Data fusion and spatio-temporal approaches to model species distribution

dc.contributor.authorMohankumar, Narmadha Meenabhashini
dc.date.accessioned2022-04-15T21:52:31Z
dc.date.available2022-04-15T21:52:31Z
dc.date.graduationmonthMay
dc.date.issued2022
dc.description.abstractSpecies distribution models (SDMs) are increasingly used in ecology, biogeography, and wildlife management to learn about the distribution of species across space and time. Determining the species-habitat relationships and the distributional pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. I propose approaches to address some of the most pressing issues encountered in studies of species distributions and contribute towards improving predictions and inferences from SDMs. First, I present a modeling framework to model occupancy data that accounts for both traditional and nontraditional spatial dependence as well as false absences. Occupancy data are used to estimate and map the true presence of a species, which may depend on biotic and abiotic factors as well as spatial autocorrelation. Traditionally, spatial autocorrelation is accounted for by using a correlated normally distributed site-level random effect, which might be incapable of modeling nontraditional spatial dependence such as discontinuities and abrupt transitions. Machine learning approaches have the potential to model nontraditional spatial dependence, but these approaches do not account for observer errors such as false absences. I combine the flexibility of Bayesian hierarchal modeling and machine learning approaches and present a modeling framework to account for both traditional and nontraditional spatial dependence and false absences. I illustrate the framework using six synthetic data sets containing traditional and nontraditional spatial dependence and then apply the approach to understand the spatial distribution of Thomson's gazelle (Eudorcas thomsonii) in Tanzania and sugar gliders (Petaurus breviceps) in Tasmania. Second, I develop a model-based approach for data fusion of distance sampling (DS) and capture-recapture (CR) data. DS and CR are two widely collected data types to learn about species-habitat relationships and abundance; still, they are seldomly used in SDMs due to the lack of spatial coverage. However, data fusion of the sources of data can increase spatial coverage, which can reduce parameter uncertainty and make predictions more accurate, and therefore, can be used for species distribution modeling. My modeling approach accounts for two common missing data issues: 1) missing individuals that are missing not at random (MNAR) and 2) partially missing location information. Using a simulation experiment, I evaluated the performance of the modeling approach and compared it to existing approaches that use ad-hoc methods to account for missing data issues. I demonstrated my approach using data collected for Grasshopper Sparrows (Ammodramus savannarum) in north-eastern Kansas, USA. Third, I extend my data fusion approach to a spatio-temporal modeling framework to investigate the influence of the temporal support in spatio-temporal point process models to model species distribution. Temporal dynamics of ecological processes are complex, and their influence on species-habitat relationships and abundance operate in multiple spatio-temporal scales. Spatio-temporal point process models are widely used to model species-habitat relationships and estimate abundance across multiple spatio-temporal scales; however, the robustness of the models to changing temporal scales is rarely studied. Understanding the temporal dynamics of ecological processes across the entirety of spatio-temporal scales is key to learning about species' distribution. Therefore, investigating the influence of temporal support on the robustness of spatio-temporal point processes to model species distributions is needed. In my approach, I combine DS and CR data in a spatio-temporal point process modeling framework and investigate the robustness of the model to changing temporal scales. My fused data spatio-temporal model alleviates constraints in individual data sources such as lack of spatio-temporal coverage and enables the study of complex phenomena on multiple-scale species-habitat relationships and abundance. To investigate the impact of temporal support on models' robustness, I conducted a simulation experiment. Then, I illustrate the influence of temporal support to model species-habitat relationships and abundance using data on Grasshopper Sparrows (Ammodramus savannarum) in north-eastern Kansas, USA.
dc.description.advisorTrevor Hefley
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Statistics
dc.description.levelDoctoral
dc.identifier.urihttps://hdl.handle.net/2097/42172
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectHierarchical models
dc.subjectMachine learning
dc.subjectData fusion
dc.subjectSpecies distribution models
dc.subjectSpatio-temporal models
dc.subjectMissing data
dc.titleData fusion and spatio-temporal approaches to model species distribution
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NarmadhaMeenabhashiniMohankumar2022.pdf
Size:
4.74 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: