) + Mn,g,w

r (xi, y j−1/2) + Mn,g,w
r (xi+1/2, y j) + Mn,g,w

r (xi, y j+1/2)
4

, (3.40)

the average of the cell-edge node values.
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Figure 3.5. 2D solution order of the nodes for the case Ωn·î = µn > 0 and
Ωn·ĵ = ηn > 0 (adapted from Lewis and Miller [1993])
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3.2 Description of Meshing and Sweeps for History-Score Mo-
ment Equation Solutions

While the Monte Carlo method lends itself nicely to complex geometries, the S n method typically
does not. For this reason, all calculations in this work are restricted to geometries that can be
defined with planes orthogonal to the x, y, and z axes. Such geometries were chosen also because
many variance reduction games occur at the surfaces between cells. In order to accurately represent
these types of variance reduction games in the S n calculation, it is necessary to force a mesh node
(either cell-centered or cell-edge) to be located on this surface. Here, cell-edge nodes are forced
to be located on surfaces between Monte Carlo cells so that all S n cells contain the same material.
Figure 3.6 shows a 1-D, two-cell geometry and the superimposed S n mesh. Whenever splitting
occurs at a surface or a tally is located on a surface, it is necessary to add source resulting from
tallies or splitting on at that surface, and this is why cell-edge nodes corresponding to surfaces are
necessary.

Figure 3.6. 1-D two-cell geometry. Black nodes represent cell-edge and
cell-center nodes, the green node represents the source, the purple node
represents a cell-edge node on a surface between two Monte Carlo cells
and the yellow node represents the tally

The S n sweep method fundamentally works the same regardless of the moment being calcu-
lated or the dimension. For simplicity, only the 1-D algorithm is discussed here. For a 1-D S n cell,
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there are three moments of interest: the cell-center moment Mn,g,w
r (xi) and both cell-edge moments

Mn,g,w
r (xi±1/2). In the left-to-right sweep of the slab, Mn,g,w

r (xi−1/2) is known. If the node correspond-
ing to i − 1/2 is a tally (this is a source for the adjoint problem) the necessary amount of source is
added to the moment before updating the cell-center moment. Next, the new cell-center moment
is calculated, and the opposite cell-edge moment is extrapolated, which, if negative, is corrected
by the negative-flux fixup scheme. If the new cell-edge node corresponds to a surface where any
of splitting, rouletting, or weight windows occurs, then the weight distribution of the moment is
modified (these modifications are discussed below) and any additional source added. This process
is repeated for all S n cells to complete the sweep.

Next the collision source is updated at all the cell-center nodes. The weight domain of the
moments at the cell-center nodes is modified as the result of any weight cutoff, implicit capture,
and weight windows games, and any additional source resulting from splitting is added to the
moment. If the cell-center node is contained within a volume for a volume tally, then the expected
track length value is added to the moment. Lastly, the scattering moments are computed and the
entire sweep process is repeated.

One caveat exists to the description above. It is unnecessary to keep track of the weight domain
for the first moment. This is because the first moment, or mean, Eq. (2.77), scales with the particle
weight and therefore it is necessary to compute the first moment for a weight of unity and scale
it to the other weights as needed. Performing first moment calculations in this manner greatly
accelerates the calculation because it entirely removes the necessity of keeping track of the weight
domain. Thus, the variance is computed by S n by performing a weight-independent first moment
calculation, computing additions to the second moment resulting from the first moment by scal-
ing the first moment by weight as necessary, and then performing the weight-dependent second
moment calculation.

3.3 Problems with Ray Effects
In multiple spatial dimensions, the solution of transport problems is plagued by ray effects. Ray-
effects arise because particles are tracked only along the discrete directions of the S n discretization.
Directions not belonging to the discrete set of directions typically experience an underestimation of
the flux, or, in this case, first and second moments of the score distribution. Generally, the solution
to ray effects is to use a higher S n discretization order, requiring increased computation times and
memory requirements, or apply a first collision source.

In this work, the issue of ray effects is not addressed. The two-dimensional problems were
kept small enough such that ray-effects were small, but far from negligible. Furthermore, the two
dimensional problems were run with materials with high scattering-to-total ratios such that the
isotropic scattering helps alleviate some of the ray effects.

3.4 Calculation of Moments and Variance
Calculating the variance of a specific tally requires that both the first and second moments, each
a single scalar value, of the history-score distribution for that tally be evaluated. The history-
score moment equations provide a solution for M1(r,Ω, E,w) and M2(r,Ω, E,w), functions of the
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phase space variables. These functions must be somehow evaluated to the single scalar values
corresponding to the first and second moments of the history-score distribution.

In a forward transport problem, a source S (r,Ω, E) emits particles and results in a flux φ(r,Ω, E).
The scalar response � of the flux to some detector function D(r,Ω, E) is given by

� =

∫
dr

∫
dΩ

∫
dE φ(r,Ω, E)D(r,Ω, E). (3.41)

Similarly, for an adjoint transport problem, and adjoint source S †(r,Ω, E) emits response particles
resulting in an adjoint flux φ†(r,Ω, E). The adjoint response �† is then computed with respect to
some adjoint detector function D†(r,Ω, E) as

�
† =

∫
dr

∫
dΩ

∫
dE φ†(r,Ω, E)D†(r,Ω, E). (3.42)

It can be shown that � = �† if S †(r,Ω, E) = D(r,Ω, E) and D†(r,Ω, E) = S (r,Ω, E) [Lewis and
Miller, 1993].

Because the history-score moment equations are adjoint to the forward transport equation, the
appropriate detector function is the physical source S (r,Ω, E) just as it was for the adjoint transport
equation. With this detector response, the first moment response �M1 can be calculated as

�M1 = 〈M1(r,Ω, E), S (r,Ω, E)〉 =

∫
dr

∫
dΩ

∫
dE M1(r,Ω, E)S (r,Ω, E). (3.43)

Similarly, the second moment respons �M2 is

�M2 = 〈M2(r,Ω, E), S (r,Ω, E)〉 =

∫
dr

∫
dΩ

∫
dE M2(r,Ω, E)S (r,Ω, E). (3.44)

Finally, the population variance of the score distribution σ2 is given by

σ2 = �M2 −�
2
M1

= 〈M2(r,Ω, E), S (r,Ω, E)〉 − 〈M1(r,Ω, E), S (r,Ω, E)〉2 . (3.45)

3.5 Effects of Variance Reduction Games on Weight Domain
The following sections describe how various variance reduction games modify the weight domain
of the second moment. The first moment scales with the weight of the particle, and, while techni-
cally this discussion applies to the first moment as well, the first moment remains independent of
variance reduction effects.

3.5.1 Importance Splitting and Implicit Capture
The importance splitting and implicit capture game are discussed together because the effects they
have on the weight domain are similar. The importance splitting kernel given in Section 2.2.1 says
that, if w is the weight of a particle before a split, the new moment carried by a particle w after a
k-to-1 split in the adjoint sense

Mr(r,Ω, E,w) =

∫
dw′δ(w′ − w/k)Mr(r,Ω, E,w′) = Mr(r,Ω, E,w/k). (3.46)
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This equation indicates that the moment carried by a particle of weight w should be the moment at
w/k. Essentially, this operations causes a shift in the weight domain such that the moment at w/k
becomes the moment at w. From the moment equations the shifted moment also gets multiplied by
a factor of k because k particles are making this transition. Thus, because the first moment scales
in proportion to weight such that M1(w/k) = (w/k)M1(1), when multiplied by this additional factor
of k the first moment remains unchanged. However, the second moment, for a weight independent
game such as splitting, scales as the weight squared, such that, M2(w/k) = (w/k)2M2(1), and, when
the additional factor of k is accounted for, the second moment is lower w2/kM2(1) < w2M2(1).
Figure 3.7 shows the shift in the second moment resulting from a 2-to-1 split.
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Figure 3.7. The second moment before and after a 2-to-1 split-
ting event or an implicit capture of survival probability 0.5. The
horizontal portion of the after-splitting line is an artifact of the
truncation of the weights to wtl

Implicit capture causes a very similar change in the weight distribution as does splitting. One
way to write the collision kernel E(P,P′) is

E(P,P′)dP′ =
Σs(E′)
Σ(E′)

Ps(E′,Ω′ → E,Ω)dE′dΩ′δ(r′ − r)dr′δ(w′ − ωε1w)dw′. (3.47)

For normal scattering (without implicit capture) ωε1 = 1 and the weight of the particle remains
unchanged. For implicit capture, the kernel is modified by multiplying by Σ(E′)/Σs(E′) and setting
ωε1 = Σs(E′)/Σ(E′), so that it becomes

E(P,P′)dP′ = Ps(E′,Ω′ → E,Ω)dE′dΩ′δ(r′ − r)dr′δ(w′ − ωε1w)dw′. (3.48)

Here, Σs(E′)/Σ(E′) is the survival probability of the particle, and in the new kernel all the particles
will survive the collision with a modified weight. Considering only the weight portion of the
kernel, a particle emerging from the collision will have a weight

Mr(r,Ω, E,w) =

∫
dw′ δ(w′ − ωε1w)Mr(r,Ω, E,w′) = Mr(r,Ω, E, ωε1w), (3.49)
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indicating that the moment now carried by a particle of weight w should be that of a particle
of weight ωε1w = Σs(E′)w/Σ(E′). For the first moment, again because it scales with weight,
M1(r,Ω, E,Σs(E′)w/Σ(E′) = Σs(E′)/Σ(E′)M1(r,Ω, E,w) and produces exactly what the original
kernel would have. For the second moment, because it scales as the square of weight for weight-
independent games, M2(r,Ω, E,Σs(E′)w/Σ(E′) = [Σs(E′)/Σ(E′)]2M2(r,Ω, E,w). This value of
M2 is a multiplicative factor of Σs(E′)/Σ(E′) less than would have been achieved with the original
kernel.

3.5.2 Rouletting
The rouletting kernel from Section 2.2.1 is

Bo(α,P,P′) = δ(r′ − r)dr′ δ(Ω′ −Ω)dΩ′ δ(E′ − E)dE′

×
[
αδ(w′ − w/α) + (1 − α)δ(w′)

]
dw′dα. (3.50)

In most practical cases, the survival probability α has a well defined value such that the distribution
of α is δ(α − αo), where αo is a defined value. Multiplication of the kernel by δ(α − αo) and
integration over α gives instead

Bo(α,P,P′) = δ(r′ − r)dr′ δ(Ω′ −Ω)dΩ′ δ(E′ − E)dE′

×
[
αoδ(w′ − w/α) + (1 − αo)δ(w′)

]
dw′. (3.51)

Again, only the weight portion of the kernel need be considered because all other variables remain
unchanged by this kernel. Thus, the moment emerging from a rouletting event is

Mr(r,Ω, E,w) =

∫
dw′ [αoδ(w′ − w/αo) + (1 − αo)δ(w′)]Mr(r,Ω, E,w′)

= αoMr(r,Ω, E,w/αo) + (1 − αo)Mr(r,Ω, E, 0). (3.52)

Because the moment carried by a particle of weight zero is itself zero, the final relationship between
the new moment and old moment is

Mr(r,Ω, E,w) = αoMr(r,Ω, E,w/αo). (3.53)

Because rouletting is a weight independent variance reduction game, the first moment scales
with the weight so that M1(r,Ω, E,w/αo) = M1(r,Ω, E,w)/αo and the first moment remains un-
changed. However, the second moment scales with the weight squared, so that M2(r,Ω, E,w/αo) =

M2(r,Ω, E,w)/α2
o, and the second moment is a multiplicative factor of 1/αo higher after the roulet-

ting event. Because the second moment is higher, rouletting is a variance increasing event and is
used to reduce the time spent tracking unimportant particles. The result of rouletting on the weight
domain of the moments is shown in Fig. 3.8.

3.5.3 Weight Cutoff

The weight cutoff game is a weight dependent game and, as such, introduces a discontinuity into
the weight domain of the second moment. The kernel for the weight cutoff game is

Bc(P,P′)dP′ = δ(r′ − r)dr′δ(Ω′ − δ)dΩ′δ(E′ − E)dE′

× {Θ(w − ωc)δ(w′ − w) + [1 − Θ(w − ωc)]
× [(w/ωe)δ(w′ − ωe) + (1 − w/ωe)δ(w′)]} dw′. (3.54)
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Figure 3.8. The second moment before and after a roulette
with survival probability 0.5. The horizontal line in the after-
rouletting plot is a result of the upper truncation weight wtu

All other variables other than weight can be ignored because the kernel does not change them. The
resulting moment is given by

Mr(r,Ω, E,w) =

∫
dw′ {Θ(w − ωc)δ(w′ − w) + [1 − Θ(w − ωc)]

× [(w/ωe)δ(w′ − ωe) + (1 − w/ωe)δ(w′)]}Mr(r,Ω, E,w′)
= Θ(w − ωc)Mr(r,Ω, E,w) + [1 − Θ(w − ωc)][(w/ωe)Mr(r,Ω, E, ωe)
+ (1 − w/ωe)Mr(r,Ω, E, 0)]. (3.55)

Again, because a moment of weight zero is itself zero, the only remaining terms are

Mr(r,Ω, E,w) = Θ(w − ωc)Mr(r,Ω, E,w) + [1 − Θ(w − ωc)](w/ωe)Mr(r,Ω, E, ωe). (3.56)

This result indicates, for a weight above the cutoff weight ωc, the moment remains unchanged.
For a weight below the cutoff weight the new moment becomes the ratio of the weight to the
survival weight times the moment at the survival weight and, because ωc/ωe , 1, a discontinuity
is introduced into the weight domain of the second moment.

The first moment always varies in proportion to weight such that for weights below the cutoff

weight the first moment is

M1(r,Ω, E,w) = (w/ωe)M1(r,Ω, E, ωe) = wM1(r,Ω E, 1) = M1(r,Ω, E,w). (3.57)

Thus, as expected, the first moment remains unchanged by the weight cutoff game. However, the
relationship M2(r,Ω, E,w) = w2M2(r,Ω, E, 1) no longer holds for this weight dependent game
below the weight cutoff. The second moment carried by particles with weights below the weight
cutoff is given by

M2(r,Ω, E,w) =
w
ωe

M2(r,Ω, E, ωe). (3.58)
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Interestingly, the second moment now varies as w and not w2 for weights below the weight cutoff.
Furthermore, the second moment is greater than it’s previous value making it a variance increasing
game. Figure 3.9 illustrates the change in the second moment resulting from the weight cutoff

game, and the discontinuity introduced by the weight-dependent game is evident.
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Figure 3.9. The second moment before and after weight cutoff

with a cutoff weight of 0.25 and a survival weight of 0.5

3.5.4 Weight Windows
The weight-window game is essentially the combining of a rouletting game, weight-cutoff game,
and multiple splitting games done in a cohesive manner. The weight window kernel given by
Eq. (2.85) is

Bw(P,P′) = [1 − Θ(w − ωs/K)] Br(P,P′; 1/K)
+ Θ(w − ωs/K) [1 − Θ(w − ωl)] Br(P,P′; w/ωs)
+ Θ(w − ωl) [1 − Θ(w − ωu)] δ(P′ − P) +

+

K−1∑
k=2

Θ(w − (k − 1)ωu) [1 − Θ(w − kωu)] S k(P)Bsk(P,P′)

+ Θ(w − Kωu)BsK(P,P′). (3.59)

The first term acts as a 1-to-K rouletting term, where K is the maximum splitting or rouletting
parameter. The second term is similarly a rouletting term where the survival probability depends
on the weight, thereby making it behave much like the weight cutoff term. The third term handles
the splitting of particles by factors of 2 through K − 1, and the final term handles the splitting of
particles by the maximum factor of K.

Each of the kernels behaves as previously described, though it is only applied over the portion
of the weight domain permitted by the Heaviside functions. Because all of the kernels contained
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in the weight-window kernel leave the first moment unchanged, the kernel as a whole does so as
well. However, the second moment is affected by each kernel in the appropriate regime as shown in
Fig. 3.10. The portion of the weight domain that is the same before and after the weight-windows
game results from the third term of the kernel. The small portion of the plot to the left of this
region with with a slope of w rather than w2 comes from the second term in the kernel and is much
like the result of the weight cutoff game. Even further to the left is the 1/K maximum rouletting
region. To the right of the unchanged region the second moment after the weight windows game
decreases in steps with each step corresponding to a different splitting factor k up to the maximum
splitting parameter K.
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Figure 3.10. The second moment before and after the weight-
windows game with a lower bound of 0.5, an upper bound mul-
tiplier of 5, a survival multiplier of 3, and a maximum split-
ting/rouletting parameter of 5

3.5.5 Combined Effect of Multiple Variance Reduction Games
The plots above have shown the effect of only a single variance reduction game on the weight
domain. When these games are used in conjunction, the weight domain can become very complex,
especially for weight-dependent games. Figure 3.11 shows the weight domain after five different
modifications by weight windows with different lower bounds. The number of discontinuities
has greatly compounded and in no region does the resulting weight domain resemble that of the
original.

3.5.6 Interpolation of Weight Domain with Discontinuities
The method by which values for the moments at a given weight are interpolated during the calcula-
tions was previously discussed in Section 3.5.6. While many different interpolation schemes were

64



10-6

10-4

10-2

100

102

104

10-3 10-2 10-1 100 101 102

M
2(

w)

w

before multiple weight windows
after multiple weight windows
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with different weight-window lower bounds, an upper bound
multiplier of 5, a survival multiplier of 3, and a maximum split-
ting/rouletting parameter of 5

attempted, the method described in that section was in the end chosen for its simplicity as none of
the other interpolation methods were able to overcome problems interpolating at discontinuities in
the weight domain. The problem is that the weight domain is tracked at a finite number of weights
wk and, if a true discontinuity exists between wk and wk+1, the exact location of that discontinuity
is lost by the discretization. Because the second moment can vary substantially on both sides of a
discontinuity, the interpolation method used can occasionally produce an interpolated value from
the incorrect side of the discontinuity. In general, the errors introduced by incorrect interpolations
are somewhat dispersed over a large problem. Even so, when obtaining the final value of the sec-
ond moment it was found that a wrong interpolation can cause substantial errors (10–20%) in the
predicted variance.

3.6 A Deterministic Expected Track Length to Next Event Es-
timator

A common method of calculating particle fluence in a volume for a Monte Carlo particle transport
simulation is to determine the expected particle track length in the volume and divide by the vol-
ume itself. This quantity is known as the track-length fluence estimator. Such an estimator is a
nondeterministic function of phase space R = (r,Ω, E, t) because the distance to particle collision
is a random variable. Other estimators, such as the surface fluence estimator, are deterministic
functions of phase space. Here, an expected track-length estimator is developed that is a deter-
ministic function of phase space and can therefore be used as a source for the deterministic S n
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calculations.
To calculate the variance of a track-length estimator using a deterministic S n approach to solve

the history-score moment equations, the score in the Monte Carlo calculation is the source term
for the S n calculation. S n calculations usually have deterministic source terms, and typical S n

calculations cannot use the stochastic track-length estimator as the source. Thus, an approximate
method for deterministically representing track-length estimators is needed, and, in this work, an
expected-track-length-to-next-event estimate is used, where an event is defined as a collision or
surface crossing.

3.6.1 Derivation of the Expected Track Length to Next Event
Consider a transport problem where a particle located at r is traveling in direction Ω toward a cell
boundary surface at rs, as illustrated in Fig. 3.12. The probability p(s)ds that the particle collides
in ds about s3 is known to be

p(s)ds = Σe−Σsds, (3.60)

where Σ is the total macroscopic cross section. If the particle is allowed to free flight forever
s→ ∞, then it is well known that the expected distance to collision is 1/Σ.

Figure 3.12. Expected track length to next event example

Here, the quantity of interest is not the distance to collision but the expected track length from
r to the boundary at rs. Therefore the expected distance to collision from the current location at
r to rs, not ∞, is required. This value is determined by integrating sp(s)ds from 0 to the distance
to the boundary S (r; rs,Ω), where the distance is a function of r and parameterized in rs and Ω,
normalized to the interaction probability from r to rs, namely

〈s〉 =

∫ S (r;rs,Ω)

0
ds sΣe−Σs∫ S (r;rs,Ω)

0
ds Σe−Σs

. (3.61)

The denominator can be directly integrated, and integrating the numerator by parts yields

〈s〉 =

[
−se−Σs − 1

Σ
e−Σs

]S (r;rs,Ω)

0

1 − e−ΣS (r;rs,Ω) =

1
Σ
−

[
1
Σ

+ S (r; rs,Ω)
]

e−ΣS (r;rs,Ω)

1 − e−ΣS (r;rs,Ω) . (3.62)

In the limit that S (r; rs,Ω)→ ∞, the expected distance to collision returns the expected 1/Σ, and,
in the limit that S (r; rs,Ω)→ 0, by application of l’Hôpital’s rule, 〈s〉 = 0, also as expected. Thus,

3Here, the symbol s temporarily refers to a distance and not a score
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the asymptotic behavior of the expression for 〈s〉 is as expected, but this is simply the expected
distance to collision up to rs and not the expected track length to next event.

The expected track length to next event (either collision or surface crossing) can now be found
by evaluating a weighted average of the free flight distance to the surface and the expected distance
to collision up to the surface. Thus, the expected track length to next event 〈Tl〉 is given by

〈Tl〉 =
free-flight distance of

S (r; rs,Ω) ×
probability of free-flight of

S (r; rs,Ω)

+
expected collision distance in

S (r; rs,Ω) ×
probability of collision in

S (r; rs,Ω) . (3.63)

This evaluates to

〈Tl〉 = S (r; rs,Ω)e−ΣS (r;rs,Ω) +

1
Σ
−

[
1
Σ

+ S (r; rs,Ω)
]

e−ΣS (r;rs,Ω)

1 − e−ΣS (r;rs,Ω)

(
1 − e−ΣS (r;rs,Ω)

)

= S (x; r,Ω)e−ΣS (r;rs,Ω) +
1
Σ
−

[
1
Σ

+ S (r; r,Ω)
]

e−ΣS (r;rs,Ω)

=
1
Σ

(
1 − e−ΣS (r;rs,Ω)

)
. (3.64)

As S (r; rs,Ω) → ∞ the expression above converges to the expected 1/Σ, and as S (r; rs,Ω) → 0
it converges to zero, as expected. More interestingly, as Σ → ∞ (a perfect absorber) the expected
track length to next event becomes zero, and as Σ → 0, by application of l’Hôpital’s rule, the
expected track length to next event becomes S (r; rs,Ω), the distance to the surface. The track
length to next event is plotted in Fig. 3.13 as a function of the distance for Σ = 1 cm−1. Note that
the track length to next event asymptotically approaches the mean free path length as S increases
and the slope asymptotically approaches unity as S goes to zero, indicating that for small distances
the expected track length to next event is that small distance.

For a single dimension, Eq. (3.64) becomes

〈Tl〉 =


1
Σ

(
1 − e−Σ(xs−x)/µ

)
, (xs − x) > 0 and µ > 0

1
Σ

(
1 − e−Σ(xs−x)/µ

)
, (xs − x) < 0 and µ < 0

0 , otherwise

, (3.65)

where the fact that

S (r; rs,Ω) =


(xs − x)/µ, (xs − x) > 0 and µ > 0

(xs − x)/µ, (xs − x) < 0 and µ < 0

0 , otherwise

, (3.66)

has been used. Here, µ is direction cosine in the x direction and xs is the x position of the surface,
as shown in Fig. 3.14.
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Figure 3.13. Track length to next event as a function of dis-
tance to surface S for Σ = 1 cm−1

Figure 3.14. 1-D expected track length to next event
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3.6.2 Representing Expected Track-Length To Next-Event as an Adjoint Sn
Source

To rationalize how the expected track length to the next event is represented as an S n adjoint
source, one first must consider the possible outcomes of track-length measurements for the Monte
Carlo simulation. Consider the two cases demonstrated in Fig. 3.15. In case one, the particle flies
directly through the tally cell and the entire path length from boundary to boundary is the track-
length score. In the second case, the particle enters one boundary and collides. From the collision
point on, the particle generates a second track-length score. Thus, track-length scores originate
in two locations: (1) from the point the particle enters the tally volume and (2) from collision
locations inside the tally volume.

Figure 3.15. Two cases of track length estimation

To represent the track-length scores as the S n source requires that both types of score con-
tributions, particles entering the tally volume and collisions within the tally volume, be counted.
Thus, S n cell-edge boundaries are forced to coincide with the tally volume boundaries, as shown
in Fig. 3.16. Also, as already mentioned, the S n method cannot model a sampled track length, so
the expected track length to next event must be used in the sampled track-length’s place. In the
forward sense, the expected track length to next event generated at the cell boundary edge nodes is
the expected track length to next event across the entire distance of the tally volume. This amount
of score accounts for all first entries of particles into the tally volume from regions external to the
tally volume. Importantly, this amount of source is only generated in the direction of particles
entering the tally volume.

In the forward sense, once inside the tally volume the particles may collide. If they collide,
they may exit the collision in any direction and either collide again or exit the tally volume. Thus,
the score generated at the cell-center nodes, where collision source is processed, is the expected
track length to the next event along the distance from the cell-center node to the boundary of
the tally volume in the direction of the discrete ordinate of travel, as indicated in Fig. 3.16. Cell
center nodes nearer one boundary will generate smaller expected track lengths to next event along
ordinates pointing toward that boundary and progressively larger values as the node moves further
from the boundary.

To convert these forward transport scores into a source for the adjoint calculation, one must
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Figure 3.16. Locations and directions of expected track-length
scores. The tally cell shown is divided into four S n cells where col-
lisional contributions to the tally are added at all cell-center nodes
and the contribution from particles entering the cell are only for the
cell-edge nodes corresponding to the tally cell boundary.

recall that the direction of adjoint particle flight is opposite the direction of forward particle flight.
Thus, the scores generated at the tally volume boundaries are converted to adjoint source by re-
versing the direction of the source contribution, and, therefore, the adjoint source is contributed
as the adjoint particle leaves the tally volume. Similarly, the expected-track-length-to-next-event
adjoint source contributed at a collision is for the direction opposite that which the adjoint particle
enters the collision, because, in the forward sense, the score is generated after the forward particle
leaves the collision. The directions of adjoint source contribution are indicated in Fig. 3.17.

3.6.3 Shortcomings of an Expected Track Length Estimator
The expected-track-length estimator works well when the mean-free-path length 1/Σ is less than
or equal to the maximum distance across the cell along one of the discrete ordinates. For example,
if x1 represents the location of the left side of a 1-D cell, x2 represents the location of the right
side of a 1-D cell, and µn represent the discrete ordinates, then the expected-track-length estimator
works if

1
Σ
≤
|x2 − x1|

min(|µn|)
. (3.67)

In one- and two-dimensional calculations, the Monte Carlo cells forming the geometry are
infinite in two and one directions, respectively. Particles traveling in one of the infinite directions
stream until they collide. If the total cross section in that cell is small, then the streaming path is
very long, and, in the limit Σ → 0, the expected track length is S (r, rs,Ω). Because there is no
surface to bound S (r, rs,Ω), it is infinite along ordinates that point in the infinite directions and
the estimator is infinite. Representing this in S n requires there be an ordinate that points in the
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Figure 3.17. Contributions of the adjoint S n expected track-length
source. In contrast to Fig. 3.16, the source at the cell-center nodes,
where collisions are processed, is added as adjoint particles enter the
collision and similarly for the cell-edge nodes corresponding to the
cell boundaries adjoint source is added as the particles leave the tally
volume.

direction that could contribute this infinite path length, which is generally not possible. Thus, for
the adjoint moment calculations, the source is truncated to values less than or equal to

|x2 − x1|

min(|µn|)
, (3.68)

and, provided the mean free path is less than this value, the expected track length estimator works
successfully.
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Chapter 4

Estimation of MCNP Calculation Times

To obtain a set of variance reduction parameters that minimizes the cost of a Monte Carlo problem,
the average calculation time per history must be known or calculated. This work attempts to
calculate the average time per history τ by solving an equation similar to the history score moment
equation. Previous works have assumed that the expected number of collisions per history is
a descent approximation to the expected time. If the problem is collision dominated, then the
expected number of collisions per history is a sufficient approximation to the the expected time,
but if scattering is only a small portion of the time required per history then the expected number
of collisions per history is a poor approximation to the expected time. This chapter derives the
expected future time equation, explains how specific timing parameters are extracted from the
MCNP transport code, and demonstrates how the future time transitions through phase space.

The future time equation describes the expected future amount of time that a particle at P
expects to experience. This is determined from an adjoint equation very similar to the moment
equations, but with the source distributed thoughout the domain of the problem not simply at the
tallies. With knowledge of the future time of a particle at P, the expected time per history τ(P)
resulting from a source distribution S (P) may be calculated as

τ =

∫
dP S (P)τ(P). (4.1)

Generally, the future time is dependent on the weight of the particle as it transitions through its
history. For this reason, the future time and the second moment have much in common, and may
be solved with the same S n sweep. The primary difference however, is that the sources of time in
the future-time equation are assumed to be independent of weight, whereas the sources of second
moment scale with w2.

4.1 Derivation of the Future-Time Equation
For this derivation, a time-independent calculation is assumed. The computation time required for
a Monte Carlo calculation to process a single history τ(P) = τ(r,Ω, E,w) is sought in terms of the
times required to process specific events. The times considered are

τt(P) =
the time required to process a tally event of a particle
at P

(4.2)
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τc(P) =
the time required to process a collison event of a par-
ticle at P

(4.3)

τw(P) =
the time required to process a weight-window event
of a particle at P (4.4)

τx(P) =
the time required to process a cross-section lookup
event of a particle at P (4.5)

τg(P) =
the time required to process a geometry tracking
event of a particle at P (4.6)

τs(P) =
the time required to process a surface-crossing event
of a particle at P (4.7)

τb(P) =
the time required to process a banking event of a par-
ticle at P

(4.8)

τsrc(P) =
the time required to process a source event of a parti-
cle at P

. (4.9)

The transport kernels defined in Section 2.2.1 are used in this derivation along with the weight-
window kernel in Eq. (2.85). Furthermore, the following probabilities and kernels are also defined

S s(P+)dP+ =
The probability of crossing a surface in the Monte
Carlo geometry at dP+ about P+ (4.10)

Ws(P+)dP+ =
The probability of weight window game at surface
crossing for a particle at dP+ about P+ (4.11)

Wc(P′′)dP′′ =
The probability of weight window game at a collision
for a particle at dP′′ about P′′ (4.12)

Cc(P′′)dP′′ =
The probability of weight-cutoff game at a collision
for a particle at dP′′ about P′′ (4.13)

F(P+)dP+ = The probability of a tally in dP+ about P+ (4.14)

4.1.1 Total Future Time from Surface Crossing Event
The time accrued from a surface event of a particle at P is the probability of transitioning from P to
P+, times the probability of a surface crossing at P+, times the calculation time for that particle plus
any progeny produced in the crossing. If there is a surface crossing, then the time for the history
increases by the amount of time to process the surface crossing τs(P+). For rouletting events at the
surface crossing, it is assumed that the time required to process the rouletting is a small fraction
of the surface crossing time and is negligible. Thus, for a rouletting event, the additional time is
given by

troulette = Ro(P+)
∫ 1

o
dα

∫
dP′′Bo(α,P+,P′′)[τ(P′′) + τg(P′′) + τx(P′′)], (4.15)
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the probability of rouletting, times the transition kernel for rouletted particles, times the future
time for the rouletted particle plus the time to track the particle in the geometry and look up the
cross sections. Similarly, the splitting of particles is assumed not to increase the time to process
the surface crossing substantially beyond the base surface crossing time, so for a splitting event the
time is given by

tsplit = S k(P+)
∫

dP′′Bsk(P+,P′′)k[τb(P′′) + τ(P′′) + τg(P′′) + τx(P′′)], (4.16)

the probability of a split, times the splitting kernel, times the number of particles resulting from
the split times the sum of the times each split particle will experience. Each split particle will be
banked and removed from the bank giving a time of τb, have its geometry tracked for a time of τg,
have cross sections looked up yielding a time τx, and be followed to future events for a time τ.

The weight-windows game is assumed to increase the surface crossing time beyond the base
time τs by an amount τw. However, the time for the weight window is applied only to the particle
before it is split, not to progeny. Therefore, the expression for time resulting from weight windows
at surface crossing is

tww = Ws(P+)
(
τw(P+) +

∫
dP+Bw(P+,P′′)[τ(P′′) + τg(P′′) + τx(P′′)]

)
, (4.17)

the probability of weight windows at a surface times the time to process weight windows plus the
times from all progeny of the weight windows events. The banking time for the particles resulting
from weight window splitting is hidden within the weight window kernel.

The total time from a surface-crossing event forward is the sum of the times for splitting,
rouletting, and weight windows plus the surface crossing itself all multiplied by the probability of
transitioning to the location of the surface crossing. This whole time is tsurface = troulette + tsplit + tww,
namely

tsurface =

∫
dP+ T (P,P+)S s(P+)

[
τs(P+)

+ Ro(P+)
∫ 1

o
dα

∫
dP′′Bo(α,P+,P′′)[τ(P′′) + τg(P′′) + τx(P′′)]

+ S k(P+)
∫

dP′′Bsk(P+,P′′)k[τb(P′′) + τ(P′′) + τg(P′′) + τx(P′′)]

+ Ws(P+)
(
τw(P+) +

∫
dP+Bw(P+,P′′)[τ(P′′) + τg(P′′) + τx(P′′)]

)]
. (4.18)

4.1.2 Total Future Time from Collision Event
Collision events my be broken into the collisions that produce zero, one, or more progeny. The
probability that a particle collides is Σ(P+,P′). A particle producing zero progeny is absorbed such
that the only time accrued is the time to process the collision

tabsorption =

∫
dP′Σ(P+,P′)A(P′)τc(P′). (4.19)

74



Particles that scatter (producing a single progeny) produce a total time of the time required to
process the collision plus any additional time introduced by weight-cutoff games or weight window
games and tracking the scattered particle. The time for scattering events can be expressed as

tscatter =

∫
P′Σ(P+,P′)

∫
dP′′E(P′,P′′)

{
τc(P′) +

[
[1 −Cc(P′′) −Wc(P′′)]

×[τ(P′′) + τg(P′′) + τx(P′′)]

+ Cc(P′′)
∫

dPc Bc(P′′,Pc)[τ(Pc) + τg(Pc) + τx(Pc)]

+ Wc(P′′)
(
τw(P′′) +

∫
dPc Bw(P′′,Pc)[τ(Pc) + τg(Pc) + τx(Pc)]

)]}
. (4.20)

Here it has been assumed that the weight-cutoff game adds a negligible amount of time in compar-
ison to the base collision time; however the weight-windows time is non-negligible.

For a collision event yielding multiple progeny, the total time is the time required to process
the collision plus all time associated with each of the progeny produced. Each of the progeny may
or may not undergo weight cutoff or weight windows games, thus the time for these events is

tmult =

∫
P′Σ(P+,P′)

∫
dP′′1 . . .

∫
dP′′Kεk(P′,P′′1 , . . . ,P

′′
n )

{
τc(P′)

+

k∑
n=2

[
[1 −Cc(P′′n ) −Wc(P′′n )][τ(P′′n ) + τg(P′′n ) + τx(P′′n )]

+ Cc(P′′n )
∫

dPc
n Bc(P′′n ,P

c
n)[τ(Pc

n) + τg(Pc
n) + τx(Pc

n)]

+ Wc(P′′n )
(
τw(P′′) +

∫
dPc

n Bw(P′′n ,P
c
n)[τ(Pc

n) + τg(Pc
n) + τx(Pc

n)]
)]}

. (4.21)

Combining the absorption, scattering, and multiplication collision terms and multiplying by the
probability of a transition to the collision location gives the time to process a collision and all
subsequent time tcollision = tabsorption + tscatter + tmult, namely∫

dP+T (P,P+)
∫

dP′Σ(P+,P′)
{
τc(P′)

+

∫
dP′′E(P′,P′′)

[
[1 −Cc(P′′) −Wc(P′′)][τ(P′′) + τg(P′′) + τx(P′′)]

+ Cc(P′′)
∫

dPc Bc(P′′,Pc)[τ(Pc) + τg(Pc) + τx(Pc)]

+ Wc(P′′)
(
τw(P′′) +

∫
dPc Bw(P′′,Pc)[τ(Pc) + τg(Pc) + τx(Pc)]

)]
+

∫
dP′′εk(P′,P′′1 , . . . ,P

′′
n )

k∑
n=2

[
[1 −Cc(P′′n ) −Wc(P′′n )][τ(P′′n ) + τg(P′′n ) + τx(P′′n )]

+ Cc(P′′n )
∫

dPc
n Bc(P′′n ,P

c
n)[τ(Pc

n) + τg(Pc
n) + τx(Pc

n)]

+ Wc(P′′n )
(
τw(P′′) +

∫
dPc

n Bw(P′′n ,P
c
n)[τ(Pc

n) + τg(Pc
n) + τx(Pc

n)]
)]}

, (4.22)
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Here the property

A(P′) +

∫
dP′′ E(P′,P′′) +

∫
dP′′1 . . .

∫
dP′′n εK(P′,P′′1 , . . . ,P

′′
n ) = 1, (4.23)

indicating that all colliding particles undergo absorption, scattering, or multiplication, has been
used.

4.1.3 Total Future Time Equation
The total future time for a given history is the combination of sum of the time for surface crossings
and collisions. This combination gives the equation for the expected future time

τ(P) =

∫
dP+ T (P,P+)S s(P+)

[
τs(P+)

+ Ro(P+)
∫ 1

o
dα

∫
dP′′Bo(α,P+,P′′)[τ(P′′) + τg(P′′) + τx(P′′)]

+ S k(P+)
∫

dP′′Bsk(P+,P′′)k[τb(P′′) + τ(P′′) + τg(P′′) + τx(P′′)]

+ Ws(P+)
(
τw(P+) +

∫
dP+Bw(P+,P′′)[τ(P′′) + τg(P′′) + τx(P′′)]

)]
+

∫
dP+T (P,P+)

∫
dP′Σ(P+,P′)

{
τc(P′)

+

∫
dP′′E(P′,P′′)

[
[1 −Cc(P′′) −Wc(P′′)][τ(P′′) + τg(P′′) + τx(P′′)]

+ Cc(P′′)
∫

dPc Bc(P′′,Pc)[τ(Pc) + τg(Pc) + τx(Pc)]

+ Wc(P′′)
(
τw(P′′) +

∫
dPc Bw(P′′,Pc)[τ(Pc) + τg(Pc) + τx(Pc)]

)]
+

∫
dP′′ε(P′,P′′1 , . . . ,P

′′
K)

K∑
k=2

[
[1 −Cc(P′′n ) −Wc(P′′n )]

× [τ(P′′n ) + τg(P′′n ) + τx(P′′n )]

+ Cc(P′′n )
∫

dPc
n Bc(P′′n ,P

c
n)[τ(Pc

n) + τg(Pc
n) + τx(Pc

n)]

+ Wc(P′′n )
(
τw(P′′) +

∫
dPc

n Bw(P′′n ,P
c
n)[τ(Pc

n) + τg(Pc
n) + τx(Pc

n)]
)]}

+

∫
dP+ T (P,P+)F(P+)τt(P+), (4.24)

where the final term accounts for time required to process tally events at P+.
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4.2 Computing the Expected Future Time
The equation derived in the previous section gives an expression for the total future time of a
particle in phase space P. In order to obtain an estimate of the expected future time, the above
equation must be integrated over the physical source S (P), just as the first and second moments
were, to obtain the time response τ

τ =

∫
dPS (P) [τsrc(P) + τ(P)] (4.25)

One caveat exists to the above expression. If collision based weight windows are utilized in
MCNP, then the source is subject to splitting or rouletting if it falls outside the window. For this
reason, the above expression must be modified to account for this possibility as follows

τ =

∫
dPS (P)

{
[1 −Wc(P)] [τsrc(P) + τ(P)]

+ Wc(P)
[
τsrc(P) +

∫
dP′ Bw(P,P′)τ(P′)

]}
. (4.26)

The expression above contains an increase in time resulting from both the splitting or rouletting
of particles born into the weight window and the addition to the time from determining the initial
source particle parameters from the Monte Carlo source routine.

4.3 Determination of MCNP Routine Times
To approximate the future time, it is necessary to obtain from MCNP the times for each type of
event τt(P), τc(P), . . .. The times that were deemed important to the determination of the future
time are those called by MCNP’s HSTORY routine. Nearly 95% of the calculation time for the
problems investigated is spent in the HSTORY routine or a routine called by HSTORY. Also,
the times for specific routines are probably somewhat dependent on the state of the particle P =

(r,Ω, E, t,w), but for this work all the times are considered to be independent of the particle state,
i.e., τt(P) = τt, τc(P) = τc, . . ., etc.

The times for each subroutine call were determined by profiling the MCNP code. Profiling is
typically used to determine where bottlenecks in the source code occur, but can also be used to
approximate the times required to process each subroutine. Two different profiling methods were
attempted. The first utilized the GNU profiling utility GPROF. Compiling the source code with
GPROF capabilities augments the source code with additional instructions that, as the program
runs, writes a binary data file with code performance information. After the program has com-
pleted, the data file can be analyzed with the GPROF utility providing the total time spent in each
routine and the number of times the routine was called. The quotient of these two values provides
and estimate of the time per routine. Because the source code is augmented with the additional in-
structions, the routines themselves are fundamentally altered potentially altering the time required
for each call. Initially, it was thought that the times would be reasonable approximations, but
results obtained using the profile times obtained from GPROF were not as accurate as hoped.

The second method to obtain times for each event was to use the VALGRIND utility. VAL-
GRIND is typically thought of as a memory debugging tool used to find memory leaks, but it
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also contains a profiling utility that works differently than GPROF. VALGRIND’s profiling utility
CALLGRIND runs the actual program (not an augmented version) under a virtual machine. Be-
cause it runs under a virtual machine, the runtime is exceptionally slower than when not running the
program under VALGRIND. However, the information CALLGRIND produces is the total num-
ber of instructions executed by each subroutine and total, so, if the MCNP problem is run without
CALLGRIND, then the total runtime is known. Dividing the total runtime by the total number of
instructions, assuming a constant time per instructions, yields the time per instruction from which
the time per subroutine can be determined. Using CALLGRIND without an augmented version
of the source code and a finer granularity of timing information (total instructions rather than total
time) seemed to produce estimates of times adequately, though nowhere near the actual calculation
times.

For calculations of the times performed using both GPROF and CALLGRIND it is necessary to
subtract the time spent in routines of interest from the calling routine. For example, MCNP’s SUR-
FAC routine processes particle’s across surfaces of the geometry and, if surface weight windows
are used, calls the WTWNDO routine. Because the timing of both SURFAC and WTWNDO are of
interest, the time spent processing WTWNDO must be subtracted from the time spent processing
SURFAC. Table 4.1 shows which MCNP routines correspond to the times of interest.

Table 4.1. Correspondence between times of interest and MCNP routines

Time τs τc τg τx τt τw τb τsrc

MCNP Routine SURFACa COLIDN TRACK ACETOT TALLY WTWNDOb BANKIT STARTPc +

RN INIT PARTICLE

aless WTWNDO and TALLY
bless BANKIT
cless WTWNDO

An additional complication arises from the fact that most modern computers do not simply
process a single task. The operating system must balance the requirements of the user with the
requirements of the system. When running a calculation, if suddenly the system needs processor
time, the timing of the profiled calculation can be affected. Using CALLGRIND to track the total
number of instructions used helps to mediate this problem, but the calculation to obtain the true
runtime is subject to this type of multitasking problem. For this reason, the estimates of the routine
times are subject to some fluctuation. However, no other method of obtaining the necessary timing
information was attempted.

Three one-dimensional problems were profiled to obtain a set of times for use in the S n code
to predict the MCNP problem runtime. Because the goal is the optimization of weight-window
games, the timing information was obtained with specifically the weight-window game in mind.
The first problem uses only weight window variance reduction for a 1-group problem, the second
problem uses weight window and implicit capture variance reduction for a 1-group problem, and
the third problem uses only weight window variance reduction in a 2-group problem. The times
obtained from the three profiles are presented in Table 4.2, Table 4.3, and Table 4.4 respectively.

The results of the three profiles agree reasonably well considering. Most of the profiled times
agree within 5–10%, which, given all the assumptions, seems like decent agreement. The times
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Table 4.2. CALLGRIND time profiling information for only weight windows in a 1-group problem
on an AMD Opteron (2.2 GHz) Linux system. Times are in seconds.

MCNP Routine # Instructions Time in Routinea Calls Time Per Call

SURFAC 1.26062E+09b 5.89E-01 1.45247E+06 4.05E-07

BANKIT 3.27671E+08 1.53E-01 6.89335E+05 2.22E-07

ACETOT 7.08281E+08 3.31E-01 4.11791E+06 8.04E-08

WTWNDO 3.98725E+08c 1.86E-01 3.80505E+06 4.89E-08

TRACK 8.91833E+08 4.16E-01 4.11791E+06 1.01E-07

COLIDN 1.80121E+09 8.42E-01 2.66544E+06 3.15E-07

TALLY 5.34787E+07 2.50E-02 7.28920E+04 3.43E-07

STARTP 1.98047E+09d 9.26E-01 1.00000E+06 9.26E-07

RN INIT PARTICLE 7.17371E+08 3.35E-01 1.00000E+06 3.35E-07

aobtained from a total of 10693583913 instructions in a 5 minute run
bless WTWNDO and TALLY
cless BANKIT
dless WTWNDO
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Table 4.3. CALLGRIND time profiling information of weight windows with implicit capture in a
1-group problem on an AMD Opteron (2.2 GHz) Linux System. Times are in seconds.

MCNP Routine # Instructions Time in Routinea Calls Time Per Call

SURFAC 1.46832E+09b 6.54E-01 1.70405E+06 3.84E-07

BANKIT 2.64695E+08 1.18E-01 5.60036E+05 2.10E-07

ACETOT 8.31591E+08 3.70E-01 4.83483E+06 7.67E-08

WTWNDO 5.37541E+08c 2.39E-01 4.96282E+06 4.83E-08

TRACK 1.05411E+09 4.70E-01 4.83483E+06 9.72E-08

COLIDN 2.92458E+09 1.30E+00 3.13078E+06 4.16E-07

TALLY 8.80225E+07 3.92E-02 1.20069E+05 3.26E-07

STARTP 1.98047E+09d 8.83E-01 1.00000E+06 8.83E-07

RN INIT PARTICLE 7.17371E+08 3.19E-01 1.00000E+06 3.19E-07

aobtained from a total of 12825918309 instructions in a 5.72 minute run
bless WTWNDO and TALLY
cless BANKIT
dless WTWNDO
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Table 4.4. CALLGRIND time profiling information of weight windows in a 2-group problem on
an AMD Opteron (2.2 GHz) Linux System. Times are in seconds.

MCNP Routine # Instructions Time in Routinea Calls Time Per Call

SURFAC 9.75566E+08b 4.79E-01 1.09154E+06 4.39E-07

BANKIT 7.11044E+07 3.49E-02 2.79823E+05 1.24E-07

ACETOT 2.77869E+08 1.36E-01 1.61552E+06 8.45E-08

WTWNDO 1.78849E+08c 8.78E-02 1.43465E+06 6.12E-08

TRACK 3.47610E+08 1.70E-01 1.61552E+06 1.05E-07

COLIDN 1.63078E+08 8.01E-02 5.23983E+05 1.53E-07

TALLY 1.14646E+08 5.63E-02 1.30528E+05 4.31E-07

STARTP 2.01149E+09d 9.88E-01 1.00000E+06 9.88E-07

RN INIT PARTICLE 7.17371E+08 3.52E-01 1.00000E+06 3.52E-07

aobtained from a total of 6045414993 instructions in a 2.97 minute run
bless WTWNDO and TALLY
cless BANKIT
dless WTWNDO
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that do differ substantially are the COLIDN time, the WTWNDO time, and the BANKIT time.
The time to process COLIDN sees a 33% increase in time for the implicit capture case between
Table 4.2 and Table 4.3, and is substantially less in Table 4.4, probably a result of the lower cross
sections used for this profiling. The difference between the first two COLIDN times results from
the additional time of processing the implicit capture and is to be expected. Given these profiles, the
times used for calculations presented in this work are those given in Table 4.4 with the exception
that the COLLIDN time τc is increased by 30%, as indicated by Table 4.2 and Table 4.3, if implicit
capture is used.

The profiled times are sure to be problem dependent. However, not every possible problem
can be profiled to find the correct set of times. Rather, these timing studies were performed in the
expectation that a representative time could be established that might extend to similar problems.
In reality, a set of times, dependent on the state of the particle and the variance reduction techniques
being used, could probably be developed. A more realistic approach would be to have the S n code
call the Monte Carlo routines directly with the appropriate input parameters and obtain the timings
directly as needed. However, such refinements are beyond this “proof of concept” study.

4.4 Solving for the Expected Future Time
As with the moment equations, the future-time equation can be converted into an integro-differential
form and discretized using the discrete ordinates method. It is important to note that the future-
time equation is dependent on the Monte Carlo particle weight as particles with low weights will
be preferentially killed to reduce the cost of a calculation. The discretized future-time equation
can be written

[−Ω·∇τg,w(r)]n + Σgτg,w,n(r) = S[τg′′,w′′,n′′(r′′)] + C[τgc,wc,nc
(rc)] + Qg,w,n(r) (4.27)

where S and C are the surface-crossing and collision operators given by

S[τ(P′′)] = τs(P+)

+ Ro(P+)
∫ 1

o
dα

∫
dP′′Bo(α,P+,P′′)[τ(P′′) + τg(P′′) + τx(P′′)]

+ S k(P+)
∫

dP′′Bsk(P+,P′′)k[τb(P′′) + τ(P′′) + τg(P′′) + τx(P′′)]

+ Ws(P+)
(
τw(P+) +

∫
dP+Bw(P+,P′′)[τ(P′′) + τg(P′′) + τx(P′′)]

)
(4.28)

and

C[τ(Pc)] = τc(P′)

+

∫
dP′′E(P′,P′′)

[
[1 −Cc(P′′) −Wc(P′′)][τ(P′′) + τg(P′′) + τx(P′′)]

+ Cc(P′′)
∫

dPc Bc(P′′,Pc)[τ(Pc) + τg(Pc) + τx(Pc)]

+ Wc(P′′)
(
τw(P′′) +

∫
dPc Bw(P′′,Pc)[τ(Pc) + τg(Pc) + τx(Pc)]

)]
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+

∫
dP′′ε(P′,P′′1 , . . . ,P

′′
K)

K∑
k=2

[
[1 −Cc(P′′n ) −Wc(P′′n )]

× [τ(P′′n ) + τg(P′′n ) + τx(P′′n )]

+ Cc(P′′n )
∫

dPc
n Bc(P′′n ,P

c
n)[τ(Pc

n) + τg(Pc
n) + τx(Pc

n)]

+ Wc(P′′n )
(
τw(P′′) +

∫
dPc

n Bw(P′′n ,P
c
n)[τ(Pc

n) + τg(Pc
n) + τx(Pc

n)]
)]

(4.29)

This integro-differential future-time equation is also adjoint to the transport equation. As such,
the source term Q contains the time required to process a tally, although additional sources of time
are contained within the S and C operators. The most fundamental difference between the history-
score moment equations and the future-time equation is that the sources are independent of the
Monte Carlo particle weight, whereas the sources for the moment equations scaled as w for M1

and w2 for M2. The effects that the weight transitions kernels have on the future-time are detailed
in the next section.

4.5 Effects of the Weight Kernels on the Future Time
Just as with the history-score moment equation, the future-time equation is also affected by the
weight transition kernels. Because a split of k-to-1 requires approximately k-times as long to
process from that point forward and a roulette of 1-for-k requires 1/k-times as long to process from
that point forward, the future-time is dependent on how the weight changes.

An important distinction exists between the sources for the history-score moment equations
and the future-time equations. The tallies, which are the source for the history-score moment
equations, vary as w for the first moment and w2 for the second moment, whereas the time to
process events is assumed to be independent of particle weight. Because the sources of time are
considered to be independent of particle weight, the weight kernels have different effects on the
future-time weight distribution.

The following sections describe how each of the weight transition kernels affects the future-
time weight distribution. For each case the initial future-time weight distribution is assumed to
be weigh independent with a value of unity. The effect of each weight-transition kernel on the
future-time weight distribution is shown mathematically as well as graphically.

4.5.1 Splitting and Implicit Capture
The splitting kernel, given in Section 2.2.1, indicates that

τ(r,Ω, E,w) =

∫
dw′δ(w′ − w/k)τ(r,Ω, E,w′) = τ(r,Ω, E,w/k). (4.30)

This result indicates that the time carried by a particle of weight w should now be the time carried
by a particle of weight w/k. This kernel omits the fact that there are now k particle to be tracked,
but, after accounting for these k particles, the correct time is

τ(r,Ω, E,w) = kτ(r,Ω, E,w/k). (4.31)
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Because the original time is weight independent, τ(r,Ω, E,w) = τ(r,Ω, E,w/k) and the entire
future-time weight domain increases by a factor of k. This behavior is illustrated in Fig. 4.1.
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10-3 10-2 10-1 100 101 102

τ(
w)

w

before splitting
after splitting

Figure 4.1. The effect of a 3-to-1 split on the weight domain of
the future time

Implicit capture has no effect on the future-time of a weight-independent distribution. It was
previously established that the weight-only portion of the implicit capture kernel modifies the
weight domain as

τ(r,Ω, E,w) =

∫
dw′ δ(w′ − ωε1w)τ(r,Ω, E,w′)

= τ(r,Ω, E, ωε1w), (4.32)

where ωε1 is the scattering probability Σs(E)/Σ(E). However, because the initial future-time dis-
tribution is weight-independent, τ(r,Ω, E, ωε1w) = τ(r,Ω, E,w) and the future-time distribution
remains unchanged. Were the original distribution weight-dependent, then the time required to
track a particle of weight w would now be the time required to track a particle of weight Σs(E)w/Σ.

4.5.2 Rouletting
In the case of rouletting, the future-time is affected in the opposite manner as splitting. The roulet-
ting kernel for a specific rouletting probability αo is

Bo(αo,P,P′) = δ(r′ − r)dr′ δ(Ω′ −Ω)dΩ′ δ(E′ − E)dE′

×
[
αoδ(w′ − w/αo) + (1 − αo)δ(w′)

]
dw′. (4.33)

Only the weight variable is changed by this kernel, so the effect on the future-time is

τ(r,Ω, E,w) =

∫
dw′ [αoδ(′−w/αo) + (1 − αo)δ(w′)]τ(r,Ω, E,w′)

= αoτ(r,Ω, E,w/αo) + (1 − αo)τ(r,Ω, E, 0). (4.34)

84



Because the time required to track particles of weight zero is itself zero (the particles are termi-
nated), the resulting value for τ(r,Ω, E,w) is αoτ(r,Ω, E,w/αo). Again, because the initial future-
time distribution is weight independent such that τ(r,Ω, E,w/αo) = τ(r,Ω, E,w), the resulting
future-time is simply

τ(r,Ω, E,w) = αoτ(r,Ω, E,w) (4.35)

Thus, the expected time to track particles from this point forward in the calculation is a factor of
αo < 1 less after the rouletting event as shown in Fig. 4.2.
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Figure 4.2. The effect of rouletting with a probability of 1/3 on
the weight domain of the future time

4.5.3 Weight Cutoff

The weight cutoff kernel introduces a weight dependence into a weight-independent future-time
distribution. The weight-cutoff kernel is

Bc(P,P′)dP′ = δ(r′ − r)dr′δ(Ω′ − δ)dΩ′δ(E′ − E)dE′

× {Θ(w − ωc)δ(w′ − w) + [1 − Θ(w − ωc)]
× [(w/ωe)δ(w′ − ωe) + (1 − w/ωe)δ(w′)]} dw′, (4.36)

where, ωc and ωs are the cutoff weights and survival weights, respectively. Application of this
kernel to the future-time, ignoring all other variables than weight, gives

τ(r,Ω, E,w) =

∫
dw′ {Θ(w − ωc)δ(w′ − w) + [1 − Θ(w − ωc)]

× [(w/ωe)δ(w′ − ωe) + (1 − w/ωe)δ(w′)]} τ(r,Ω, E,w′)
= Θ(w − ωc)τ(r,Ω, E,w) + [1 − Θ(w − ωc)][(w/ωe)τ(r,Ω, E, ωe)
+ (1 − w/ωe)τ(r,Ω, E, 0)]. (4.37)
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Again, because the time required to track particles with weight zero is zero, the only terms that
need be considered are

τ(r,Ω, E,w) = Θ(w − ωc)τ(r,Ω, E,w) + [1 − Θ(w − ωc)](w/ωe)τ(r,Ω, E, ωe). (4.38)

The time required to track particles above the weight cutoff remains unchanged. However,
the time required to track particles below the weight cutoff decreases as the weight decreases as
the weight decreases and the probability of surviving the weight cutoff decreases. The effect the
weight cutoff kernel has on an initially weight-independent future-time is presented in Fig. 4.3.
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Figure 4.3. The effect of a weight cutoff on the weight domain
of the future-time for a cut weight of 0.25 and a survival weight
of 0.5

4.5.4 Weight Windows
The weight-window game combines the rouletting, weight cutoff, and splitting games into a single
weight dependent game. The weight-window kernel is

Bw(P,P′) = [1 − Θ(w − ωs/K)] Br(P,P′; 1/K)
+ Θ(w − ωs/K) [1 − Θ(w − ωl)] Br(P,P′; w/ωs)
+ Θ(w − ωl) [1 − Θ(w − ωu)] δ(P′ − P) +

+

K−1∑
k=2

Θ(w − (k − 1)ωu) [1 − Θ(w − kωu)] S k(P)Bsk(P,P′)

+ Θ(w − Kωu)BsK(P,P′), (4.39)

where ωs is the survival weight, ωl is the lower window weight, ωu is the upper window weight,
and K is the maximum splitting/rouletting parameter. For the future-time, each of the splitting

86



terms must also be multiplied by the number of particles produced in the split, namely

Bw(P,P′) = [1 − Θ(w − ωs/K)] Br(P,P′; 1/K)
+ Θ(w − ωs/K) [1 − Θ(w − ωl)] Br(P,P′; w/ωs)
+ Θ(w − ωl) [1 − Θ(w − ωu)] δ(P′ − P) +

+

K−1∑
k=2

Θ(w − (k − 1)ωu) [1 − Θ(w − kωu)] S k(P)Bsk(P,P′)k

+ Θ(w − Kωu)BsK(P,P′)K. (4.40)

The resulting kernel modifies weights below ωs/K by a 1-for-K rouletting and weights between
ωs/K and ωl by a weight-cutoff with survival weight ωs. Both of these games, as was seen above,
reduce the future-time. The future time for particles with weights between ωl and ωu is left un-
changed, while for particles with weights greater than ωu are split such that their weight is in the
window and the future time is multiplied by the appropriate splitting value k. Figure 4.4 shows how
an initially weight-independent future-time function is modified by the weight-windows game.
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Figure 4.4. The effect of weight windows on the weight do-
main of the future time for a lower bound of 0.5, a upper bound
multiplier of 5, a survival multiplier of 3, and a maximum split-
ting/rouletting parameter of 5

As soon as the future-time function experiences a single weight windows game, the weight
independence of the distribution is lost. Combined effects of multiple weight windows games
introduce more discontinuities to the weight domain of the future time as shown in Fig. 4.5.
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Chapter 5

Cost Optimization of Transport Problems

The methods for calculating population variances of Monte Carlo particle transport problems and
estimating the times of those calculations have been developed for the goal of minimizing the
computational cost of Monte Carlo transport problems. This chapter presents the optimization
method used to minimize the cost function and presents results for 1-D and 2-D transport problems.

5.1 Optimization Method
In the optimization calculations a set of variance reduction parameters {V} that minimize the func-
tional cost

C({V}) = σ2({V})τ({V}) (5.1)

is sought. Here, the population variance of the tally score distribution σ2 and the expected time
per particle τ have been expressed as functions of the set of variance reduction parameters {V}. In
general, the variance reduction techniques, such as splitting or implicit capture, seek to reduce σ2

while at the same time to modestly increase τ. Alternatively, variance increasing techniques, such
as rouletting or weight cutoff, seek to increase modestly σ2 while decreasing τ.

The set of variance reduction parameters {V} could potentially contain any of the variance-
reduction parameters or subset of the parameters in the problem. Realistically, an attempt to op-
timize the problem with every possible parameter becomes unwieldy, and this work has restricted
itself to optimization of the weight-window method because it embodies many of the other variance
reduction games.

A general optimization of the weight-windows technique poses an interesting issue. For a
general problem, the number of cells can be quite large and each cell requires a weight-window
lower bound that must be optimized. As the number of cells grows, the number of S n calculations
that must be performed for the optimization grows with it, and, because each S n calculation is
somewhat computationally expensive, the optimization becomes unwieldy for gradient based op-
timization method. To overcome this problem, a basis function method that reduces the number of
S n calculations is adopted.
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5.1.1 Basis Functions
Use of the adjoint function as an importance biasing function or a method of producing weight
windows has proven to be a quite successful means of biasing forward Monte Carlo calculations.
As such, the adjoint function presents itself as a reasonable candidate for an initial guess, upon
which to improve. For the calculation contained here, the adjoint function is computed, converted
into a set of weight window lower bounds for each cell, and then those lower bounds are used as a
basis to be optimized.

Having computed an initial value for the weight window lower bound in each cell, a method of
improving that basis without computing the gradient with respect to every weight-window lower
bound is required. To this end, the problem domain is sub-divided into a courser optimization
mesh, and on each of the optimization-mesh elements a scaling parameter is applied. Figure 5.1
shows how such a mesh is applied.

Figure 5.1. Optimization mesh over the cells in the problem. Each cell has its own weight-
window lower bound and each optimization-mesh element has its own parameter by which to
scale the weight-window lower bounds of cells contained within the element. Heavy red dashed
lines indicate the optimization mesh elements.

Each element of the optimization mesh contains within it a number of cells, each with its
own weight-window lower bound wwg

c for each energy group g, where c is the cell index. A
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parameter Ag
o is assigned to each optimization-mesh element, where o is the optimization-mesh

element index, such that all weight windows lower bounds of cells within the optimization-mesh
element are multiplied by Ag

o. Thus, the modified weight-window lower bounds ww′gc are given by

ww′gc = Ag
owwg

c , (5.2)

subject to cell c being contained within optimization-mesh element o.
Rather than optimizing the weight-window lower bounds of each cell, the optimization-mesh

scaling parameters are optimized to produce a minimum cost calculation. For the example geome-
try in Fig. 5.1, a 36-cell problem, originally requiring 36 calculations to compute the gradient with
respect to each weight window lower bound, is converted into a 4-parameter optimization problem.

5.1.2 Optimization Procedure
Using the weight-window lower bounds as a basis function with an optimization mesh parameter
Ag

o applied over a portion of the function, the cost of the calculation can now be written

C({Ag
o}) = σ2({Ag

o})τ({Ag
o}), (5.3)

where {Ag
o} represents the set of optimization-mesh parameters. The set {Ag

o} represents a g × o
number of optimization parameters. The direction of steepest descent of the cost function C({Ag

o})
can now be calculated with respect to {Ag

o} as

− ∇{Ag
o}

C({Ag
o}) = −

(
∂C({Ag

o})
∂A1

1

êA1
1
+
∂C({Ag

o})
∂A1

2

êA1
2
+ . . . +

∂C({Ag
o})

∂AG
O

êAG
O

)
, (5.4)

where G and O are the number of groups and number of optimization-mesh elements, respectively,
and êAg

o
is a unit vector in the optimization hyperspace in the direction of Ag

o.
Each of the partial derivatives in Eq. (5.4) requires separate S n calculation to evaluate. Nu-

merically, these partial derivatives are evaluated by increasing a specific Ag
o corresponding to

∂C({Ag
o})/∂Ag

o by a user specified amount ∆A and computing the new cost C′. The partial deriva-
tive is then numerically estimated by (C′ − C)/∆A, and the process is repeated for the next partial
derivative. In actuality, the Ag

o values are computed logarithmically such that the small-change
optimization-mesh parameter A′go is

A′go = 10(log(Ag
o)+∆A), (5.5)

and the partial derivatives are computed as (C′ −C)/(A′go − Ag
o).

Once all partial derivatives have been calculated such that a numerical estimate of−∇{Ag
o}

C({Ag
o})

has been determined, a new set of parameters {A′go } is obtained by moving in the direction of the
steepest descent. The new parameter is calculated by normalizing the gradient vector −∇{Ag

o}
C({Ag

o})
and updating each Ag

o as

A′go = Ag
o −

∂C({Ag
o})

∂Ag
o

∆A∣∣∣∇{Ag
o}

C({Ag
o})

∣∣∣ . (5.6)

The entire optimization procedure is performed as illustrated in Fig. 5.2. First, an initial first-
moment calculation is performed followed by computing the initial set of weight windows for each
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cell and in each energy group wwg
c by

wwg
c =

[∫ Eg−1/2

Eg+1/2

∫
dr

∫
dΩM1(r,Ω, E)

]
, r ∈ Vc. (5.7)

Numerically, the weight-windows are computed by

wwg
c =

∑
i

∑
j

∑
k

∑
n

wnMg,n
1 (xi, y j, zk)∆xi∆y j∆zk


−1

, (xi, y j, zk) ∈ Vc. (5.8)

Moreover, the weight-window lower bounds are normalized to a user-specified reference cell cr

and divided by two to obtain the lower bounds. Given this initial set of weight-window lower
bounds, an initial cost is calculated by performing a second-moment and future-time calculation.

Next, each of the optimization parameters Ag
o is dithered to compute the gradient and a new set

of Ag
o’s. The cost is evaluated at the new Ag

o’s, and, if the new cost is lower than the previous cost,
the process of computing the gradient and stepping toward a lower cost continues. If the new cost
is greater, then the calculation is assumed to have reached the minimum point at the previous set
of Ag

o’s and the calculation ceases. As with all gradient methods, it is possible that the calculation
finds a local minimum rather than a global minimum. Potentially better optimization methods are
discussed in the following chapter.

5.2 Optimization Test Problems
The optimization method described above has been applied to a series of 1-D and 2-D problems.
These problems are chosen because they tend to over split particles causing an increase in compu-
tational time without a commensurate reduction in the variance.

5.2.1 Weight-Window Surface and Lower Bound
As an initial test of the optimization capabilities, a 1-D one-group problem was developed to
optimize the location of the boundary between two weight-window cells and the lower bound of
the right cell. The geometry is shown in Fig. 5.3. The slab is 5 mfp thick and has a scattering-to-
total cross section fraction of c = 0.25.

For this problem, no optimization mesh is applied because the position of the surface between
the two cells is being optimized not only the weight-window lower bounds. To optimize the prob-
lem, the location of the intermediate surface P1 was varied from 0.25 to 4.75 mfp. The weight
window lower bound of the right cell P2 was varied logarithmically from 10−4 to 0.5. For each
case, a separate S n calculation was performed and an estimate of the Monte Carlo cost obtained.
The cost surface for the S n calculations is shown in Fig. 5.4(a).

The entire calculation was repeated using MCNP rather than the S n code. For each iterate of
P1 and P2, the MCNP calculation was run and the figure of merit extracted from the output file and
inverted to obtain a quantity proportional to cost. The optimization surface obtained with MCNP
is shown in Fig. 5.4(b), where the cost values have been scaled by a constant factor to the same
magnitude as the S n results.
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Figure 5.2. Flow of the optimization algorithm. Each instance that the gradient of the cost is
computed with respect to the Ag

o’s requires a separate S n calculation for each Ag
o
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Figure 5.3. Two-cell slab geometry optimizing the location of
the separating surface P1 and the weight window lower bound
of the right cell P2.

Figure 5.4(a) compares quite well with Fig. 5.4(b). Both methods clearly locate a minimum
and that minimum is in approximately the same location. The S n calculation finds the optimum
surface location at P1 = 1.75 mfp and the optimum weight-window lower bound for the right cell
at P2 = 1.66 × 10−2. The MCNP calculation finds the optimum surface location at P1 = 1.75 mfp
and the optimum weight-window lower bound at 2.54 × 10−2. In either calculation, the difference
between a weight-window lower bound of 1.66 × 10−2 and 2.54 × 10−2 produces a cost difference
of less than 1%.

The results obtained from this calculation were compared to the findings of Juzaitis [1982],
where optimum locations of importance splitting surfaces are sought. Interestingly, Juzaitis found
the minimum cost location of the surface to be around 3 mfp for a similar problem. One possibility
for the discrepancy in results is that Juzaitis used the importance splitting technique while the
weight-windows technique is used here. A more likely explanation is that the Monte Carlo code
used for each comparison was different, and the S n code developed by Juzaitis to solve the moment
equations catered to the specific Monte Carlo code being used.

5.2.2 1-Group Slab
The one-group 1-D slab problem was an initial investigation of the weight-window lower bound
optimization capabilities of the moments-equation method. The slab is 5 mean-free-paths thick
with a scattering ratio of c = 0.85. An isotropic source is incident on the left side of the slab and
the desired tally is the current out the right side of the slab. As illustrated in Fig. 5.5, the slab is
divided into four cells.

For this problem, the optimization mesh corresponds to the cell boundaries. The optimization is
performed with an S 32 angular discretization, 501 Monte Carlo particle weight bins, and a steepest
descent step size of 0.2. Table 5.1 presents the predicted gain in efficiency from the S n optimization
and the realized gain in efficiency from MCNP when the optimized set of weight windows are
used. The results are normalized to the efficiency of the calculation run with the set of weight
windows computed directly from the adjoint function. Table 5.2 shows how the means, variances,
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Figure 5.4. Optimization surface for the location of the weight window cell boundary and weight
window lower bound of the right cell from (a) the S n optimization and (b) the MCNP optimization
(results are multiplied by a proportionality constant to present on the same scale)
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Figure 5.5. 1-group slab problem geometry. Red dashed lines represent the optimization mesh
locations

and predicted times-per-history compare.

Table 5.1. Predicted and realized efficiency gains for the 1-group slab problem

Method Predicted Cost Predicted Gain MCNP FOM Realized Gain

Adjoint WW 1.04214E-04 1 4.32902E+05 1

Optimization 9.01291E-05 1.16 5.26203E+05 1.22

It is clear from Table 5.2 that the time per history is not computed very accurately. However,
more important to the estimation of the cost is the ratios of the times, which for the S n calculation is
1.37 and for the MCNP calculation is 1.29. It is the difference in calculation time ratios that causes
the differences in predicted and realized efficiency gains. Despite the absolute differences in the
predicted time per history being different, the ratio is maintained and still provides a reasonably
adequate prediction of the decreased cost. The final sets of weight window lower bounds are given
in Table 5.3.

5.2.3 Iron Window
This test problem is designed to demonstrate a common problem with importance-based biasing
resulting from substantial changes in cross sections. Such problems arise when a particle tran-
sitions from one energy to another and the new energy has a substantially lower cross section,
caused, for example, by scattering into an anti-resonance like that of iron (at ∼ 24 keV). At the
energy of the substantially lower cross section, the particle is more likely to stream farther and to
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Table 5.2. Comparison of means, variances, and time-per-history between the S n and MCNP
calculations

Method Sn mean MCNP mean Sn σ
2 MCNP σ2 Sn τ MCNP τ

(sec./hist.) (sec./hist.)

Adjoint WW 9.01766E-03 9.09488E-03 2.28695E-03 2.26035E-03 3.70559E-06 5.04000E-06

Optimization 9.01766E-03 9.10943E-03 1.44492E-03 1.45568E-03 5.07236E-06 6.48000E-06

Table 5.3. Adjoint and Optimized weight window lower bounds for the 1-group slab problem

Method Cell 1 Cell 2 Cell 3 Cell 4

Adjoint WW 5.00000E-01 1.78612E-01 7.03716E-02 2.64944E-02

Optimized 4.27562E-01 6.65740E-02 2.59931E-02 2.01596E-02

contribute to tallies than at energies with higher cross sections. With importance-based biasing,
the tendency is to over split a particle into many particles that behave in the same manner. Such
over splitting increases the computation time without an equivalent reduction of variance.

The iron-window problem is simulated here with a two-group slab transport problem. The
geometry is similar to that of the previous problem except that only one optimization mesh element
over the entire problem is utilized as illustrated in Fig. 5.6. The multi-group cross sections used
for the problem are presented in Table 5.4. The uniform source is isotropically incident on the left
side of the slab in group 1, and the total current is tallied on the right side of the slab.

Table 5.4. Two group cross sections used to represent the iron-window effect

g Σ Σc

1 1 cm−1 0.9 cm−1

2 1 × 10−5 cm−1 7 × 10−6 cm−1

g Σgg′

g′ = 1 g′ = 2

1 0.05 cm−1 0.05 cm−1

2 0 3 × 10−6 cm−1

With importance-based biasing computed directly from the adjoint function, importances for
the two groups are computed as shown in Fig. 5.7. A particle that scatters from group 1 to group
2 experiences an approximately 20-to-1 split. Each of the progeny resulting from the split will
behave in a similar manner, simply streaming through the slab. Because all the progeny from the
split behave the same, the reduction in variance from splitting the particles is minute compared to
the additional computational time required to track them.

This problem was optimized on the Monte Carlo cost by placing a single optimization mesh
element over the entire problem. With this optimization mesh, two scaling parameters Ag

o are opti-
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Figure 5.6. Iron window like problem geometry. Thick red dashed lines indicate the optimization
mesh
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Figure 5.7. Importances for the two group iron-window problem. If a particle scatters from group
1 to group 2 near the source, an approximately 20-to-1 split where all the progeny will behave
similarly will ensue
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mized, one for each energy group. The calculation was performed with an S 32 angular quadrature,
501 weight bins, and a gradient step size of 0.2. The resulting predicted and realized efficiency
gains over the adjoint generated weight windows are presented in Table 5.5. With the optimized
set of weight windows, a cost reduction of a factor of 2.34 is predicted and reduction of 2.17 is
realized. From Table 5.6 it is clear that the discrepency between the predicted and realized gains
is again due to the poor estimation of the time per history. Nonetheless, the ratio between the pre-
dicted 2.17 and realized 2.37 times remains reasonably close to approximate the minimum cost.
The optimized and adjoint-generated weight windows are presented in Table 5.7.

Table 5.5. Predicted and realized efficiency gains for the iron window like problem

Method Predicted Cost Predicted Gain MCNP FOM Realized Gain

Adjoint WW 2.30024E-04 1 2.86922E+05 1

Optimization 9.83604E-05 2.34 6.23205E+05 2.17

Table 5.6. Comparison of means, variances, and time-per-history between the S n and MCNP
calculations for the iron-window problem

Method Sn mean MCNP mean Sn σ
2 MCNP σ2 Sn τ MCNP τ

(sec./hist.) (sec./hist.)

Adjoint WW 1.35174E-02 1.34915E-02 1.29472E-02 1.29820E-02 3.24628E-06 2.88000E-06

Optimization 1.35174E-02 1.34835E-02 2.54747E-03 2.55824E-03 7.05502E-06 6.84000E-06

5.2.4 2-D 1-Group Block
The 2-D block problem was a first test of the optimization of a two-dimensional problem. The
geometry, pictured in Fig. 5.8, consists of a single material with a volume flux tally in the upper
right hand corner. The source is a uniformly distributed isotropic volume source in the lower left
hand corner of the block. The remainder of the domain is divided into 92 1 cm by 1 cm cells each
having its own weight-window lower bound. The total cross section in the block is 1 cm−1 with a
scattering ratio of c = 0.8.

The optimization mesh for the 2-D block problem is a uniform 5-by-5 element mesh. Each
mesh element has a physical size of 2 cm by 2 cm and contains four of the geometry cells, except
for the source and tally cells that are each uniquely covered by an optimization mesh element. The
optimization calculation was performed with an S 8 triangular Gauss-Chebyshev angular quadra-
ture and 501 weight bins spanning the weight range 10−9 to 101. The results of the optimization
are presented in Table 5.8.

The predicted gain from the S n optimization is about 5% different from the realized gain. How-
ever, considering the approximations made in calculating the time per history this seems reason-
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Table 5.7. Optimized and adjoint-generated weight windows for the iron window like problem in
cell c and group g

HH
HHHHg

c
1 2 3 4

adjoint-generated weight windows

1 5.00000E-01 3.70177E-01 2.19849E-01 5.83791E-02

2 2.29280E-02 2.29267E-02 2.29255E-02 2.29243E-02

optimized weight windows

1 2.90346E-02 2.14959E-02 1.27664E-02 3.39002E-03

2 5.26638E-02 5.26609E-02 5.26581E-02 5.26553E-02

Table 5.8. Predicted and realized efficiency gains for the 2-D block problem

Method Predicted Cost Predicted Gain MCNP FOM Realized Gain

Adjoint WW 6.03494E-04 1 6.87040E+04 1

Optimization 5.05767E-04 1.19 8.55240E+04 1.25
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Figure 5.8. 2-D, 1-group block geometry with a source in lower left hand corner and tally in
upper right hand corner . The S 8 mesh is shown superimposed on the geometry, where black nodes
represent cell-center or cell-edge nodes, purple nodes represent cell-edge nodes that are also Monte
Carlo cell boundaries, green nodes represent the tally, and dark red nodes represent the source.
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able. The mean, variance, and time per history actually calculated by the S n method and MCNP for
the adjoint generated weight windows and optimized weight windows are presented in Table 5.9.
The first moment is underestimated by about 3%, which would lead to some error in the second
moment calculation because the first moment factors into the source for the second moment. The
variance is overestimated by about 3.5% for the adjoint generated weight windows and 7% for the
optimized case. Calculation of the second moments from the variances and first moments indicates
that the second moment is also overestimated by about 3.5% and 7% for each case, respectively.
Some of the error in the calculations can be attributed to ray effects. Nonetheless, the ratio of
the adjoint generated weight window variance to the optimized weight window is 1.41 for the S n

calculation and 1.46 for the MCNP calculation. Furthermore, the ratio of the adjoint generated
weight window and optimized weight window time per history for both the S n calculation and the
MCNP calculation are 0.844 and 0.853 respectively. For this calculation, there is about 5% error
in the ratios of the variances and 1% error in the ratios of the times, and even with these errors the
efficiency gain is predicted adequately.

Table 5.9. Comparison of means, variances, and time-per-history between the S n and MCNP
calculations for the 2-D block problem

Method Sn mean MCNP mean Sn σ
2 MCNP σ2 Sn τ MCNP τ

(sec./hist.) (sec./hist.)

Adjoint WW 8.05420E-04 8.29434E-04 8.10688E-05 7.82905E-05 4.82908E-06 7.68000E-06

Optimization 8.05420E-04 8.29957E-04 5.73463E-05 5.35638E-05 5.72124E-06 9.00000E-06

The weight windows obtained through adjoint generation and optimization are presented in
Fig. 5.9(a) and Fig. 5.9(b), respectively. The differences between the two sets of weight windows
are subtle, but present. Most noticeable are the changes along the diagonal of the block from the
source to the tally where the optimized weight window is lower than the adjoint-generated weight
window. Fig. 5.9(c) shows the fractional difference

fractional difference =
|wwopt − wwadjoint|

wwadjoint
(5.9)

between the optimized weight windows and the adjoint-generated weight windows, where, if neg-
ative, the optimized weight window is less than the adjoint-generated weight window.

5.2.5 Top Hat
The geometry of the 2-D top hat problem [Booth and Burn, 1993] geometry is presented in
Fig. 5.10. Appropriately named, the top hat problem consists of a long vertical section of ma-
terial terminating in a current tally representing the hat and a horizontal offshoot on each side
representing the brim. The top hat problem is composed of a single material at different densities.
The volume source is located at the bottom of the hat at the central axis. The problem is slightly
simplified from that presented by Booth and Burn [1993] so that the S n code could accommodate
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Figure 5.9. 2-D block geometry weight window lower bound for the (a) adjoint generated weigh
windows and (b) optimized weight windows. (c) the fractional difference between the optimized
weight windows and the adjoint generated weight windows
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the problem. Specifically, the problem was executed with a single energy group, an S 12 trianglar
Gauss-Chebyshev quadrature, and a 501 weight bin discretization. The scattering fraction for the
single group is c = 0.8.

The top hat problem is noted for its tendency to over split particles. From the source, the
particles can either traverse the distance of the hat and contribute to the tally or enter the brim
of the hat, scatter toward the top of the hat, reenter the hat, and contribute to the tally. Using
importance-based biasing, the importance is much higher at the top of the hat than at the brim.
However, a particle leaving the brim and reentering the hat near the top splits extensively, but all
split particles are likely to contribute to the tally. Such over splitting increases the calculation time
without a significant decrease in the variance.

The S n optimization of the top hat problem was run with a steepest descent step size of 0.2.
The predicted efficiency gain from the optimization and its comparison to adjoint-generated weight
windows are presented in Table 5.10. A predicted gain of 1.34 is expected from the S n calculation
and a gain of 1.27 is realized when the adjoint-generated and optimized weight windows are uti-
lized within MCNP. The difference between the predicted gain and realized gain is approximately
5%.

Table 5.10. Predicted and realized efficiency gains for the top hat problem

Method Predicted Cost Predicted Gain MCNP FOM Realized Gain

Adjoint WW 1.31147E-03 1 2.82637E+04 1

Optimization 9.81829E-04 1.34 3.59361E+04 1.27

The means, variances, and times per history for the top hat problem are presented in Table 5.11.
None of these three values compare well to the actual values computed by MCNP. The means cal-
culated by the S n are approximately 20% different from those calculated by MCNP. The variances
calculated by the S n are 20% different in the adjoint-generated weight window case and nearly 30%
different in the optimized weight window case. Again, much of the error in the estimation of the
variances can probably be attributed to ray effects. The times per history are 27% different in the
adjoint-generated case and 30% in the optimized case. Even with these poor approximations to the
mean and variances, the overall estimate of the efficiency gain maintains only 5% deviation from
the actual. This maintenance is a result of the ratios of the variances and time per history between
the adjoint-generated and optimized cases being approximately maintained. For the S n calculation
the variance ratio of the adjoint-generated to the optimized case is 1.60 while for the same MCNP
calculation the ratio is 1.48. Similarly the time per history ratio for the adjoint-generated to the
optimized case is 0.832 for the S n and 0.879 for MCNP. Because the ratios of these two values is
approximately maintained, the predicted gain is nearly correct.

The weight windows for the adjoint generated case are presented in Fig. 5.11(a), and the weight
windows for the optimized case are given in Fig. 5.11(b). The most notable differences are in the
outer brim of the hat and the path down the center of the hat. The weight window lower bound
in the brim is lower for the optimized case and suggests a greater amount of splitting for particles
entering the brim. A greater level of splitting in the brim causes the correlation between the split
particles to be lost there. Then, when the particles traverse to the top of the hat, the weight window
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Figure 5.10. The top hat problem geometry. The different colors represent different material
atomic densities: red = 2 cm−1, blue = 0.2 cm−1, and green = 1 cm−1

Table 5.11. Comparison of means, variances, and time-per-history between the S n and MCNP
calculations for the top hat problem

Method Sn mean MCNP mean Sn σ
2 MCNP σ2 Sn τ MCNP τ

(sec./hist.) (sec./hist.)

Adjoint WW 1.51247E-04 1.25620E-04 2.48926E-06 1.92792E-06 1.20520E-05 1.74000E-05

Optimization 1.51247E-04 1.24232E-04 1.55142E-06 1.30144E-06 1.44770E-05 1.98000E-05
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value is nearly the same and the particle do not split there. Similarly, particles that do not enter the
brim and transition directly down the hat encounter lower weight window bounds in the optimized
case than in the adjoint-generated case. Again, this causes the particles to be split to a greater
extent earlier thereby losing the correlation between the split particles earlier.

Figure 5.11(c) shows the fractional differences between the optimized weight windows and the
adjoint weight windows. Clearly from Fig. 5.11(b) the greatest difference is in the brim of the
hat where the optimized weight window is 60% less than the adjoint-generated window. Also
interesting is that the weight window lower bounds on the edge of the hat near the tally have been
increased such that there is a greater overlap in the weight windows of particles in the brim and
entering these regions. Thus, particles leaving the brim and reentering the hat near the tally are not
split as much as with just the adjoint-generated weight windows.

5.2.6 Two-legged Duct
A two legged duct problem with the source at one opening of the duct and a current tally at the
other opening of the duct was also optimized. A general difficulty with duct-type problems based
on importance biasing in Monte Carlo is that particles over split. Typically, this over splitting is a
result of particles streaming down a duct leg and transitioning from a region of low importance to
one of much higher importance. The over splitting, as with the top hat problem, requires additional
time to track the particles from the split without much of a decrease in variance.

The two-legged duct problem geometry is presented in Fig. 5.12. The duct is void and the
surrounding material has a one-group cross section of 1 cm−1. The 10 cm-by-10 cm geometry is
broken up into 100 1 cm-by-1 cm cells, each having its own weight window lower bound. The
duct has a width of 2 cm. The optimization mesh has a nonuniform element size, easiest inferred
from Fig. 5.13(c) where regions of like color represent an optimization mesh element.

The S n optimization calculation was performed with an S 8 triangular Gauss-Chebyshev angular
discretization, 501 weight bins, and a steepest descent step size of 0.2. The optimized weight
windows predict an efficiency gain of 1.17 over the adjoint-generated weight windows. When the
weight windows are used in MCNP, the realized gain is 1.18. Table 5.12 presents the costs and
figures of merit obtained using the optimized and adjoint-generated weight windows. The means,
variances, and times per history are given in Table 5.13. As with the top hat problem, the S n

estimate of the means, variances, and times per history are not exact and vary between 14–30%
error, much of which can probably be attributed to ray effects for the mean and variance. However,
the variance ratio of the adjoint-generated case to the optimized case is 1.40 for the S n calculation
and 1.39 for the MCNP calculation. Furthermore, the time per history ratio of the adjoint-generated
case to the optimized case is .832 for the S n calculation and .859 for the MCNP calculation. Even
though the variances and times per history are calculated only approximately, the ratios are again
maintained and the estimated efficiency gain is reasonable.

The values of adjoint-generated weight windows and the optimized weight windows are shown
in Fig. 5.13(a) and Fig. 5.13(b), respectively. The fractional difference between the adjoint-generated
and optimized weight windows is shown in Fig. 5.13(c). Figure 5.13(c) shows that the primary
modifications to the adjoint-generated weight windows occur towards the end of the first leg of the
duct, where the optimized weight window is 40% lower than the adjoint generated weight window.
The weight-window lower bounds at the end of the first leg are adjusted by the optimization such
that the weight window differs little down the second leg of the duct.
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Figure 5.11. Top hat problem geometry weight window lower bound for the (a) adjoint gener-
ated weigh windows and (b) optimized weight windows. (c) the fractional difference between the
optimized weight windows and the adjoint generated weight windows

Table 5.12. Predicted and realized efficiency gains for the wide two-legged duct problem

Method Predicted Cost Predicted Gain MCNP FOM Realized Gain

Adjoint WW 3.17398E-04 1 1.19256E+05 1

Optimization 2.71285E-04 1.17 1.40493E+05 1.18
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Figure 5.12. Wide two-legged duct problem geometry

Table 5.13. Comparison of means, variances, and time-per-history between the S n and MCNP
calculations for the wide two-legged duct problem

Method Sn mean MCNP mean Sn σ
2 MCNP σ2 Sn τ MCNP τ

(sec./hist.) (sec./hist.)

Adjoint WW 6.25891E-03 5.47763E-03 1.84946E-03 1.59846E-03 6.72288E-06 9.48000E-06

Optimization 6.25891E-03 5.43904E-03 1.31662E-03 1.15043E-03 8.07168E-06 1.10400E-05
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Most interesting for the two-legged duct problem is that the weight window lower bound on a
direct path from the source to the tally through the material are reduced. This indicates that some
fraction of the variance for this problem is from particles moving through the material rather than
scattering through the duct. From the results of the three-legged duct problem in the following
section, it is likely this pathway rather than scattering down the duct that provides the optimized
benefit as the problem is simple and the adjoint-generated windows are probably sufficient for
biasing through the duct.

5.2.7 Three-legged Duct
A three-legged duct problem was also optimized. As with the two-legged duct, the three-legged
duct geometry is 10 cm by 10 cm and divided into 100 1 cm-by-1 cm cells each with its own
weight-window lower bound. The geometry is shown in Fig. 5.14. The surrounding material has a
total cross section of Σ = 1 cm−1 and a scattering ratio of c = 0.8.

The optimization mesh is a 5-by-5 uniform mesh with each mesh element having a dimension
of 2 cm by 2 cm. The optimization was run using an S 8 triangular Gauss-Chebyshev angular
discretization, 501 weight bins spanning the weight domain 10−9 to 101, and a steepest descent
step size of 0.2. The S n and MCNP results using the adjoint-generated and optimized sets of
weight windows are presented in Fig. 5.14. For this calculation, only a small increase in efficiency
by a factor of 1.04 is predicted, and an increase of 1.08 is realized in the MCNP calculation.

Table 5.14. Predicted and realized efficiency gains for the wide three-legged duct problem

Method Predicted Cost Predicted Gain MCNP FOM Realized Gain

Adjoint WW 8.93642E-04 1 8.04780E+04 1

Optimization 8.57150E-04 1.04 8.65300E+04 1.08

The means, variances, and times per history calculated by both the S n and MCNP are shown in
Table 5.15. The error in calculating the mean is about 30%, and the error in calculating the variance
is around 50%, both probably mostly due to ray effects. The times per history are calculated
with between 30% and 40% error. However, despite the poor absolute calculations of the means,
variances, and times-per-history, the ratios of the values remain approximately. The variance ratio
of the adjoint-generated weight window case to the optimized case is 1.36 for the S n and 1.34 for
MCNP. Similarly, the time-per-history ratio of the adjoint-generated weight window case to the
optimized case is 7.66 for the S n calculation and 8.07 for MCNP.

The changes to the values of the weight windows from the adjoint-generated case to the op-
timized case are seen by contrasting Fig. 5.15(a) to Fig. 5.15(b). The fractional changes in each
optimization region are given in Fig. 5.15(c). The most notable change is reduction of weight win-
dow lower bounds at the corners of the duct bends. The corner nearest the source is reduced by
about 20% while the corner nearest the tally is reduced by nearly 60%. Nonetheless, the benefit
observed in this problem is small and is likely due to the overall simplicity of the problem. For such
a simple problem the importance function likely works well and the additional cost introduced by
splitting is small.
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Figure 5.13. Top hat problem geometry weight window lower bound for the (a) adjoint gener-
ated weigh windows and (b) optimized weight windows. (c) the fractional difference between the
optimized weight windows and the adjoint generated weight windows

Table 5.15. Comparison of means, variances, and time-per-history between the S n and MCNP
calculations for the wide three-legged duct problem

Method Sn mean MCNP mean Sn σ
2 MCNP σ2 Sn τ MCNP τ

(sec./hist.) (sec./hist.)

Adjoint WW 1.78015E-03 1.37034E-03 1.68914E-04 1.10883E-04 1.67653E-05 1.26000E-05

Optimization 1.78015E-03 1.36546E-03 1.24187E-04 8.26195E-05 2.18724E-05 1.56000E-05
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Figure 5.14. Three-legged duct problem geometry
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Figure 5.15. Top hat problem geometry weight window lower bound for the (a) adjoint gener-
ated weigh windows and (b) optimized weight windows. (c) the fractional difference between the
optimized weight windows and the adjoint generated weight windows
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Chapter 6

Conclusions and Future Work

The preceeding chapters present work that optimizes Monte Carlo calculations with determin-
istic methods. Specifically, the weight-window lower bounds for both one- and two-dimensional
calculations have been optimized. These calculations extend previous work by considering weight-
dependent variance reduction techniques and attempting to estimate the expected time-per-hisory
of MCNP, the Monte Carlo code used for comparison. To perform the general weight-dependent
calculations, the Monte Carlo particle weight must be included as a parameter of the phase space
and is another required discretization.

Using the adjoint importance calculation as an initial guess and a simple gradient-descent op-
timization algorithm, optimized sets of weight-windows were determined. In most cases, the op-
timizations increased the efficiencies of the calculations by 20-30%, but for the iron-window-like
problem the efficiency was increased by over 200%.

6.1 Limitations of the Method
The technique for optimizing Monte Carlo calculations with general weight-dependent variance
reduction has some limitations. Aside from standard problems encountered with the discrete or-
dinates method, such as ray effects and limited geometries, the additional Monte Carlo particle
weight domain introduces additional complications. The two largest concerns are the computation
time required to perform the optimizations and the significant increase in the amount of memory
required to store the problem introduced by the addition of the weight domain discretization.

The S n code developed for this work was incredibly simple. Although it was parallelized using
OpenMP threading over the directional ordinates, the two dimensional calculations still required
up to a day to complete the optimizations and the problem sizes were generally small. Were
this method implemented into a production-level discrete ordinates code, such as PARTISN [Al-
couffe et al., 2008], with sophisticated parallel sweep routines and domain decompositions, it is
not unrealistic to expect significant calculation speed increases and the ability solve more complex
problems.

The primary limitation of the method is the additional computer memory required to store
the Monte Carlo particle weight dimension. For the majority of the optimization calculations, a
weight domain of 10−9 to 101 was spanned with 501 weight bins and produced reasonable enough
estimates of the variances and expected time per history to calculate the optimization. With this

113



number of weight bins, the second moment calculation requires approximately 501 times as much
memory as the weight independent first moment calculation. The memory requirements were ex-
ceedingly large and an alternative method of discretizing the weight domain likely will be required
if general weight-dependent calculations are to be performed in future work.

6.2 Future Work
Even with the practical limitations presented above, this work has provided a useful tool for the
study of both weight-independent and weight-dependent variance reduction. Furthermore, it has
demonstrated extensibility to two-dimensional deterministic transport problems, and it is reason-
able to conclude that the calculations could also be performed on a three dimensional problem if
the memory and runtime problems were resolved.

While the study of the weight-dependent games provides useful insight into how variances
are being reduced, the full weight dependent treatment may not always be required. Booth and
Burn [1993] demonstrated that the Direct Statistical Approach (DSA) method could significantly
out perform importance based biasing methods. In Booth and Burn’s work, the DSA technique
was used to optimize splitting parameters and the weight-window generator was used to generate
weight windows, and, for the problems investigated, the DSA technique tended to produce more
efficient calculations even though it employed weight-independent variance reduction techniques.

One possibility for improving on the results from the DSA method might be to convert the
splitting parameters into a weight window. This concept is very similar to how MCNP’s weight-
window generator actually estimates an importance and then converts the importance into a weight
window. Similarly, were deterministic methods used only to optimize splitting/rouletting parame-
ters, then likely those splitting/rouletting parameters could also be converted into a weight window.
Because splitting and rouletting are weight independent variance reduction there is no need for the
additional weight domain discretization.

Another exciting possibility is the deterministic optimization of weight-independent variance
parameters. For weight independent variance reduction, the weight dependence of the solution
does not need to be accounted for explicitly. Therefore, the variances and time can be calculated
much more quickly than with the weight-dependence. This is similar in concept to the work
of Juzaitis [1982], but for a much larger number of cells. Also, the deterministically optimized
importances can potentially be converted into a set of weight windows, much like the proposed
discussion for the DSA technique above.

One of the largest approximations in this work is the calculation of the expected MCNP time
per history by the S n code. The effort required to profile MCNP for specific problems makes the
estimation of the calculation times an exceedingly time consuming task. It has been demonstrated
in this work that even a potentially poor estimation of the calculation times works well provided
the ratios of the estimated times is equivalent to the ratio of the realized times. If the Monte Carlo
code and S n code were linked, another possibility would be for the S n code to make direct calls to
the Monte Carlo code for timing information when needed.
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Appendix A

Verification of History Score Moment
Equations Solutions

A discrete ordinates transport code was written to calculate the first and second moments of a
history-score distribution for a tally in a Monte Carlo transport problem. Much effort has been
devoted to ensuring that the discrete ordinates solution method described in Chapter 3 can produce
reasonable approximations to the variances of the Monte Carlo transport problem. This chapter
summarizes a substantial amount of the comparison between the discrete ordinates transport code
and the Monte Carlo transport code MCNP.

A.1 The MCNP Particle Transport Code
The Monte Carlo N-Particle transport code is a neutron, photon, and electron Monte Carlo code
developed at Los Alamos National Laboratory [X-5 Monte Carlo Team, 2003]. MCNP allows the
user to specify a geometry, materials, radiation source, and tallies and performs a Monte Carlo
radiation transport calculation. The result from the code is typically the mean of a tally and the
uncertainty in that mean.

To perform the discrete ordinates calculations so that they are comparable to the results from
MCNP5 (RSICC version 1.51), it is necessary to understand not only how the variance reduction
techniques in MCNP work in theory but also how they are implemented. It is of utmost importance
that the order and manner by which variance reduction games are executed in the MCNP code is
reflected in the discrete ordinance code. If the variance reduction games are not correctly reflected,
then, while the first moments may be computed correctly, the second moments most assuredly are
not.

The method by which certain variance reduction techniques and combinations thereof merits
some discussion. Non-integer importance splitting in MCNP always splits the particles to the same
weight. For example, a particle with unit weight leaving an importance 1 region and entering an
importance 2.5 region might be split 2-to-1 with each particle having weight 1/2 50% of the time
and 3-to-1 with each particle having weight 1/3 the other 50%. In MCNP the particle is split 2-to-
1 50% of the time and 3-to-1 the other 50%, but each particle has weight 1/2.5 regardless of the
splitting magnitude. The first method preserves weight at every split. MCNP’s method preserves
weight on average and minimizes the distribution of particle weights.
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MCNP has the ability to play the weight window game at surface crossing and/or collisions.
However, as of MCNP5 version 1.51, if the weight window game is played only at surface cross-
ings, the implicit capture and weight cutoff games are deactivated. Furthermore, when a particle
is sourced into a weight window, if only surface weight windows are employed, the weight win-
dow game is ignored on the sourced particle. These quirks in the implementation of MCNP’s
weight-window method had to be considered in writing the S n code.

A.2 Semianalytic Pure-Absorber Importance-Splitting Compar-
isons

In this section, the moment equations are solved analytically for a one-group purely absorbing
slab of thickness T . Internal to the slab at xs is a k-to-1 splitting surface. The physical source is
isotropic on the left side of the slab, and the tally is a current tally on the right side of the slab. The
geometry is presented in Fig. A.1.

Figure A.1. Purely absorbing slab geometry with optional k-to-1 splitting surface

For a Monte Carlo surface tally, the rth moment detector response is the number of particles
crossing the surface at rs in specific direction times the score for particles crossing in that direction
to the rth power. For a current tally (MCNP F1 tally) this can be expressed as

�F1 = wr|Ω·n̂|δ(r − rs), (A.1)

where n̂ is the unit normal for the surface and the weight w is the score. Similarly for a surface-flux
tally (MCNP F2 tally), the response is

�F2 =

( w
Ω·n̂A

)r
|Ω·n̂|δ(r − rs). (A.2)
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The response function is the source for adjoint equations such as the moment equations. There-
fore, for the 1-D purely absorbing slab problem in Fig. A.1 the moment equation can be expressed

− µ
dMr

dx
+ ΣMr(x, µ,w) = wr|µ|δ(x − T ). (A.3)

Dividing by −µ, the equation above becomes

dMr

dx
−

Σ

µ
Mr(x, µ,w) = −wr |µ|

µ
δ(x − T ), (A.4)

and multiplication by the integrating factor exp(−Σ/µ(x − xo)), where xo is a point in the slab less
than x, gives

dMr

dx
e−

Σ
µ (x−xo)

−
Σ

µ
Mr(x, µ,w)e−

Σ
µ (x−xo) = −wr |µ|

µ
δ(x − T )e−

Σ
µ (x−xo). (A.5)

For x < T , µ must be greater than zero for the integrating factor to cause a decrease, and the
derivation is restricted to µ > 0 with the Heaviside function Θ(µ)[

dMr

dx
e−

Σ
µ (x−xo)

−
Σ

µ
Mr(x, µ,w)e−

Σ
µ (x−xo)

]
Θ(µ) = −wrδ(x − T )e−

Σ
µ (x−xo)Θ(µ). (A.6)

The left hand side of the above equation can be written as a derivative with respect to x as

d
dx

[
Mr(x, µ,w)e−

Σ
µ (x−xo)

]
Θ(µ) = −wrδ(x − T )e−

Σ
µ (x−xo)Θ(µ), (A.7)

and integration from (x,T ) gives∫ T

x
dx′

d
dx′

[
Mr(x′, µ,w)e−

Σ
µ (x′−xo)

]
Θ(µ) = −

∫ T

x
dx′ wrδ(x′ − T )e−

Σ
µ (x′−xo)Θ(µ). (A.8)

Evaluation of the integrals gives[
Mr(T, µ,w)e−

Σ
µ (T−xo)

− Mr(x, µ,w)e−
Σ
µ (x−xo)

]
Θ(µ) = −wre−

Σ
µ (T−xo)Θ(mu). (A.9)

From the adjoint boundary condition that nothing exits the slab, i.e. Mr(T, µ,w) = 0, µ > 0, the
expression above simplifies to

− Mr(x, µ,w)e−
Σ
µ (x−xo)Θ(µ) = −wre−

Σ
µ (T−xo)Θ(mu), (A.10)

and, solving for Mr(x, µ,w) gives

Mr(x, µ,w)Θ(µ) = wre−
Σ
µ (T−x)Θ(µ). (A.11)

Ignoring for a moment the internal splitting surface, Eq. (A.11) applies throughout the slab for
the rth moment. Assuming that all Monte Carlo particles are born isotropically with weight wo
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at x = 0, the physical source distribution S (x, µ,w) = 1/2δ(x)δ(w − wo) and the first and second
moment responses are given by

�M1 =

∫ 1

0
dµ

∫ T

0
dx

∫ ∞

0
dwS (x, µ,w)M1(x, µ,w)

=
1
2

∫ 1

0
dµ

∫ T

0
dx

∫ ∞

0
dwδ(x)δ(w − wo)we−

Σ
µ (T−x)

=
wo

2

∫ 1

0
dµ e−

Σ
µ T , (A.12)

and

�M2 =

∫ 1

0
dµ

∫ T

0
dx

∫ ∞

0
dwS (x, µ,w)M2(x, µ,w)

=
1
2

∫ 1

0
dµ

∫ T

0
dx

∫ ∞

0
dwδ(x)δ(w − wo)w2e−

Σ
µ (T−x)

=
w2

o

2

∫ 1

0
dµ e−

Σ
µ T , (A.13)

respectively. The integrals over µ can be evaluated numerically to obtain the moments.
If the splitting surface at xs is considered, then it divides slab into a left cell and a right cell. In

the right cell, Eq. (A.11) still applies, namely

Mr,R = wre−
Σ
µ (T−x)Θ(µ), (A.14)

but the moment in the left cell Mr,L is modified by the splitting. For the first moment, the value just
to the left of the splitting surface M1,L(x−s , µ,w) is given by

M1,L(x−s , µ,w) = k
∫ ∞

0
dw′ δ(w′ − w/k)Mr,R(x+

s , µ,w
′)

= k
∫ ∞

0
dw′ δ(w′ − w/k)w′e−

Σ
µ (T−xs)

= k
w
k

e−
Σ
µ (T−xs)

= we−
Σ
µ (T−xs), (A.15)

and the first moment remains unchanged by the splitting. Applying the exponential attenuation
from xs to zero, one obtains

M1,L(x, µ,w) = we−
Σ
µ (T−xs) × e−

Σ
µ (xs−x)

= we−
Σ
µ (T−x), (A.16)

exactly as without the splitting surface.
The second moment behaves in a similar manner with the addition of source from the first

moment given by Eq. (2.67). Thus, the second moment just to the left of the splitting surface is

M2,L(x−s , µ,w) =

∫ ∞

0
dw′ δ(w′ − w/k)

[
kM2,R(x+

s , µ,w
′) + k(k − 1)M2

1,R(x+
s , µ,w

′)
]
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=

∫ ∞

0
dw′ δ(w′ − w/k)

[
kw′2e−

Σ
µ (T−xs) + k(k − 1)w′2e−

2Σ
µ (T−xs)

]
=

w2

k
e−

Σ
µ (T−xs) +

(k − 1)w2

k
e−

2Σ
µ (T−xs). (A.17)

Again, applying exponential attenuation from xs to zero, the second moment in the left cell is given
by

M2,L(x−s , µ,w) =
w2

k
e−

Σ
µ (T−x) +

(k − 1)w2

k
e−

2Σ
µ (T−xs)e−

Σ
µ (xs−x). (A.18)

Interestingly, as k → ∞ the first term, which originated from the second moment in the right cell,
vanishes leaving only the term w2 exp(−2Σ/µ(T − xs)) exp(−Σ/µ(xs − s)), which originated from
the addtional source from the first moment.

Considering the same source distribution given before S (x, µ,w) = 1/2δ(x)δ(w − wo), the first
and second moment responses with splitting are

�M1 =
wo

2

∫ 1

0
dµ e−

Σ
µ T (A.19)

and

�M2 =
w2

o

2k

∫ 1

0
dµ

[
e−

Σ
µ T + (k − 1)e−

2Σ
µ (T−xs)e−

Σ
µ xs

]
. (A.20)

Again, both these responses can be numerically integrated over µ. Table A.1 presents a direct
comparison of MCNP calculations, the S n code, and numerically integrated semi-analytic results
for various splitting cases.
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Table A.1. Comparison of MCNP, S n, and semianalytic results for a single k-to-1 split-
ting surface at xs = T/2 for Σ = 1 cm−1 and T = 5 cm

k MCNP Sn
a Semianalyticb

M1 σ2c M1 σ2 M1 σ2

1 4.96380E-04 4.96134E-04 4.97456E-04 4.97209E-04 4.98235E-04 4.97986E-04

2 4.97900E-04 2.63656E-04 4.97456E-04 2.63325E-04 4.98235E-04 2.63707E-04

5 4.98116E-04 1.23109E-04 4.97456E-04 1.22920E-04 4.98235E-04 1.23140E-04

10 4.98062E-04 7.62872E-05 4.97456E-04 7.61526E-05 4.98235E-04 7.62839E-05

15 4.98117E-04 6.06588E-05 4.97456E-04 6.05835E-05 4.98235E-04 6.06653E-05

25 4.98420E-04 4.82101E-05 4.97456E-04 4.80688E-05 4.98235E-04 4.81704E-05

50 4.98364E-04 3.88170E-05 4.97456E-04 3.87200E-05 4.98235E-04 3.87993E-05

100 4.98463E-04 3.41392E-05 4.97456E-04 3.40469E-05 4.98235E-04 3.41137E-05

aS n calculations used 3000 weight bins spanning 10−2 through 101

bSemi-analytic results obtained by a 96-ordinate Gauss-Legendre quadrature integration of Eq. (A.19) and
Eq. (A.20)

cMCNP variances are multiplied by the number of histories to obtain the population variances

122



A.3 1-D Verification of Sn and MCNP Calculations for Differ-
ent Tallies and Combinations of Variance Reduction

The S n code developed to calculate variances of the history-score moment equations was exten-
sively compared to one-group MCNP (RSICC version 5 1.51) calculations. The tables contained
in this section present the results of these comparisons. Each table presents the results for an S n

quadrature order n and the number of weight bins w. The extent of the weight domain spanned
by the upper and lower truncation weights is given next to the number of weight bins as [wlt,wut].
Any variance reduction parameters necessary are either given in the table body or the caption.

All calculations presented below were computed using MCNP’s multigroup-adjoint capabil-
ities. One-group cross-section sets were generated corresponding to the desired scattering and
capture ratios using the MAKEMG utility. The population variances of the MCNP calculations
were estimated from the sample variances by

σ2
approx =

[
xR(x)

]2
× N, (A.21)

where σ2
approx is the approximated population variance, x is the tally mean, R(x) is the tally relative

error, and N is the number of histories used in the computation.
For all the results, the percent error is reported between the population variance computed by

MCNP and the population variance computed with the S n code. The population variance computed
with MCNP is assumed to be the actual population variance, so the percent errors are computed as

% error =

∣∣∣σ2
S n
− σ2

MCNP

∣∣∣
σ2

MCNP

× 100. (A.22)

A.3.1 Surface Current Tally
Analog

Table A.2. Analog 1-D slab problem with slab thickness of 5 cm

n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0 4.96380E-04 4.96134E-04 4.97456E-04 4.99934E-04 0.77

w = 501,
[
10−8, 101

]
n = 32

c = 0.85 1.37294E-02 1.35408E-02 1.37041E-02 1.35914E-02 0.37
w = 501,

[
10−8, 101

]

Importance Splitting/Rouletting

Table A.3. Importance Splitting/Rouletting in 1-D slab problem with two equally sized cells for
slab thickness of 5 cm

n,w [wl t ,wut ] Cell 1 Cell 2 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0 c = 0
5.04450E-04 2.67501E-04 4.97456E-04 2.69928E-04 0.91

w = 501,
[
10−8, 101

]
I = 1 I = 2
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n,w [wl t ,wut ] Cell 1 Cell 2 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0 c = 0
5.01665E-04 1.48120E-04 4.97456E-04 1.46621E-04 1.01

w = 501,
[
10−8, 101

]
I = 1 I = 4

n = 32 c = 0 c = 0
4.99862E-04 8.85937E-05 4.97456E-04 8.96007E-05 1.14

w = 501,
[
10−8, 101

]
I = 1 I = 8

n = 32 c = 0 c = 0
4.99862E-04 8.85937E-05 4.97456E-04 8.83088E-05 0.32

w = 1501,
[
10−8, 101

]
I = 1 I = 8

n = 32 c = 0.85 c = 0.85
1.37299E-02 8.34531E-03 1.37041E-02 8.54496E-03 2.39

w = 501,
[
10−8, 101

]
I = 1 I = 2

n = 32 c = 0.85 c = 0.85
1.37299E-02 8.34531E-03 1.37041E-02 8.40883E-03 0.76

w = 1501,
[
10−8, 101

]
I = 1 I = 2

n = 32 c = 0.85 c = 0.85
1.37246E-02 5.74289E-03 1.37041E-02 5.74745E-03 0.08

w = 1501,
[
10−8, 101

]
I = 1 I = 4

n = 32 c = 0.85 c = 0.85
1.37125E-02 4.43685E-03 1.37041E-02 4.52905E-03 2.08

w = 501,
[
10−8, 101

]
I = 1 I = 8

n = 32 c = 0.85 c = 0.85
1.37125E-02 4.43685E-03 1.37041E-02 4.46136E-03 0.55

w = 1501,
[
10−8, 101

]
I = 1 I = 8

n = 32 c = 0 c = 0.85
1.94183E-03 1.16512E-03 1.93401E-03 1.18615E-03 1.81

w = 501,
[
10−8, 101

]
I = 1 I = 2

n = 32 c = 0 c = 0.85
1.94183E-03 1.16512E-03 1.93401E-03 1.16792E-03 0.24

w = 1501,
[
10−8, 101

]
I = 1 I = 2

n = 32 c = 0 c = 0.85
1.93867E-03 7.72388E-04 1.93401E-03 7.71729E-04 0.09

w = 501,
[
10−8, 101

]
I = 1 I = 4

n = 32 c = 0 c = 0.85
1.94163E-03 5.80368E-04 1.93401E-03 5.88381E-04 1.38

w = 501,
[
10−8, 101

]
I = 1 I = 8

n = 32 c = 0 c = 0.85
1.94163E-03 5.80368E-04 1.93401E-03 5.79867E-04 0.09

w = 1501,
[
10−8, 101

]
I = 1 I = 8

Table A.4. Importance Splitting/Rouletting in 1-D slab problem with four equally sized cells for
slab thickness of 5 cm

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0 c = 0 c = 0 c = 0
4.99005E-04 8.85005E-05 4.97456E-04 9.35489E-05 5.70

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0 c = 0 c = 0 c = 0
4.99005E-04 8.85005E-05 4.97456E-04 8.96592E-05 1.30

w = 1501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0 c = 0 c = 0 c = 0
4.99005E-04 8.85005E-05 4.97456E-04 8.80807E-05 0.47

w = 4501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0 c = 0 c = 0 c = 0
4.98327E-04 2.43321E-05 4.97456E-04 2.42294E-05 0.42

w = 501,
[
10−8, 101

]
I = 1 I = 4 I = 16 I = 64

n = 32 c = 0 c = 0 c = 0 c = 0
4.98225E-04 1.49135E-04 4.97456E-04 1.49820E-04 0.45

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 3 I = 4

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37170E-02 3.98013E-03 1.37041E-02 4.20861E-03 5.74

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37170E-02 3.98013E-03 1.37041E-02 4.04637E-03 1.66

w = 1501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37170E-02 3.98013E-03 1.37041E-02 3.97927E-03 0.02

w = 4501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8
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n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37202E-02 2.07298E-03 1.37041E-02 2.06917E-03 0.18

w = 501,
[
10−8, 101

]
I = 1 I = 4 I = 16 I = 64

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37215E-02 5.60326E-03 1.37041E-02 5.63164E-03 0.51

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 3 I = 4

n = 32 c = 0 c = 0.85 c = 0 c = 0.85
1.69685E-03 3.77551E-04 1.69189E-03 3.98819E-04 5.63

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0 c = 0.85 c = 0 c = 0.85
1.69685E-03 3.77551E-04 1.69189E-03 3.82768E-04 1.38

w = 1501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0 c = 0.85 c = 0 c = 0.85
1.69685E-03 3.77551E-04 1.69189E-03 3.76188E-04 0.36

w = 4501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0 c = 0.85 c = 0 c = 0.85
1.69612E-03 1.37924E-04 1.69189E-03 1.37217E-04 0.51

w = 501,
[
10−8, 101

]
I = 1 I = 4 I = 16 I = 64

n = 32 c = 0 c = 0.85 c = 0 c = 0.85
1.69684E-03 5.84059E-04 1.69189E-03 5.84827E-04 0.13

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 3 I = 4

Table A.5. Importance Splitting/Rouletting in 1-D slab problem with ten equally sized cells for
slab thickness of 5 cm

n,w [wl t ,wut ] Cell i MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 ci = 0.85
1.37081E-02 1.18067E-03 1.37045E-02 1.27539E-03 8.02

w = 501,
[
10−8, 101

]
Ii = 2i−1

n = 32 ci = 0.85
1.37081E-02 1.18067E-03 1.37045E-02 1.17862E-03 0.17

w = 1001,
[
10−8, 101

]
Ii = 2i−1

Implicit Capture and Weight Cutoff

Table A.6. Implicit capture and weight cutoff in 1-D slab problem with slab thickness of 5 cm,
cutoff weight of 0.25 and survival weight of 0.5

n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0.5 1.83570E-03 1.16267E-03 1.84161E-03 1.17190E-03 0.79

w = 501,
[
10−9, 101

]
n = 32

c = 0.85 1.37138E-02 6.43122E-03 1.37041E-02 6.57490E-03 2.23
w = 501,

[
10−9, 101

]
n = 32

c = 0.85 1.37138E-02 6.43122E-03 1.37041E-02 6.51459E-03 1.30
w = 1501,

[
10−9, 101

]
n = 32

c = 0.85 1.37138E-02 6.43122E-03 1.37041E-02 6.39667E-03 0.54
w = 3001,

[
10−9, 101

]
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Table A.7. Importance Splitting/Rouletting, implicit capture, and weight cutoff in 1-D slab prob-
lem with four equally sized cells for slab thickness of 5 cm, cutoff weight of 0.25, and survival
weight 0.5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
1.84621E-03 2.43778E-04 1.84161E-03 2.47111E-04 1.37

w = 501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
1.84621E-03 2.43778E-04 1.84161E-03 2.43943E-04 0.07

w = 1501,
[
10−10, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
1.84263E-03 3.86265E-04 1.84161E-03 3.74992E-04 2.92

w = 501,
[
10−9, 101

]
I = 1 I = 2 I = 3 I = 4

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
1.84263E-03 3.86265E-04 1.84161E-03 3.86757E-04 0.13

w = 1501,
[
10−10, 101

]
I = 1 I = 2 I = 3 I = 4

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
1.84461E-03 8.68005E-05 1.84161E-03 8.86535E-05 2.13

w = 501,
[
10−9, 101

]
I = 1 I = 4 I = 16 I = 64

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
1.84461E-03 8.68005E-05 1.84161E-03 8.70745E-05 0.32

w = 1501,
[
10−10, 101

]
I = 1 I = 4 I = 16 I = 64

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37103E-02 2.19687E-03 1.37041E-02 2.25667E-03 2.72

w = 501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37103E-02 2.19687E-03 1.37041E-02 2.20107E-03 0.19

w = 3001,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37058E-02 2.96377E-03 1.37041E-02 2.95580E-03 0.27

w = 501,
[
10−9, 101

]
I = 1 I = 2 I = 3 I = 4

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37058E-02 2.96377E-03 1.37041E-02 2.98078E-03 0.57

w = 3001,
[
10−9, 101

]
I = 1 I = 2 I = 3 I = 4

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37121E-02 1.31371E-03 1.37041E-02 1.35068E-03 2.81

w = 501,
[
10−9, 101

]
I = 1 I = 4 I = 16 I = 64

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37121E-02 1.31371E-03 1.37041E-02 1.30845E-03 0.40

w = 1501,
[
10−9, 101

]
I = 1 I = 4 I = 16 I = 64

Weight Windows

Table A.8. Surface weight windows in a 1-D slab problem with four equally sized cells for slab
thickness of 5 cm, upper window multiplier of 5, survival multiplier of 3, and maximum split-
ting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0 c = 0 c = 0 c = 0
4.99215E-04 1.69775E-04 4.97456E-04 1.76231E-04 3.80

w = 501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0 c = 0 c = 0 c = 0
4.99215E-04 1.69775E-04 4.97456E-04 1.69016E-04 0.45

w = 1001,
[
10−8, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0 c = 0 c = 0 c = 0
4.98182E-04 4.14158E-05 4.97456E-04 4.26430E-05 2.96

w = 501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.125 ωl = 0.03125 ωl = 0.0078125

n = 32 c = 0 c = 0 c = 0 c = 0
4.98182E-04 4.14158E-05 4.97456E-04 4.11972E-05 0.53

w = 1001,
[
10−8, 101

]
ωl = 0.5 ωl = 0.125 ωl = 0.03125 ωl = 0.0078125

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37045E-02 6.28237E-03 1.37041E-02 6.57299E-03 4.63

w = 501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37045E-02 6.28237E-03 1.37041E-02 6.31932E-03 0.59

w = 1001,
[
10−8, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625
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n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37205E-02 2.60569E-03 1.37041E-02 2.86428E-03 9.92

w = 501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.125 ωl = 0.03125 ωl = 0.0078125

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37205E-02 2.60569E-03 1.37041E-02 2.59453E-03 0.43

w = 1501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.125 ωl = 0.03125 ωl = 0.0078125

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37191E-02 3.74125E-03 1.37041E-02 3.76557E-03 0.65

w = 501,
[
10−8, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

Table A.9. Collision weight windows in a 1-D slab problem with four equally sized cells for
slab thickness of 5 cm, upper window multiplier of 5, survival multiplier of 3, and maximum
splitting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37201E-02 8.58340E-03 1.37041E-02 8.80590E-03 2.59

w = 501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37201E-02 8.58340E-03 1.37041E-02 8.65455E-03 0.83

w = 6001,
[
10−8, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37167E-02 5.24747E-03 1.37041E-02 5.39854E-03 2.88

w = 501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.125 ωl = 0.03125 ωl = 0.0078125

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37167E-02 5.24747E-03 1.37041E-02 5.27452E-03 0.52

w = 1501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.125 ωl = 0.03125 ωl = 0.0078125

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37171E-02 6.00866E-03 1.37041E-02 6.06768E-03 0.98

w = 501,
[
10−8, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

Table A.10. Surface and collision weight windows in a 1-D slab problem with four equally sized
cells for slab thickness of 5 cm, upper window multiplier of 5, survival multiplier of 3, and maxi-
mum splitting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37045E-02 6.28237E-03 1.37041E-02 6.30069E-03 0.29

w = 501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37076E-02 2.60149E-03 1.37041E-02 2.86430E-03 10.10

w = 501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.125 ωl = 0.03125 ωl = 0.0078125

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37076E-02 2.60149E-03 1.37041E-02 2.59446E-03 0.27

w = 1501,
[
10−8, 101

]
ωl = 0.5 ωl = 0.125 ωl = 0.03125 ωl = 0.0078125

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37191E-02 3.74125E-03 1.37041E-02 3.76557E-03 0.65

w = 501,
[
10−8, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256
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Table A.11. Surface and collision weight windows with implicit capture in a 1-D slab problem
with four equally sized cells for slab thickness of 5 cm, upper window multiplier of 5, survival
multiplier of 3, and a maximum splitting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.84475E-03 3.00133E-04 1.84161E-03 3.04408E-04 1.42

w = 501,
[
10−8, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.84475E-03 3.00133E-04 1.84161E-03 2.99912E-04 0.07

w = 1001,
[
10−8, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
1.37117E-02 2.74257E-03 1.37041E-02 2.86651E-03 4.52

w = 501,
[
10−8, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
1.37117E-02 2.74257E-03 1.37041E-02 2.71389E-03 1.05

w = 1001,
[
10−8, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

Exponential Transform

Table A.12. Exponential transform slab problem with slab thickness of 5 cm and a stretching
parameter of 0.5

n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0 4.98920E-04 4.07527E-05 4.96457E-04 4.04216E-05 0.81

w = 3001,
[
10−3, 103

]
n = 32

c = 0 4.98920E-04 4.07527E-05 4.98371E-04 4.08921E-05 0.34
w = 3001,

[
10−4, 104

]
n = 32

c = 0.85 1.37095E-02 6.76340E-03 1.37135E-02 6.82815E-03 0.96
w = 3001,

[
10−3, 103

]

Table A.13. Exponential transform with implicit capture and weight cutoff slab problem with slab
thickness of 5 cm, a stretching parameter of 0.5, a cutoff weight of 0.25, and a survival weight of
0.5

n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0.85 1.37113E-02 3.23602E-03 1.36478E-02 3.22238E-03 0.42

w = 4001,
[
10−4, 104

]

Table A.14. Exponential transform, importance Splitting/Rouletting, implicit capture, and weight
cutoff in 1-D slab problem with four equally sized cells for slab thickness of 5 cm, stretching
parameter of 0.5, cutoff weight of 0.25, and survival weight 0.5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37057E-02 7.30012E-04 1.36513E-02 7.24719E-04 0.73

w = 5001,
[
10−5, 105

]
I = 1 I = 5 I = 50 I = 2500
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Table A.15. Exponential transform, surface and collision weight windows, and implicit capture
slab problem with four equally sized cells for slab thickness of 5 cm, stretching parameter of 0.5,
upper window multiplier of 5, survival multiplier of 3, and maximum splitting/rouletting parameter
of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.37093E-02 8.91142E-04 1.36657E-02 8.87626E-04 0.40

w = 5001,
[
10−5, 105

]
ωl = 0.5 ωl = 0.05 ωl = 0.005 ωl = 0.0005
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A.3.2 Surface Flux Tally
Analog

Table A.16. Analog 1-D slab problem with slab thickness of 5 cm

n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0 5.72008E-04 6.69853E-04 5.73188E-04 6.75346E-04 0.82

w = 501,
[
10−8, 101

]
n = 32

c = 0.5 2.59750E-03 5.73572E-03 2.58352E-03 5.58311E-03 2.66
w = 501,

[
10−8, 101

]
n = 64

c = 0.5 2.59750E-03 5.73572E-03 2.58693E-03 5.64266E-03 1.62
w = 1001,

[
10−8, 101

]
n = 96

c = 0.5 2.59750E-03 5.73572E-03 2.58765E-03 5.65771E-03 1.36
w = 1001,

[
10−8, 101

]
n = 32

c = 0.85 2.23978E-02 6.53713E-02 2.23062E-02 6.32958E-02 3.17
w = 501,

[
10−8, 101

]
n = 96

c = 0.85 2.23978E-02 6.53713E-02 2.23452E-02 6.45113E-02 1.32
w = 1001,

[
10−8, 101

]

Importance Splitting/Rouletting

Table A.17. Importance Splitting/Rouletting in 1-D slab problem with four equally sized cells for
slab thickness of 5 cm

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0 c = 0 c = 0 c = 0
5.75114E-04 1.17457E-04 5.73188E-04 1.24052E-04 5.61

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0 c = 0 c = 0 c = 0
5.75114E-04 1.17457E-04 5.73188E-04 1.16773E-04 0.58

w = 4501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.24062E-02 1.42504E-02 2.23062E-02 1.47305E-02 3.37

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.24062E-02 1.42504E-02 2.23062E-02 1.41414E-02 0.76

w = 1501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

Implicit Capture and Weight Cutoff

Table A.18. Implicit capture and weight cutoff slab problem with slab thickness of 5 cm, cutoff
weight of 0.25, and survival weight of 0.5

n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0.5 2.60308E-03 3.21507E-03 2.58352E-03 3.13227E-03 2.58

w = 501,
[
10−9, 101

]
n = 96

c = 0.5 2.60308E-03 3.21507E-03 2.58765E-03 3.17271E-03 1.32
w = 1501,

[
10−9, 101

]

130



n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0.85 2.23988E-02 2.88868E-02 2.23062E-02 2.85991E-02 1.00

w = 501,
[
10−9, 101

]
n = 96

c = 0.85 2.23988E-02 2.88868E-02 2.23452E-02 2.88098E-02 0.27
w = 1501,

[
10−9, 101

]

Table A.19. Importance splitting/rouletting, implicit capture, and weight cutoff slab problem with
slab thickness of 5 cm, cutoff weight of 0.25, and survival weight of 0.5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
2.59344E-03 5.82107E-04 2.58352E-03 5.81949E-04 0.03

w = 501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 96 c = 0.5 c = 0.5 c = 0.5 c = 0.5
2.59344E-03 5.82107E-04 2.58352E-03 5.82031E-04 0.01

w = 1501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23792E-02 7.25540E-03 2.23062E-02 7.35207E-03 1.33

w = 501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23792E-02 7.25540E-03 2.23062E-02 7.29140E-03 0.50

w = 1501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

Weight Windows

Table A.20. Surface and collision weight windows in a 1-D slab problem with four equally sized
cells for slab thickness of 5 cm, upper window multiplier of 5, survival multiplier of 3, and a
maximum splitting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23712E-02 2.39186E-02 2.23062E-02 2.35880E-02 1.38

w = 501,
[
10−9, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 64 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23712E-02 2.39186E-02 2.23379E-02 2.38551E-02 0.27

w = 501,
[
10−9, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23908E-02 1.35256E-02 2.23062E-02 1.34027E-02 0.91

w = 501,
[
10−9, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

n = 64 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23908E-02 1.35256E-02 2.23379E-02 1.35553E-02 0.22

w = 501,
[
10−9, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

Table A.21. Surface and collision weight windows with implicit capture in a 1-D slab problem
with four equally sized cells for slab thickness of 5 cm, upper window multiplier of 5, survival
multiplier of 3, and a maximum splitting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23835E-02 1.52763E-02 2.23062E-02 1.56355E-02 2.35

w = 501,
[
10−9, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23835E-02 1.52763E-02 2.23062E-02 1.53230E-02 0.31

w = 1501,
[
10−9, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625
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n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23893E-02 8.95764E-03 2.23062E-02 9.34977E-03 4.38

w = 501,
[
10−9, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
2.23893E-02 8.95764E-03 2.23062E-02 9.01506E-03 0.64

w = 2001,
[
10−9, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256
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A.3.3 Volume Flux Tally
Analog

Table A.22. Analog 1-D slab problem with slab thickness of 5 cm

n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0 1.32689E-03 8.16888E-04 1.32053E-03 8.12895E-04 0.49

w = 501,
[
10−9, 101

]
n = 32

c = 0.5 6.24843E-03 8.22030E-03 6.22975E-03 8.19295E-03 0.33
w = 501,

[
10−9, 101

]
n = 32

c = 0.85 5.24347E-02 1.47982E-01 5.24037E-02 1.47702E-01 0.19
w = 501,

[
10−9, 101

]

Importance Splitting/Rouletting

Table A.23. Importance Splitting/Rouletting in 1-D slab problem with four equally sized cells for
slab thickness of 5 cm

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0 c = 0 c = 0 c = 0
1.32249E-03 2.69843E-04 1.32053E-03 2.72150E-04 0.86

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24289E-02 5.18854E-02 5.24037E-02 5.24549E-02 1.10

w = 501,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24289E-02 5.18854E-02 5.24037E-02 5.15297E-02 0.69

w = 3001,
[
10−8, 101

]
I = 1 I = 2 I = 4 I = 8

Implicit Capture and Weight Cutoff

Table A.24. Implicit capture and weight cutoff slab problem with slab thickness of 5 cm, cutoff
weight of 0.25, and survival weight of 0.5

n,w [wl t ,wut ] Cell 1 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32
c = 0.5 6.24793E-03 4.93331E-03 6.22975E-03 4.94054E-03 0.15

w = 501,
[
10−9, 101

]
n = 32

c = 0.5 6.24793E-03 4.93331E-03 6.22975E-03 4.90991E-03 0.47
w = 6001,

[
10−9, 101

]
n = 32

c = 0.85 5.24636E-02 6.80883E-02 5.24037E-02 6.88635E-02 1.14
w = 501,

[
10−9, 101

]
n = 32

c = 0.85 5.24636E-02 6.80883E-02 5.24037E-02 6.75722E-02 0.76
w = 6001,

[
10−9, 101

]
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Table A.25. Importance splitting/rouletting, implicit capture, and weight cutoff slab problem with
slab thickness of 5 cm, cutoff weight of 0.25, and survival weight of 0.5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.5 c = 0.5 c = 0.5 c = 0.5
6.23863E-03 1.62617E-03 6.22975E-03 1.64903E-03 1.41

w = 501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 96 c = 0.5 c = 0.5 c = 0.5 c = 0.5
6.23863E-03 1.62617E-03 6.22975E-03 1.61950E-03 0.41

w = 7501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24363E-02 2.84398E-02 5.24037E-02 2.90021E-02 1.98

w = 501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24363E-02 2.84398E-02 5.24037E-02 2.83556E-02 0.30

w = 1501,
[
10−9, 101

]
I = 1 I = 2 I = 4 I = 8

Weight Windows

Table A.26. Surface and collision weight windows in a 1-D slab problem with four equally sized
cells for slab thickness of 5 cm, upper window multiplier of 5, survival multiplier of 3, and a
maximum splitting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24069E-02 7.87319E-02 5.24037E-02 7.99182E-02 1.51

w = 501,
[
10−9, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24069E-02 7.87319E-02 5.24069E-02 7.93027E-02 0.72

w = 6001,
[
10−9, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24379E-02 4.79950E-02 5.24379E-02 4.85364E-02 1.13

w = 501,
[
10−9, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24379E-02 4.79950E-02 5.24379E-02 4.80725E-02 0.16

w = 6001,
[
10−9, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

Table A.27. Surface and collision weight windows with implicit capture in a 1-D slab problem
with four equally sized cells for slab thickness of 5 cm, upper window multiplier of 5, survival
multiplier of 3, and a maximum splitting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24430E-02 5.17237E-02 5.24037E-02 5.28183E-02 2.12

w = 501,
[
10−9, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24430E-02 5.17237E-02 5.24037E-02 5.15423E-02 0.35

w = 6001,
[
10−9, 101

]
ωl = 0.5 ωl = 0.25 ωl = 0.125 ωl = 0.0625

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24526E-02 3.51895E-02 5.24037E-02 3.62229E-02 2.94

w = 501,
[
10−9, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

n = 32 c = 0.85 c = 0.85 c = 0.85 c = 0.85
5.24526E-02 3.51895E-02 5.24037E-02 3.52318E-02 0.12

w = 6001,
[
10−9, 101

]
ωl = 0.4 ωl = 0.16 ωl = 0.064 ωl = 0.0256

A.4 2-D Verification of the Sn and MCNP Calculations
Two-dimensional verification calculations were also performed for the geometry presented in
Fig. A.2. The capabilities of the S n code were limited, and ray effects and available computer
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memory limited the spatial size of the verification problems. For these two-dimensional problems,
the total cross section is 1 cm−1 with a scattering ratio of c = 0.85.

Figure A.2. 2-D verification problem geometry. The source is isotropic in cell 1, and the tally is a
volume flux tally in cell 4.

Table A.28. Importance splitting/rouletting, implicit capture, and weight cutoff slab problem with
slab thickness of 5 cm, cutoff weight of 0.25, and survival weight of 0.5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 8 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.26653E-01 1.00829E-01 1.30531E-01 1.00537E-01 0.29

w = 501,
[
10−4, 102

]
I = 1 I = 2 I = 2 I = 3

Table A.29. Surface and collision weight windows with implicit capture using an upper window
multiplier of 5, survival multiplier of 3, and a maximum splitting/rouletting parameter of 5

n,w [wl t ,wut ] Cell 1 Cell 2 Cell 3 Cell 4 MCNP M1 MCNP σ2 Sn M1 Sn σ
2 σ2 %error

n = 16 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.26688E-01 4.21023E-02 1.27767E-01 4.21888E-02 0.21

w = 501,
[
10−8, 101

]
ωl = 0.035 ωl = 0.0175 ωl = 0.0175 ωl = 0.00875

n = 16 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.26688E-01 4.21023E-02 1.27767E-01 4.26931E-02 1.40

w = 1001,
[
10−8, 101

]
ωl = 0.035 ωl = 0.0175 ωl = 0.0175 ωl = 0.00875

n = 16 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.26670E-01 7.79515E-02 1.27767E-01 8.07974E-02 3.65

w = 501,
[
10−9, 101

]
ωl = 0.5 ωl = 0.05 ωl = 0.05 ωl = 0.005

n = 16 c = 0.85 c = 0.85 c = 0.85 c = 0.85
1.26670E-01 7.79515E-02 1.27767E-01 7.91639E-02 1.56

w = 1501,
[
10−9, 101

]
ωl = 0.5 ωl = 0.05 ωl = 0.05 ωl = 0.005
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Appendix B

Proof that the Integro-Differential
Streaming Operator is Inverse to the
Transition Kernel Operator

This appendix summarizes a derivation contained in Dunn and Shultis [2008] that shows the re-
lationship between the integro-differential form of the transport equation and the integral form. It
is augmented slightly by details from a similar derivation by Bell and Glasstone [1970]. The goal
is to show the inverse relationship between the integral transition operator

∫
dP T (P′,P) and the

differential operator (1/v)(∂φ/∂t) + Ω·φ(r,Ω, E, t), subject to the boundary condition that nothing
enters the domain.

The integro-differential form of the linearized Boltzmann transport equation is

1
v
∂φ

∂t
+ Ω·∇φ(r,Ω, E, t) + Σ(r, E)φ(r,Ω, E, t) =∫

Ω

dΩ′
∫ ∞

0
dE′ Σs(r,Ω′, E′ → Ω, E)φ(r,Ω′, E′, t) + q(r,Ω, E, t), (B.1)

where r is the particle’s position, Ω is the particle’s direction, E is the particle’s energy, t is time,
Σ is the total macroscopic cross section, Σs(Ω′, E′ → Ω, E)dΩdE is the probability that a particle
scatters from dΩ′ about Ω′ and dE′ about E′ into Ω and E, and q is an external source. Defining
the emission rate density χ as

χ(r,Ω, E, t) =

∫
Ω

dΩ′
∫ ∞

0
dE′ Σs(r,Ω′, E′ → Ω, E)φ(r,Ω′, E′, t) + q(r,Ω, E, t), (B.2)

Eq. (B.1) may be rewritten as

1
v
∂φ

∂t
+ Ω·∇φ(r,Ω, E, t) + Σ(r, E)φ(r,Ω, E, t) = χ(r,Ω, E, t). (B.3)

Now, considering the total derivative of φ with respect to distance s directed in Ω, one has

dφ
ds

=
∂φ

∂t
dt
ds

+
∂φ

∂x
dx
ds

+
∂φ

∂y
dy
ds

+
∂φ

∂z
dz
ds
. (B.4)
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Consider a particle transitioning from r′ = (x′, y′, z′) to r = (x, y, z) as illustrated in Fig. B.1. Here,
it is clear that

t = t′ +
s
v

(B.5)

x = x′ + Ωxs (B.6)
y = y′ + Ωys (B.7)
z = z′ + Ωzs, (B.8)

which indicates that
dt
ds

=
1
v

(B.9)

dx
ds

= Ωx (B.10)

dy
ds

= Ωy (B.11)

dz
ds

= Ωz. (B.12)

Figure B.1. A particle at energy E transitioning along direction Ω from r′ at time t′ to r at time t

Substituting the expressions for the derivatives above into Eq. (B.4), one finds that

dφ
ds

=
∂φ

∂t
1
v

+
∂φ

∂x
Ωx +

∂φ

∂y
Ωy +

∂φ

∂z
Ωz

=
1
v
∂φ

∂t
+ Ω·∇φ, (B.13)

and Eq. (B.3) may be rewritten as

dφ
ds

+ Σ(r, E)φ(r,Ω, E, t) = χ(r,Ω, E, t). (B.14)
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Now, allowing r = r′ + sΩ and t = t′ + s/v one can re-express the above as

dφ
ds

+ Σ(r′ + sΩ, E)φ
(
r′ + sΩ,Ω, E, t′ +

s
v

)
= χ

(
r′ + sΩ,Ω, E, t′ +

s
v

)
. (B.15)

Multiplying by the integrating factor

exp
[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
,

having the property that

d
ds

{
exp

[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]}
= Σ(r′ + sΩ, E) exp

[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
,

one obtains

dφ
ds

exp
[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
+Σ(r′ + sΩ, E)φ

(
r′ + sΩ,Ω, E, t′ +

s
v

)
exp

[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
= χ

(
r′ + sΩ,Ω, E, t′ +

s′

v

)
exp

[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
. (B.16)

Thus,

d
ds

{
φ
(
r′ + sΩ,Ω, E, t′ +

s
v

)
exp

[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]}
= χ

(
r′ + sΩ,Ω, E, t′ +

s′

v

)
exp

[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
. (B.17)

Now, integrating the above expression from −∞ to s, one has∫ s

−∞

ds′
d

ds′

{
φ
(
r′ + s′Ω,Ω, E, t′ +

s
v

)
exp

[∫ s′

0
ds′′ Σ(r′ + s′′Ω, E)

]}
=

∫ s

−∞

ds′χ
(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
exp

[∫ s′

0
ds′′ Σ(r′ + s′′Ω, E)

]
, (B.18)

which, upon integrating the left side, gives{
φ
(
r′ + sΩ,Ω, E, t′ +

s
v

)
exp

[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
−φ

(
r′ + (−∞)Ω,Ω, E, t′ +

s
v

)
exp

[∫ −∞

0
ds′′ Σ(r′ + s′′Ω, E)

]}
=

∫ s

−∞

ds′χ
(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
exp

[∫ s′

0
ds′′ Σ(r′ + s′′Ω, E)

]
. (B.19)
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The exponential in the second term causes the entire term to vanish leaving only

φ
(
r′ + sΩ,Ω, E, t′ +

s
v

)
exp

[∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
=

∫ s

−∞

ds′χ
(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
exp

[∫ s′

0
ds′′ Σ(r′ + s′′Ω, E)

]
. (B.20)

Multiplying both sides by exp
[
−

∫ s

0
ds′′ Σ(r′ + s′′Ω, E)

]
and realizing s is a constant with respect

to the integral over ds′ one obtains the integral form of the transport equation

φ
(
r′ + sΩ,Ω, E, t′ +

s
v

)
=

∫ s

−∞

ds′χ
(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
exp

[
−

∫ s

s′
ds′′ Σ(r′ + s′′Ω, E)

]
. (B.21)

Making the substitutions r = r′ + sΩ and t = t′ + s/v one obtains

φ(r,Ω, E, t)

=

∫ s

−∞

ds′χ
(
r − (s − s′)Ω,Ω, E, t −

s − s′

v

)
× exp

[
−

∫ s

s′
ds′′ Σ(r − (s − s′′)Ω, E)

]
. (B.22)

Now, defining a = s − s′ and b = s − s′′ such that da = −ds′ and db = −ds′′ one gets

φ(r,Ω, E, t)

=

∫ ∞

0
daχ

(
r − aΩ,Ω, E, t −

a
v

)
exp

[
−

∫ a

0
db Σ(r − bΩ, E)

]
, (B.23)

and, allowing the dummy variables of integration a and b go to s′ and s′′ respectively, one obtains

φ(r,Ω, E, t)

=

∫ ∞

0
ds′χ

(
r − s′Ω,Ω, E, t −

s′

v

)
exp

[
−

∫ s′

0
ds′′ Σ(r − s′′Ω, E)

]
. (B.24)

As one final step, the integral over ds′ can be converted to a volume integral over dr′ by
realizing that dr′ = −s′2ds′dΩ′ = R2dRdΩ′, where R = −s′ and s′2 = R2 = |r − r′|2. Defining

τ(r′, r) =

∫ |r−r′ |

0
ds′′ Σ(r − s′′Ω, E), (B.25)

Eq. (B.24) becomes

φ(r,Ω, E, t) =

∫ t

0
dt′

∫ ∞

0
R2dR

∫
Ω′

dΩ′χ(r′,Ω′, E, t′)
exp[−τ(r, r′)]

R2

×δ(Ω′ −Ω)δ
[
t′ −

(
t −
|r − r′|

v

)]
=

∫ t

0
dt′

∫
dr′χ(r′,Ω′, E, t′)

exp[−τ(r′, r)]
|r − r′|2

δ(Ω′ −Ω)

× δ

[
t′ −

(
t −
|r − r′|

v

)]
. (B.26)
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The above expression is commonly written as

φ(P) =

∫
dP′T (P′,P)φ(P′), (B.27)

where P = (r,Ω, E, t), P′ = (r′,Ω′, E′, t′), and

T (P′,P) =
exp[−τ(r′, r)]
|r − r′|2

δ(E′ − E)δ(Ω′ −Ω)δ
[
t′ −

(
t −
|r − r′|

v

)]
.

It is clear from the derivation above that Eq. (B.27) is equivalent to Eq. (B.21), and, by reversing
the procedure above, one could obtain Eq. (B.21) from Eq. (B.27).

The integro-differential form can be recovered by operating on both sides of Eq. (B.21) with
(1/v)∂/∂t + Ω·∇ + Σ = d/ds + Σ, namely

1
v
∂φ

∂t
+ Ω·∇φ + Σ(r′ + sΩ, E)φ

(
r′ + sΩ,Ω, E, t +

s
v

)
=

(
d
ds

+ Σ

) ∫ s

−∞

ds′χ
(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
× exp

[
−

∫ s

s′
ds′′ Σ(r′ + s′′Ω, E)

]
. (B.28)

Application of Leibniz’s rule gives

1
v
∂φ

∂t
+ Ω·∇φ + Σ(r′ + sΩ, E)φ

(
r′ + sΩ,Ω, E, t′ +

s
v

)
=

∫ s

−∞

ds′
∂

∂s

{
χ

(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
× exp

[
−

∫ s

s′
ds′′ Σ(r′ + s′′Ω, E)

]}
+χ

(
r′ + sΩ,Ω, E, t′ +

s
v

)
exp

[
−

∫ s

s
ds′′ Σ(r′ + s′′Ω, E)

]
d
ds

(s)

+Σ(r′ + sΩ, E)
∫ s

−∞

ds′χ
(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
× exp

[
−

∫ s

s′
ds′′ Σ(r′ + s′′Ω, E)

]
, (B.29)

and simplification yields

1
v
∂φ

∂t
+ Ω·∇φ + Σ(r′ + sΩ, E)φ

(
r′ + sΩ,Ω, E, t′ +

s
v

)
= −Σ(r′ + sΩ, E)

∫ s

−∞

ds′χ
(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
× exp

[
−

∫ s

s′
ds′′ Σ(r′ + s′′Ω, E)

]
+χ

(
r′ + sΩ,Ω, E, t′ +

s
v

)
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+Σ(r′ + sΩ, E)
∫ s

−∞

ds′χ
(
r′ + s′Ω,Ω, E, t′ +

s′

v

)
× exp

[
−

∫ s

s′
ds′′ Σ(r′ + s′′Ω, E)

]
, (B.30)

or simply

1
v
∂φ

∂t
+ Ω·∇φ + Σ(r′ + sΩ, E)φ

(
r′ + sΩ,Ω, E, t′ +

s
v

)
= χ

(
r′ + sΩ,Ω, E, t′ +

s
v

)
. (B.31)

Thus, one may conclude that, for an arbitrary function of F(P),(
1
v
∂φ

∂t
+ Ω·∇ + Σ

) ∫
dP′T (P′,P)F(P′) = F(P). (B.32)

141


	Title
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Introduction and Background
	Derivation and Extension of the History-Score Moment Equations
	Monte Carlo Fundamentals
	Statistics Considerations
	Monte Carlo Neutral Particle Transport
	Efficiency of Monte Carlo Techniques
	Variance Reduction Techniques of Particle Transport

	Derivation of the History-Score Moment Equations
	Description of the Scoring Functions and Transport Kernels
	Derivation of the History-Score Distribution Function 
	Derivation of the History-Score Moment Equations

	The Integro-Differential form of the Moment Equations
	Weight-Separable Cases of the rth Moment
	Extension of the Moment Equations to Weight-Window Variance Reduction 
	Deduction of the Weight-Window Kernel
	Derivation of Weight Window Moment Equations


	Discrete Ordinates Solution of the History Score Moment Equations
	Discrete-Ordinates Discretization of the History-Score Moment Equations
	Energy Multi-group Discretization
	Sn Angular Discretization
	Monte Carlo Particle Weight Discretization
	Cartesian Discretization of the Spatial Domain

	Description of Meshing and Sweeps for History-Score Moment Equation Solutions
	Problems with Ray Effects
	Calculation of Moments and Variance
	Effects of Variance Reduction Games on Weight Domain 
	Importance Splitting and Implicit Capture
	Rouletting
	Weight Cutoff
	Weight Windows
	Combined Effect of Multiple Variance Reduction Games
	Interpolation of Weight Domain with Discontinuities 

	A Deterministic Expected Track Length to Next Event Estimator
	Derivation of the Expected Track Length to Next Event
	Representing Expected Track-Length To Next-Event as an Adjoint Sn Source
	Shortcomings of an Expected Track Length Estimator


	Estimation of MCNP Calculation Times
	Derivation of the Future-Time Equation
	Total Future Time from Surface Crossing Event
	Total Future Time from Collision Event
	Total Future Time Equation

	Computing the Expected Future Time
	Determination of MCNP Routine Times
	Solving for the Expected Future Time
	Effects of the Weight Kernels on the Future Time
	Splitting and Implicit Capture
	Rouletting
	Weight Cutoff
	Weight Windows


	Cost Optimization of Transport Problems
	Optimization Method
	Basis Functions
	Optimization Procedure

	Optimization Test Problems
	Weight-Window Surface and Lower Bound
	1-Group Slab
	Iron Window
	2-D 1-Group Block
	Top Hat
	Two-legged Duct
	Three-legged Duct


	Conclusions and Future Work
	Limitations of the Method
	Future Work

	Bibliography
	Verification of History Score Moment Equations Solutions
	The MCNP Particle Transport Code
	Semianalytic Pure-Absorber Importance-Splitting Comparisons
	1-D Verification of Sn and MCNP Calculations for Different Tallies and Combinations of Variance Reduction
	Surface Current Tally
	Surface Flux Tally
	Volume Flux Tally

	2-D Verification of the Sn and MCNP Calculations

	Proof that the Integro-Differential Streaming Operator is Inverse to the Transition Kernel Operator

