Genomic selection in wheat breeding using genotyping-by-sequencing

dc.citationPoland, Jesse, Jeffrey Endelman, Julie Dawson, Jessica Rutkoski, Shuangye Wu, Yann Manes, Susanne Dreisigacker, et al. “Genomic Selection in Wheat Breeding Using Genotyping-by-Sequencing.” The Plant Genome 5, no. 3 (2012): 103–13. https://doi.org/10.3835/plantgenome2012.06.0006.
dc.citation.doi10.3835/plantgenome2012.06.0006en_US
dc.citation.epage113en_US
dc.citation.issn1940-3372
dc.citation.issue3en_US
dc.citation.jtitlePlant Genomeen_US
dc.citation.spage103en_US
dc.citation.volume5en_US
dc.contributor.authorPoland, Jesse A.
dc.contributor.authorEndelman, Jeffrey
dc.contributor.authorDawson, Julie
dc.contributor.authorRutkoski, Jessica
dc.contributor.authorWu, Shuangye
dc.contributor.authorManes, Yann
dc.contributor.authorDreisigacker, Susanne
dc.contributor.authorCrossa, José
dc.contributor.authorSánchez-Villeda, Héctor
dc.contributor.authorSorrells, Mark
dc.contributor.authorJannink, Jean-Luc
dc.contributor.authoreidjpolanden_US
dc.contributor.authoreidswu4455en_US
dc.date.accessioned2013-03-11T16:31:56Z
dc.date.available2013-03-11T16:31:56Z
dc.date.issued2013-03-11
dc.date.published2012en_US
dc.descriptionCitation: Poland, Jesse, Jeffrey Endelman, Julie Dawson, Jessica Rutkoski, Shuangye Wu, Yann Manes, Susanne Dreisigacker, et al. “Genomic Selection in Wheat Breeding Using Genotyping-by-Sequencing.” The Plant Genome 5, no. 3 (2012): 103–13. https://doi.org/10.3835/plantgenome2012.06.0006.
dc.description.abstractGenomic selection (GS) uses genomewide molecular markers to predict breeding values and make selections of individuals or breeding lines prior to phenotyping. Here we show that genotyping-by-sequencing (GBS) can be used for de novo genotyping of breeding panels and to develop accurate GS models, even for the large, complex, and polyploid wheat (Triticum aestivum L.) genome. With GBS we discovered 41,371 single nucleotide polymorphisms (SNPs) in a set of 254 advanced breeding lines from CIMMYT’s semiarid wheat breeding program. Four different methods were evaluated for imputing missing marker scores in this set of unmapped markers, including random forest regression and a newly developed multivariate-normal expectation-maximization algorithm, which gave more accurate imputation than heterozygous or mean imputation at the marker level, although no signifi cant differences were observed in the accuracy of genomic-estimated breeding values (GEBVs) among imputation methods. Genomic-estimated breeding value prediction accuracies with GBS were 0.28 to 0.45 for grain yield, an improvement of 0.1 to 0.2 over an established marker platform for wheat. Genotyping-bysequencing combines marker discovery and genotyping of large populations, making it an excellent marker platform for breeding applications even in the absence of a reference genome sequence or previous polymorphism discovery. In addition, the flexibility and low cost of GBS make this an ideal approach for genomics-assisted breeding.en_US
dc.description.versionArticle (publisher version)
dc.identifier.urihttp://hdl.handle.net/2097/15344
dc.language.isoen_USen_US
dc.relation.urihttps://doi.org/10.3835/plantgenome2012.06.0006en_US
dc.rights© 2012 The Authors. This is an open access article under the terms of the Creative Commons Attribution‐NonCommercial‐NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectGenomic selectionen_US
dc.subjectGenotyping-by-sequencingen_US
dc.subjectWheat genomeen_US
dc.subjectWheaten_US
dc.subjectGenomic-estimated breeding valuesen_US
dc.titleGenomic selection in wheat breeding using genotyping-by-sequencingen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
PolandPlantGenome2012.pdf
Size:
1.45 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: