Generalizing the Chevalley-Warning Theorem

dc.contributor.authorCollins, Lailah
dc.date.accessioned2025-03-21T17:20:33Z
dc.date.available2025-03-21T17:20:33Z
dc.date.graduationmonthMay
dc.date.issued2025
dc.description.abstractThe Chevalley-Warning Theorem states that a set of polynomials over a finite field without constant terms has a non-trivial common zero if the number of variables exceeds the sum of the degrees. In this report, we will prove the Chevalley-Warning Theorem along with one of its generalizations. This will be done by using the Combinatorial Nullstellensatz.
dc.description.advisorCraig Spencer
dc.description.degreeMaster of Science
dc.description.departmentDepartment of Mathematics
dc.description.levelMasters
dc.identifier.urihttps://hdl.handle.net/2097/44810
dc.language.isoen_US
dc.subjectChevalley-Warning
dc.titleGeneralizing the Chevalley-Warning Theorem
dc.typeReport

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LailahCollins2025.pdf
Size:
196.94 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.65 KB
Format:
Item-specific license agreed upon to submission
Description: