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Abstract

Species distribution models (SDMs) are increasingly used in ecology, biogeography, and

wildlife management to learn about the distribution of species across space and time. De-

termining the species-habitat relationships and the distributional pattern of a species is

important to increase scientific knowledge, inform management decisions, and conserve bio-

diversity. I propose approaches to address some of the most pressing issues encountered in

studies of species distributions and contribute towards improving predictions and inferences

from SDMs.

First, I present a modeling framework to model occupancy data that accounts for both

traditional and nontraditional spatial dependence as well as false absences. Occupancy data

are used to estimate and map the true presence of a species, which may depend on biotic

and abiotic factors as well as spatial autocorrelation. Traditionally, spatial autocorrelation

is accounted for by using a correlated normally distributed site-level random effect, which

might be incapable of modeling nontraditional spatial dependence such as discontinuities

and abrupt transitions. Machine learning approaches have the potential to model nontra-

ditional spatial dependence, but these approaches do not account for observer errors such

as false absences. I combine the flexibility of Bayesian hierarchal modeling and machine

learning approaches and present a modeling framework to account for both traditional and

nontraditional spatial dependence and false absences. I illustrate the framework using six

synthetic data sets containing traditional and nontraditional spatial dependence and then

apply the approach to understand the spatial distribution of Thomson’s gazelle (Eudorcas

thomsonii) in Tanzania and sugar gliders (Petaurus breviceps) in Tasmania.

Second, I develop a model-based approach for data fusion of distance sampling (DS) and

capture-recapture (CR) data. DS and CR are two widely collected data types to learn about

species-habitat relationships and abundance; still, they are seldomly used in SDMs due to



the lack of spatial coverage. However, data fusion of the sources of data can increase spatial

coverage, which can reduce parameter uncertainty and make predictions more accurate, and

therefore, can be used for species distribution modeling. My modeling approach accounts

for two common missing data issues: 1) missing individuals that are missing not at random

(MNAR) and 2) partially missing location information. Using a simulation experiment, I

evaluated the performance of the modeling approach and compared it to existing approaches

that use ad-hoc methods to account for missing data issues. I demonstrated my approach

using data collected for Grasshopper Sparrows (Ammodramus savannarum) in north-eastern

Kansas, USA.

Third, I extend my data fusion approach to a spatio-temporal modeling framework to

investigate the influence of the temporal support in spatio-temporal point process models to

model species distribution. Temporal dynamics of ecological processes are complex, and their

influence on species-habitat relationships and abundance operate in multiple spatio-temporal

scales. Spatio-temporal point process models are widely used to model species-habitat re-

lationships and estimate abundance across multiple spatio-temporal scales; however, the

robustness of the models to changing temporal scales is rarely studied. Understanding the

temporal dynamics of ecological processes across the entirety of spatio-temporal scales is key

to learning about species’ distribution. Therefore, investigating the influence of temporal

support on the robustness of spatio-temporal point processes to model species distributions

is needed. In my approach, I combine DS and CR data in a spatio-temporal point process

modeling framework and investigate the robustness of the model to changing temporal scales.

My fused data spatio-temporal model alleviates constraints in individual data sources such as

lack of spatio-temporal coverage and enables the study of complex phenomena on multiple-

scale species-habitat relationships and abundance. To investigate the impact of temporal

support on models’ robustness, I conducted a simulation experiment. Then, I illustrate the

influence of temporal support to model species-habitat relationships and abundance using

data on Grasshopper Sparrows (Ammodramus savannarum) in north-eastern Kansas, USA.
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Abstract

Species distribution models (SDMs) are increasingly used in ecology, biogeography, and

wildlife management to learn about the distribution of species across space and time. De-

termining the species-habitat relationships and the distributional pattern of a species is

important to increase scientific knowledge, inform management decisions, and conserve bio-

diversity. I propose approaches to address some of the most pressing issues encountered in

studies of species distributions and contribute towards improving predictions and inferences

from SDMs.

First, I present a modeling framework to model occupancy data that accounts for both

traditional and nontraditional spatial dependence as well as false absences. Occupancy data

are used to estimate and map the true presence of a species, which may depend on biotic

and abiotic factors as well as spatial autocorrelation. Traditionally, spatial autocorrelation

is accounted for by using a correlated normally distributed site-level random effect, which

might be incapable of modeling nontraditional spatial dependence such as discontinuities

and abrupt transitions. Machine learning approaches have the potential to model nontra-

ditional spatial dependence, but these approaches do not account for observer errors such

as false absences. I combine the flexibility of Bayesian hierarchal modeling and machine

learning approaches and present a modeling framework to account for both traditional and

nontraditional spatial dependence and false absences. I illustrate the framework using six

synthetic data sets containing traditional and nontraditional spatial dependence and then

apply the approach to understand the spatial distribution of Thomson’s gazelle (Eudorcas

thomsonii) in Tanzania and sugar gliders (Petaurus breviceps) in Tasmania.

Second, I develop a model-based approach for data fusion of distance sampling (DS) and

capture-recapture (CR) data. DS and CR are two widely collected data types to learn about

species-habitat relationships and abundance; still, they are seldomly used in SDMs due to



the lack of spatial coverage. However, data fusion of the sources of data can increase spatial

coverage, which can reduce parameter uncertainty and make predictions more accurate, and

therefore, can be used for species distribution modeling. My modeling approach accounts

for two common missing data issues: 1) missing individuals that are missing not at random

(MNAR) and 2) partially missing location information. Using a simulation experiment, I

evaluated the performance of the modeling approach and compared it to existing approaches

that use ad-hoc methods to account for missing data issues. I demonstrated my approach

using data collected for Grasshopper Sparrows (Ammodramus savannarum) in north-eastern

Kansas, USA.

Third, I extend my data fusion approach to a spatio-temporal modeling framework to

investigate the influence of the temporal support in spatio-temporal point process models to

model species distribution. Temporal dynamics of ecological processes are complex, and their

influence on species-habitat relationships and abundance operate in multiple spatio-temporal

scales. Spatio-temporal point process models are widely used to model species-habitat re-

lationships and estimate abundance across multiple spatio-temporal scales; however, the

robustness of the models to changing temporal scales is rarely studied. Understanding the

temporal dynamics of ecological processes across the entirety of spatio-temporal scales is key

to learning about species’ distribution. Therefore, investigating the influence of temporal

support on the robustness of spatio-temporal point processes to model species distributions

is needed. In my approach, I combine DS and CR data in a spatio-temporal point process

modeling framework and investigate the robustness of the model to changing temporal scales.

My fused data spatio-temporal model alleviates constraints in individual data sources such as

lack of spatio-temporal coverage and enables the study of complex phenomena on multiple-

scale species-habitat relationships and abundance. To investigate the impact of temporal

support on models’ robustness, I conducted a simulation experiment. Then, I illustrate the

influence of temporal support to model species-habitat relationships and abundance using

data on Grasshopper Sparrows (Ammodramus savannarum) in north-eastern Kansas, USA.
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Introduction

The motivations to understand species distribution patterns in nature have a long history

dating back to the seventeenth century when early naturalists such as Linnaeus (1781),

Humboldt et al. (1805), and Darwin (1859) began the monumental task of investigating

the temporal and geographic variation of species diversity on earth (Lomolino et al., 2006).

Since then, thousands of studies have contributed to the foundations of modern ecology

and biogeography and allowed a more comprehensive view of species diversity, showing that

species distributions can be a result of deterministic and stochastic processes (Martiny et al.,

2006). While both processes influence species distributions, it still remains to be investigated

as to which process is most influential and in which conditions. Scientists that come from

sub-disciplines of ecology and biogeography, such as botanists, ornithologists, entomologists,

mammologists, mycologists, and anthropologists, are constantly researching and studying

the phenomena of species distributions in order to increase scientific knowledge and identify

critical threats to the species diversity on earth. Findings from these studies are crucial to

informing management decisions and developing conservation strategies and policies.

The spatial and temporal distributions of species and their attributes can emerge from a

combination of geographic, ecological, and evolutionary processes. The distribution patterns

are not permanent or common for each species and can operate across multiple scales (Fink

et al., 2014). For example, at a fine spatial scale, penguins follow more or less a randomly

spaced distribution, but they also aggressively defend their territory from their neighbors,

so they maximize the distance from neighboring individuals (Le Maho et al., 2014). In areas

with patchy resources, such as a patchy distribution of watering holes, species tend to have

clumped distributions surrounding the resources (Heithaus et al., 1975; Ostfeld, 1985). A

clumped distribution is also common in species that usually serve as prey because grouping

acts as a mechanism against predation (Mappes et al., 2005; Reynolds et al., 2009). Moving

away from the animal kingdom, the dandelion often exhibits a uniform distribution since
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the seedlings are dispersed by wind and land in random locations, often uniformly (Derksen

et al., 1993). Likewise, species distribution patterns can vary by individual-level, group-

level, trait-level, or species-level and are driven by complex biotic and abiotic factors. These

factors can change seasonally in response to the availability of resources and also depending

upon the scale at which they are studied.

Species distribution models (SDMs) are a fundamental tool that was developed and used

by ecologists, biogeographers, and statisticians to learn about spatio-temporal distribution of

species (Araujo & Guisan, 2006; Kéry & Royle, 2015). SDMs are used to map geo-referenced

time-varying species observations to environmental covariates to predict species distribution

and facilitate inference such as species-habitat relationships (Araujo & Guisan, 2006; Kéry &

Royle, 2015; Hefley & Hooten, 2016; Koshkina et al., 2017). The development of SDMs orig-

inated in the twentieth century to describe a species’ niche in environmental and geographic

space (Colwell & Rangel, 2009). In the following years, the increasing availability of data

and advances in computational tools led to a rapid expansion of modeling developments in

SDM literature (Guisan & Thuiller, 2005; Elith & Leathwick, 2009; Hefley & Hooten, 2016).

The complexity of these modeling approaches has also increased over the years, from fitting

simple regression models that map species-habitat relationships to fitting complex hierarchi-

cal models that address data uncertainty, spatio-temporal autocorrelation, and perform data

fusion, etc. Moreover, SDMs have been developed for use with many sampling designs and

data types that are widely collected in subdisciplines of ecology and biogeography (Araujo

& Guisan, 2006; Kéry & Royle, 2015).

Various types of data are being collected through planned or opportunistic surveys to

study the distribution of species across space and time (Dorazio, 2014; Fletcher et al., 2019).

Data comes in various sizes with various spatio-temporal resolutions, from counts of individ-

uals within a geographic space over a time period to individual observations at precise times

and locations. Common data types include presence-absence data (i.e., occupancy data)

(Hepler et al., 2018; Joseph, 2020), counts (Elith & Leathwick, 2009; Aarts et al., 2012),

presence-only data (Dorazio, 2014; Fletcher et al., 2019), distance sampling data (Burnham

et al., 1980; Burnham & Anderson, 1984; Buckland et al., 2001), and capture-recapture
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data (Otis et al., 1978; Seber, 1982; Pollock et al., 1990). Each data types include distinct

types of attributes, strengths, and limitations. For example, presence-absence data arise

from planned surveys and are collected by making replicated visits to sites and recording the

presence or absence of at least one individual (Hepler et al., 2018; Joseph, 2020). They are

high quality compared to data from opportunistic surveys; however, due to the cost, they

often cover a small geographic region (MacKenzie, 2005; Koshkina et al., 2017). Further-

more, presence-absence data often suffer from false absence or false presences (Hoeting et al.,

2000; MacKenzie et al., 2002; Tyre et al., 2003; Mohankumar & Hefley, 2021a). Meanwhile,

distance sampling and capture-recapture data are two classic types of high-quality planned

survey data. However, these two sources of data require a large amount of effort and cost

to collect data over a large geographic region (Chandler et al., 2018; Mohankumar et al.,

2022). Further, distance sampling data often suffer from detection and location uncertainty

(Buckland et al., 2004; Farr et al., 2020; Hefley et al., 2020; Mohankumar et al., 2022).

Presence-only data, on the other hand, arise from opportunistic surveys and are recorded in

museum collections or online public databases (Graham et al., 2004; Dickinson et al., 2010).

Therefore, presence-only data usually have broad spatial coverage and provide attractive

sources of information to fit SDMs. However, presence-only data are often low in quality

as they lack information on species absences (Pearce & Boyce, 2006; Koshkina et al., 2017)

and often suffer from imperfect detection, and sampling bias (Dorazio, 2012; Hefley et al.,

2013; Dorazio, 2014; Fithian et al., 2015; Koshkina et al., 2017). Presence-only data may

also contain location uncertainty (Hefley et al., 2014). It is crucial to develop model-based

approaches to account for the limitations in these data because most of these limitations are

unfeasible to address at the survey level.

Chapter 1 of this dissertation proposes a hierarchical modeling framework that accounts

for the false absences of occupancy data (i.e., site-level presence-absence data) and accounts

for non-traditional spatial dependence. In recent years, in SDM literature, “spatial depen-

dence,” also referred to as “spatial autocorrelation,” has received a great deal of attention.

The history of analysis of spatial dependence goes back to the work of statisticians such as

Moran (1948, 1950), Geary (1954), and Whittle (1954) in the late 1940s and early 1950s. In
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recent years, there has been a bewildering number of approaches in SDM literature, but not

that many explicitly address spatial dependence. Furthermore, the approaches that are used

to model spatial dependence in occupancy data while addressing false absences only account

for traditional spatial dependence, which is assumed to have been generated from a corre-

lated normally distributed random effect and may be incapable of modeling non-traditional

spatial dependence such as discontinuities and abrupt transitions (Hoeting et al., 2000; John-

son et al., 2013b). Machine learning approaches have the potential to model non-traditional

spatial dependence, but these approaches do not account for observer errors such as false

absences. By combining the flexibility of Bayesian hierarchal modeling and machine learn-

ing approaches, a general framework is presented to model occupancy data that accounts for

both traditional and non-traditional spatial dependence as well as false absences.

Over the past two decades, many SDM approaches have been developed to account

for limitations in data and improve model prediction and inference. These studies range

from model developments for individual data types (Hooten & Hobbs, 2015; MacKenzie

et al., 2002; Tyre et al., 2003; Phillips et al., 2006; Hefley et al., 2014; Fithian et al., 2015)

to combining multiple types of data (Dorazio, 2014; Fithian et al., 2015; Koshkina et al.,

2017; Fletcher et al., 2019; Farr et al., 2020; Mohankumar et al., 2022). The literature on

combining multiple data sources into a single model has been referred to as “data fusion,”

“data integration,” “data reconciliation,” etc. Data fusion utilizes information from multiple

types of data to reduce the uncertainty associated with limitations in individual data sources,

hence improving the model predictions and inferences (Fletcher et al., 2019; Hooten & Hefley,

2019). Yet reliably fusing data sources can be challenging because data sources can vary

considerably in their design, gradients covered, and potential sampling biases (Fletcher et al.,

2019). Fletcher et al. (2019) gives an explicit review of recent developments in data fusion

for species distribution modeling and emphasizes some potential challenges to combining

data. As the availability of ecological and biogeographical data from various sub-disciplines

across multiple spatio-temporal scales is increasing, model developments to properly combine

multiple data sources are in high demand.

Chapter 2 of this dissertation proposes a data fusion approach that combines distance

xxxii



sampling and capture-recapture data to model species distribution. Distance sampling and

capture-recapture are two widely collected data types to learn about species-habitat rela-

tionships and abundance; still, they are seldomly used in SDMs due to the lack of spatial

coverage. These two data sources alone may suffer from the lack of spatial coverage, but

the fusion of the two data sources can increase spatial coverage, which can reduce parameter

uncertainty and provide more accurate predictions and inference regarding species distri-

butions (Fletcher et al., 2019; Hooten & Hefley, 2019). This work develops a hierarchical

modeling framework for data fusion of distance sampling and capture-recapture data using

spatial point processes. The proposed models are built accounting for missing data issues

that are unique to each source of data. There is well-developed statistical theory and tools

in missing data literature to account for missing data issues (Rubin, 1976; Little, 1992; Little

& Rubin, 2019), and they are used to build the proposed models. Chapter 2 emphasizes the

advantages of the proposed modeling approach compared with existing approaches in data

fusion that use ad-hoc methods to account for missing data issues.

Chapter 3 of this dissertation extends the spatial modeling framework presented in chap-

ter 2 to a spatio-temporal modeling framework. By doing so, the influence of the temporal

support on the robustness of the spatio-temporal point process models to model species dis-

tribution is investigated. Spatio-temporal point process models are widely used to model

species distribution across geographic space and time (Hefley & Hooten, 2016; Renner et al.,

2015); however, the notion of support is extremely important to model species distribution

using spatio-temporal models. Since ecological processes are inherently complex and oper-

ate across a wide range of temporal scales, identifying the appropriate temporal support at

which species interact with ecological processes may not always be known a priori. Many

studies discuss the inadequacies of the spatial support in point process models, especially

in the context of location error and spatial aggregation (Walker et al., 2020; Hefley et al.,

2020; Mohankumar et al., 2022). However, the impact of temporal support on point process

models to model species distributions is seldom discussed. This is because, unlike tempo-

ral support, spatial support is often known, and the individual locations of a species can

be mapped into the spatial covariates to adequately model the species distribution. In this
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study, the advantage of the data fusion approach discussed in chapter 2 is leveraged to enable

the modeling of species distribution in multiple temporal scales, from fine scales to coarse

scales. Then, the influence of temporal support in spatio-temporal point process models to

model species- habitat relationships and estimate abundance is studied.

The research in this dissertation tackles some of the most pressing issues encountered

in species distribution studies and contributes toward improving predictions and inferences

regarding species distributions across geographic space and time. Chapter 1 in this disserta-

tion is published as Mohankumar & Hefley (2021a), and the two data sets that are used to

exemplify the approaches in this work are occupancy data on Thomson’s gazelle (Eudorcas

thomsonii) in Tanzania and sugar gliders (Petaurus breviceps) in Tasmania. Chapter 2 in

this dissertation is available as Mohankumar et al. (2022). The data set that is used to

exemplify the approaches in chapter 2 and chapter 3 is transect data and mist-net data on

Grasshopper Sparrows (Ammodramus savannarum) in north-eastern Kansas, United States.

As understanding species distributions is essential to many areas such as ecology, biogeog-

raphy, evolution, conservation biology, and wildlife management, the research in this disser-

tation contributes to many ongoing and future studies to gain critical ecological insights in

regard to understanding species distribution patterns.
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Chapter 1

Using machine learning to model

nontraditional spatial dependence in

occupancy data

1.1 Abstract

Spatial models for occupancy data are used to estimate and map the true presence of a

species, which may depend on biotic and abiotic factors as well as spatial autocorrelation.

Traditionally researchers have accounted for spatial autocorrelation in occupancy data by

using a correlated normally distributed site-level random effect, which might be incapable of

modeling nontraditional spatial dependence such as discontinuities and abrupt transitions.

Machine learning approaches have the potential to model nontraditional spatial dependence,

but these approaches do not account for observer errors such as false absences. By com-

bining the flexibility of Bayesian hierarchal modeling and machine learning approaches, we

present a general framework to model occupancy data that accounts for both traditional and

nontraditional spatial dependence as well as false absences. We demonstrate our framework

using six synthetic occupancy data sets and two real data sets. Our results demonstrate how

to model both traditional and nontraditional spatial dependence in occupancy data which
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enables a broader class of spatial occupancy models that can be used to improve predic-

tive accuracy and model adequacy. This chapter is published in Ecology as Mohankumar &

Hefley (2021a).

1.2 Introduction

Many ecological studies collect occupancy data to understand the dynamics of species oc-

currence over space and time (e.g., Hepler et al., 2018; Joseph, 2020). Occupancy data are

collected by making replicated visits to sites and recording the presence or absence of at

least one individual. During a site visit, individuals may go undetected even when present,

resulting in the detection of no individuals (i.e., a false absence). Failure to account for false

absences can have a significant impact on parameter estimates and predictions (Hoeting

et al., 2000; MacKenzie et al., 2002; Tyre et al., 2003).

To facilitate the analysis of occupancy data that contain false absences, Hoeting et al.

(2000), MacKenzie et al. (2002), and Tyre et al. (2003) introduced a zero-inflated Bernoulli

model that specifies a distribution of the observed data given the true presence at a site.

Using familiar notation for Bayesian hierarchical models, the conditional distribution of the

data is

yij|zi, pij ∼

Bernoulli(pij) , zi = 1

0 , zi = 0
, (1.1)

where yij = 1 denotes the presence and detection of one or more individuals at the ith site

(i = 1, 2, ..., n) during the jth sampling period (j = 1, 2, ..., Ji) and yij = 0 denotes that no

individuals were detected. Detection of at least one individual depends on the probability

pij. The zi is the true presence (zi = 1) or absence (zi = 0) at the ith site, which is assumed

to be constant during all Ji sampling periods and modeled as

zi|ψi ∼ Bernoulli(ψi) . (1.2)
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In (1.2), the probability of true presence, ψi, is modeled using an intercept term and q

site-level covariates with the equation

g(ψi) = x
′

iβ , (1.3)

where g(·) is an appropriate link function (e.g., logit or probit), xi ≡ (1, x1, x2, ..., xq)
′
, and

β ≡ (β0, β1, β2, ..., βq)
′
. Within the vector β, β0 is the intercept parameter and β1, β2, ..., βq

are regression coefficients.

Since the introduction of the occupancy model in (1.1–1.3), many extensions were de-

veloped to address model inadequacies. For example, to account for spatial dependence

Johnson et al. (2013a) added a correlated normally distributed site-level effect, ηi (i.e.,

(η1, η2, ..., ηn)
′ ∼ N(0,Σ); see ch. 26 in Hooten & Hefley, 2019) to (1.3) that resulting

in

g(ψi) = x
′

iβ + ηi . (1.4)

The approach by Johnson et al. (2013a) has been effective in accounting for occupancy

model inadequacies caused by traditional spatial dependence (e.g., Wright et al., 2019),

which is assumed to have been generated from a correlated normally distributed random

effect that imparts varying levels of smoothness on the spatial process. Discontinuities,

abrupt transitions, and other “non-normal” spatial processes are common in ecological data,

and the traditional spatial random effect may fail to capture such dynamics (e.g., Hefley

et al., 2017b). Unfortunately, ecologists lack alternative occupancy model specifications that

would allow them to check for and, if needed, model nontraditional spatial dependence.

We demonstrate a framework for occupancy data to model both traditional and nontra-

ditional spatial dependence. Our framework takes a machine learning approach to model

the site-level effect in (1.4) and can model both traditional and nontraditional spatial depen-

dence. We illustrate this framework using six synthetic data sets containing traditional and

nontraditional spatial dependence and then apply our approach to understand the spatial dy-

namics of Thomson’s gazelle (Eudorcas thomsonii) in Tanzania and sugar gliders (Petaurus

3



breviceps) in Tasmania.

1.3 Materials and methods

1.3.1 Occupancy data requirements

Our proposed modeling framework builds upon the occupancy model of MacKenzie et al.

(2002) and Tyre et al. (2003) and therefore is intended for use with occupancy data that was

collected with repeated site visits during which the true presence or absence of individuals

at a site does not change. In addition, we require that false negative detections are the only

observational error. However, our framework is adaptable to accommodate other types of

occupancy data (see “Model extensions” in section A.6 of Appendix A for additional detail).

For example, our framework can be adapted to account for false presence, which occurs when

individuals are not present at a site but are recorded as occurring at a site.

1.3.2 Spatial occupancy model framework

Our proposed framework involves lifting the normal distributional assumption in the spatial

component that accounts for the spatial dependence. To accomplish this, we replace the

site-level effect in (1.4) with

g(ψi) = x
′

iβ + f(si) . (1.5)

Conceptually, this is an important change; the f(si) is an unknown spatially varying process

that is a function, f(·), that depends on the coordinate vector, si, of the i
th site. The function

f(·) is always unknown and is approximated.

This change in perspective is common in the field of machine learning, where the goal is

to “learn” or approximate an underlying function using data (see ch. 5 in Hastie et al., 2009).

This simple change in (1.5) expands the types of model specifications for the spatially varying

process, f(si). For example, regression trees are used to learn about underlying functions
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that have discontinuities and abrupt transitions, and using regression trees to approximate

f(si) could model nontraditional spatial dependence.

Many approaches from machine learning, such as support vector regression, neural net-

works, boosted regression trees, and Gaussian processes, could approximate f(·). These

approaches have been widely used by ecologists to make predictions and inferences about

species distributions from abundance and presence-absence data (e.g., De’ath & Fabricius,

2000; Cutler et al., 2007; Elith et al., 2008; Golding & Purse, 2016). However, machine

learning approaches are not widely used to model occupancy data because of the issues as-

sociated with false absences. Furthermore, approximating the spatial dependence within the

occupancy model using machine learning approaches requires custom programming and a

level of technical knowledge that hinders widespread use. The existing approaches that blend

machine learning approaches with occupancy models are approach specific (e.g., Hutchinson

et al., 2011; Joseph, 2020), and therefore switching among the different types of approaches

to approximate f(·) is a challenge. For example, switching from a neural network to a regres-

sion tree to approximate f(·) in (1.5) would require extensive retooling of computer code,

thus hindering model checking, comparisons, and selection.

Fortunately, Shaby & Fink (2012) developed a model-fitting algorithm based on Markov

chain Monte Carlo (MCMC) that enables off-the-shelf software for machine learning ap-

proaches, such as those available in R (e.g., rpart(...), svm(...), gam(...)), to be em-

bedded within hierarchical Bayesian models. Once the initial computer code is written for

the occupancy model, switching among machine learning approaches to approximate f(·) re-

quires modifying only a few lines of code. Details associated with model fitting are provided

in Appendix A of this dissertation.

1.3.3 Modeling spatial dependence

To identify the spatial dependence and evaluate model adequacy, we use a model selection

and model checking approach. First, we use a wide variety of approaches to model spatial

dependence and then use a measure of predictive accuracy to determine which approach
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most accurately models the spatial process. We supplement this predictive approach with a

measure of model adequacy (e.g., Wright et al., 2019).

Following Hooten & Hobbs (2015), we measure the predictive accuracy using −2×LPPD,

where LPPD is the log posterior predictive density. The −2 × LPPD is similar to the

information criterion used for model selection but uses out-of-sample data rather than in-

sample data (Hooten & Hobbs, 2015). As such, −2×LPPD and the difference in −2×LPPD

among models can be interpreted similarly to the information criterion that attempts to

approximate −2×LPPD using in-sample data (e.g., Watanabe-Akaike information criteria).

For example, if model A produced a −2 × LPPD score less than the −2 × LPPD score

produced by model B, then model A has higher predictive accuracy. As a standard of

comparison, we fit an occupancy model that does not account for spatial dependence (i.e.,

(1.3); hereafter nonspatial occupancy model).

In addition, we use Moran’s I correlogram to check model adequacy. Moran’s I has been

used to detect traditional spatial dependence in the residuals of fitted occupancy models

(Wright et al., 2019). However, if traditional approaches fail to capture spatial dependence,

then Moran’s I may identify such inadequacies.

1.4 Synthetic data examples

For our synthetic data examples, we show the probability of occupancy in Fig. 1.1, which

includes the three scenarios of nontraditional spatial dependence and the three scenarios of

traditional spatial dependence listed below.

1. Spatial dependence that has discontinuities and abrupt transitions generated by a

step-wise function (nontraditional; Fig. 1.1a).

2. Spatial dependence forming a circle with the probability of occupancy being low in the

center and smoothly increases towards the edges (nontraditional; Fig. 1.1b).

3. Spatial dependence defined by a cosine function (nontraditional; Fig. 1.1c).
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4. Normally distributed random effect with a correlation matrix specified by a conditional

autoregressive process (traditional; Fig. 1.1d).

5. Normally distributed random effect with a correlation matrix specified by an exponen-

tial covariance function (traditional; Fig. 1.1e).

6. Normally distributed random effect with a correlation matrix specified by a squared

exponential covariance function (traditional; Fig. 1.1f).

For each scenario, we generate synthetic data using (1.1), (1.2), and (1.5) on a unit square

study area (i.e., S =[0, 1]× [0, 1]). We divided the study area, S, into 900 grid cells (sites).

We set the true values for the parameters to pij = 0.5 and β0 = 0 . We exclude covariates

and regression coefficients in our synthetic data so that the spatial process is unobstructed

when ψi is mapped onto S, which aids when visual and numerical comparisons are made

among the machine learning approaches. From the 900 grid cells, we consider a random

sample of n = 200 sites as the study area with Ji = 3 visits for model fitting.

We apply our spatial occupancy modeling framework to the six synthetic data sets and

compare the performance of four embedded machine learning approaches, which include

regression trees, support vector regression, a low-rank Gaussian process, and a Gaussian

Markov random field. The low-rank Gaussian process and Gaussian Markov random field

are approaches that model traditional spatial dependence for data sets with a large number

of sites and have been used in models for occupancy data (Johnson et al., 2013a; Heaton

et al., 2019). The regression tree and support vector regression are nontraditional approaches

and may be capable of modeling nontraditional types of spatial dependence.

We assess the performance of each approach to model spatial dependence using −2 ×

LPPD calculated at 200 sites with Ji = 3 visits that were not used for model fitting (hereafter

out-of-sample sites) and by using Moran’s I correlogram. In addition, we visually compare

the true probability of occupancy (ψi) to the posterior mean of the probability of occupancy

(E(ψi|y); Fig. 1.2; see section A.7 of Appendix A).
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1.5 Thomson’s gazelle data

We illustrate our spatial occupancy modeling framework using a data set from Hepler et al.

(2018), who reported the presence and absence of Thomson’s gazelle at 195 sites within

Serengeti National Park, Tanzania (Fig. 1.3a). The sites were sampled using a network of

motion-sensitive and thermally activated cameras. Images were classified by participants

on the citizen science website Snapshot Serengeti. A site visit consisted of an 8-day period

during the year 2012 (e.g., January 1–8, 2012). Each site was visited between 1 and 46

times (the mean number of visits was 29). Following Hepler et al. (2018), yij = 1 (from

(1.1)) was recorded if an image of at least one Thomson’s gazelle was captured at the ith

site within the jth 8-d window. A value of yij = 0 was recorded if the site was sampled,

but no individuals were observed. Of the 195 sites, 141 had at least one detection. We use

100 randomly selected sites for model fitting and reserve the remaining 95 sites to calculate

−2× LPPD.

Similar to our synthetic data example, we apply our spatial occupancy modeling frame-

work by embedding four machine learning approaches, which include regression trees, support

vector regression, a low-rank Gaussian process, and a Gaussian Markov random field. We

exclude site-level covariates in our data example to illustrate our approaches ability to model

multiple processes that generate spatial dependence (e.g., missing site-level covariates and

spatial autocorrelation) and to illustrate the ability of our method to serve as a “spatial in-

terpolator” for occupancy data (i.e., similar to indicator or binomial kriging, but accounting

for false absences). However, as with traditional occupancy models, we can easily include

site-level covariates into our spatial occupancy models. The data used in our data examples

are available from the Dryad Digital Repository (Mohankumar & Hefley, 2021b).

1.6 Sugar glider data

We illustrate our modeling framework using a second data set from Allen et al. (2018), who

reported the presence and absence of sugar gliders. The data were collected during four or
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five site visits made to 100 sites in the Southern Forest region of Tasmania (Fig. 1.4a). Of

the 100 sites, 79 had at least one sugar glider detected. Since this data set has a relatively

small number of sites, we used 75 randomly selected sites for model fitting and reserve the

remaining 25 sites to calculate −2× LPPD. We use the same modeling approaches for this

example as we did in the Thomson’s gazelle example. The data used in our data examples

are available from the Dryad Digital Repository (Mohankumar & Hefley, 2021b).

1.7 Results

1.7.1 Synthetic data examples

In scenario 1, the occupancy model with an embedded regression tree performed best be-

cause the other embedded machine learning approaches didn’t capture the abrupt transition

created by the step-wise spatial process (Fig. 1.2). The −2×LPPD was 348.5, 377.2, 377.5,

and 384.0 for the embedded regression tree, support vector regression, low-rank Gaussian

process, and Gaussian Markov random field, respectively. For comparison, the −2× LPPD

obtained from the nonspatial occupancy model was 433.1. Similarly, for scenario 1, the com-

parison of the Moran’s I between the occupancy models suggested that spatial dependence

must be accounted for using a regression tree; all other approaches resulted in lingering

spatial dependence (see section A.7.3 of Appendix A).

Detailed results for scenarios 2–6 are presented in section A.7 of Appendix A. For exam-

ple, in scenario 2, the spatial dependence forms a circle with the probability of occupancy

being low in the center and smoothly increases towards the edge of the circle (Fig. 1.1b). For

scenario 2, we expected and found that the embedded support vector regression performed

best (see section A.7 of Appendix A). This was expected because this machine learning ap-

proach is best suited to learn about smoothly varying deterministic functions. In total, the

results from the scenarios clearly demonstrated that if the spatial process is a discontinuous

step function, then the approaches used to model traditional spatial dependence are not ade-

quate, and the approaches such as regression trees should be used. If the spatial dependence
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is traditional, the differences among the approaches are less distinct; nevertheless, in general,

support vector regression performs superior for smoothly varying processes (see section A.7

of Appendix A).

1.7.2 Spatial occupancy dynamics of Thomson’s gazelle

Across the four embedded machine learning approaches, the probability of occupancy at a

site ranged from 0.45 to 0.95 (Fig. 1.3b–1.3e). Generally, the probability of occupancy was

high across the entire study area. However, there was a distinct band running from the

southwest to the northeast of the study area where the probability of occupancy was much

lower (Fig. 1.3b–1.3e).

The measure of predictive accuracy, −2 × LPPD, was 669.4, 668.8, 671.0, and 668.7

for embedded regression trees, support vector regression, a low-rank Gaussian process, and

a Gaussian Markov random field, respectively. For comparison, the −2 × LPPD obtained

from the non-spatial occupancy model was 676.7. Comparison of the Moran’s I between the

non-spatial and spatial occupancy models suggested that accounting for spatial dependence

improves model adequacy; although, the utility of Moran’s I is questionable because the

differences among approaches are trivial, which may be due to the small number of sites (see

section A.8 of Appendix A; Carrijo & da Silva, 2017). In total, the −2×LPPD and Moran’s

I suggest that spatial dependence should be accounted for in the model. However, Moran’s I

and −2× LPPD suggested that the differences among machine learning approaches are less

distinct; therefore, it is unclear if the spatial dependence is traditional or nontraditional.

1.7.3 Spatial occupancy dynamics of sugar gliders

For the sugar glider data example, the probability of occupancy at a site ranged from 0.48 to

0.97 (Fig. 1.4b–1.4e) across the four embedded machine learning approaches. The probability

of occupancy was generally high across the entire study area; however, there was an area in

the eastern and southeastern portion of the study area where the probability of occupancy

was relatively low (i.e., ψi < 0.60), and there were clear visual differences in the probability
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of occupancy among the four machine learning approaches (Fig. 1.4b–1.4e). The measure of

predictive accuracy, −2×LPPD, was 78.2, 80.4, 79.6, and 78.9 for embedded regression trees,

support vector regression, a low-rank Gaussian process, and a Gaussian Markov random field,

respectively. For comparison, the−2×LPPD obtained from the non-spatial occupancy model

was 80.3. Similar to Thomson’s gazelle example, the comparison of the Moran’s I between

the occupancy models suggested that accounting for spatial dependence improves model

adequacy (see section A.9 of Appendix A). In total, the −2× LPPD and Moran’s I suggest

that the spatial process (i.e., f(·) in (1.5)) is best modeled using a regression tree. Using

Moran’s I and −2× LPPD as evidence, the results suggested that the spatial dependence is

nontraditional.

1.8 Discussion

The use of occupancy models has increased rapidly since the early 2000s. Occupancy data

are inherently spatial, but unfortunately, only a limited number of approaches existed to

model the spatial process (i.e., Hoeting et al., 2000; Johnson et al., 2013a). This lack of spa-

tial modeling options for occupancy data is in contrast to species distribution models (SDM)

that predict the spatial distribution of a species using statistical and machine learning ap-

proaches applied to presence-only, count, and presence-absence data. There is a bewildering

number of approaches within the SDM literature that are used to model the spatial process.

Unfortunately, many of the SDM approaches do not account for contamination in the re-

sponse variable (e.g., false absences). Understandably ecologists may feel forced to choose

between SDM approaches that do not account for contamination in the response variable

(e.g., regression trees) and approaches that do, but with a lack of spatial modeling (e.g.,

occupancy models).

The crux for ecologists planning to use our framework is to determine which machine

learning approaches are likely to capture the spatial process, which will require a level of

familiarity with the properties of a wide range of machine learning approaches. We recom-

mend James et al. (2013) for a gentle introduction and Hastie et al. (2009) and Murphy
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(2012) for more advanced and broad presentations. Within the ecological literature, there

are also several excellent guides to machine learning approaches (e.g., De’ath & Fabricius,

2000; Cutler et al., 2007; Elith et al., 2008).

Recently, the hierarchical modeling framework commonly used in ecology has been ex-

panded to include some types of machine learning approaches such as neural networks (Wikle,

2019; Joseph, 2020). Our study builds upon this previous work and expands the types of

spatial models ecologists can use for data that fit within the occupancy model framework.

Although our work is focused on spatial dependence among the true presence at a site, the

approach is easily generalizable. For example, (1.5) implies a linear effect of the site-level

covariates (i.e., x
′
iβ). Shaby & Fink (2012) show how machine learning approaches can be

used to capture nonlinear and unknown relationships between covariates and the probability

of occupancy, thus alleviating the linear assumption in (1.5). Furthermore, many stud-

ies that use occupancy models perform covariate selection using model selection techniques

(e.g., Hooten & Hobbs, 2015). While model selection techniques work for a small number of

covariates, machine learning approaches may be superior when there are a large number of

covariates. Another important generalization is that the machine learning approaches can

be embedded to model the probability of detection as a function of predictor variables such

as Julian date and observer effort (e.g., similar to the use of cubic splines used by Johnston

et al., 2018). To facilitate these extensions, we explain in section A.6 of Appendix A how to

generalize our framework for other popular ecological models, which is a direct application

of the work by Shaby & Fink (2012).
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Figure 1.3: Thomson’s gazelle data from Hepler et al. (2018) collected at 195 sites within
Serengeti National Park, Tanzania (panel a) and the posterior mean of the probability of
occupancy (E(ψi|y); panels b–e). Panels b–e show E(ψi|y) obtained by fitting spatial oc-
cupancy models that included an embedded regression tree (panel b), a support vector
regression (panel c), a low-rank Gaussian process (panel d), and a Gaussian Markov random
field (panel e).
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Figure 1.4: Sugar glider data from Allen et al. (2018) collected at 100 sites in the Southern
Forest region of Tasmania and the posterior mean of the probability of occupancy (E(ψi|y);
panels b–e). Panels b–e show E(ψi|y) obtained by fitting spatial occupancy models that
included an embedded regression tree (panel b), a support vector regression (panel c), a
low-rank Gaussian process (panel d), and a Gaussian Markov random field (panel e).
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Chapter 2

Data fusion of distance sampling and

capture-recapture data

2.1 Abstract

Species distribution models (SDMs) are increasingly used in ecology, biogeography, and

wildlife management to learn about the species-habitat relationships and abundance across

space and time. Distance sampling (DS) and capture-recapture (CR) are two widely col-

lected data types to learn about species-habitat relationships and abundance; still, they are

seldomly used in SDMs due to the lack of spatial coverage. However, data fusion of the two

data sources can increase spatial coverage, which can reduce parameter uncertainty and make

predictions more accurate, and therefore, can be used for species distribution modeling. We

developed a model-based approach for data fusion of DS and CR data. Our modeling ap-

proach accounts for two common missing data issues: 1) missing individuals that are missing

not at random (MNAR) and 2) partially missing location information. Using a simulation

experiment, we evaluated the performance of our modeling approach and compared it to

existing approaches that use ad-hoc methods to account for missing data issues. Our results

show that our approach provides unbiased parameter estimates with increased efficiency

compared to the existing approaches. We demonstrated our approach using data collected
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for Grasshopper Sparrows (Ammodramus savannarum) in north-eastern Kansas, USA.

2.2 Introduction

Species distribution models (SDMs) are widely used in ecology, biogeography, and wildlife

management to learn about species-habitat relationships and estimate abundance across ge-

ographic space and time. Inference and predictions from SDMs are increasingly used to

inform conservation and management (Araujo & Guisan, 2006; Kéry & Royle, 2015; Hefley

& Hooten, 2016; Koshkina et al., 2017). For example, conflicts between sustaining human ac-

tivities and preserving biological diversity can be understood by identifying species-habitat

relationships across space and time (Hefley et al., 2015). The SDMs are fitted to geo-

referenced observations on species such as presence-only, presence-absence, count, distance

sampling, and capture-recapture data. Spatially referenced covariates such as elevation,

rainfall, soil properties, and vegetation characteristics are used in SDMs to enable statisti-

cal inference on species-habitat relationships and obtain spatially heterogeneous abundance

estimates (Kéry & Royle, 2015).

Distance sampling (DS) and capture-recapture (CR) are two classic types of planned

surveys that collect geo-referenced observations on species. The DS data are collected by

recording distances to an individual in the study area from a point or transect (Burnham

et al., 1980; Burnham & Anderson, 1984; Buckland et al., 2001). The CR data are collected

by capturing an individual in the study area, which involves physically capturing the indi-

vidual using a trap (e.g., mist nets) or taking a picture (e.g., camera traps; Otis et al., 1978;

Seber, 1982; Pollock et al., 1990). The CR data often contain individual identification where

DS data do not. There is a long history of collecting these two types of high-quality planned

survey data in the field of ecology and wildlife management. However, DS and CR data

are seldomly used in SDMs due to the large amount of effort and cost required to collect

data that densely covers a large study area (McShea et al., 2016). These two data sources

alone may suffer from the lack of spatial coverage, but fusion of the two data sources can in-

crease spatial coverage, which can reduce parameter uncertainty and provide more accurate
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predictions. Therefore, a fused SDM of DS and CR can provide useful statistical inference

regarding the species distribution and abundance more than using any of the data sources

alone (see section 25.1 in Hooten & Hefley, 2019).

Construction of an adequate fused data SDM for DS and CR data relies upon accounting

for missing data issues that are unique to each source of data. Failure to properly account

for these missing data issues may lead to misleading inferences and predictions from the

SDMs (Little, 1992; Kéry, 2011; Dorazio, 2012; Hefley et al., 2013). The statistical theory

and tools to account for missing data issues are well developed in missing data literature,

which can be applied to SDMs (Rubin, 1976; Little, 1992; Mason et al., 2012; Little & Rubin,

2019), but such tools are rarely explicitly employed in SDM literature (Hefley et al., 2013).

Therefore, practitioners often use ad-hoc approaches to account for missing data issues and

fit SDMs, which will adversely affect inferences and predictions. In some cases, the ad-hoc

techniques may produce biased parameter estimates that invert the inferred species-habitat

relationship, which is a critical consequence when making inferences (Hefley et al., 2014,

2017a).

Two of the common missing data issues in DS, and CR data are individuals that are

missing not at random (MNAR) (Little & Rubin, 2019) and partially missing location in-

formation. The MNAR individuals can occur because of two reasons: 1) limited spatial

coverage due to the required large amount of effort and cost, limited accessibility, researcher

preferences, or previous knowledge regarding the individual locations, or 2) the individuals

in a sampled geographic region being unobserved due to the distance to the individual from

the point, transect or the trap, observer’s experience level, or environmental or geographical

features. The partially missing location information occurs when DS and CR only record

partial location information of individuals in contrast to complete location information (e.g.,

the exact geographic coordinates of the location of the individual). Such partially recorded

location information makes spatial covariates unrecoverable because the spatial covariate

values are usually obtained from a geographic information system that requires the individ-

uals’ exact locations. For example, DS surveys only record the distance to an individual

from a point or transect and do not record the exact location of the individual. As another
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example, CR surveys often use tools to attract the individual to the trap, which results in

the original, natural location of the individual being unrecoverable because only the location

of the trap is recorded (Gerber et al., 2012; Williams & Boyle, 2018). Therefore, the spatial

covariate values that may influence the locations of the individuals cannot be obtained.

The missing individuals that are MNAR is implicitly addressed by many DS and CR

developments using thinned point process models (e.g., Johnson et al., 2010; Borchers et al.,

2015; Fletcher et al., 2019; Farr et al., 2020). Many of these developments use an inhomoge-

neous Poisson point process (IPPP) which can accommodate spatial inhomogeneity (Diggle

et al., 1976; Cressie, 1991; Kéry & Royle, 2015) and enable inferences on the species-habitat

relationship and abundance (Warton & Shepherd, 2010; Renner et al., 2015; Hefley & Hooten,

2016). The use of the IPPP enables the estimation of an inhomogeneous intensity function

that can produce spatial maps showing the species distribution across the study area. In fact,

the field of study of SDMs is almost entirely focused on building, fitting, and using models

that are capable of estimating an inhomogeneous intensity function to estimate the species

distribution (e.g., Warton & Shepherd, 2010; Renner et al., 2015; Hefley & Hooten, 2016).

The spatial maps produced from estimating the species distributions are an essential tool

used in conservation reserve planning and administrative regulation implementation (e.g.,

Hefley et al., 2015). However, the crux in applying existing IPPP based approaches for DS

and CR data is that they may not explicitly address the missing data issues in DS and CR

data. For example, the approaches may require complete location information regarding the

individuals; however, DS and CR data often contain only partial location information. In

practice, researchers use ad-hoc methods to circumvent the limitation of partially recorded

locations of individuals and fit the models. For example, Fletcher et al. (2019) transformed

the DS data to presence-absence data at sites using change of support and fitted a model

to the presence-absence data. For another example, Farr et al. (2020) treated DS data as

count data at sampling sites and fitted the model to count data. Both of these approaches

do not require complete location information, and the partial location information does not

pose an issue since the models are fitted to the transformed DS data. As another example,

Borchers et al. (2015) proposed an IPPP based unified model for DS and CR data; however,
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they used a homogeneous point process in all of their applications and did not implement

the model for the inhomogeneous case. The homogeneous case contains a constant intensity

function where the partial location information is not an issue, but the model is not de-

signed to model the species distribution, which is our primary interest. The inhomogeneous

case can model the species distribution; however, the intensity function typically depends on

spatially referenced covariates, where the complete location information of the individuals is

critical. Therefore, partially recorded location information becomes an issue. In contrast to

the ad-hoc approaches, Hefley et al. (2020) proposed a model-based approach to account for

the partial location information in DS data. However, their model is merely constructed for

DS data, and a subsequent model that accounts for the partial location information in CR

data is lacking.

In contrast to properly accounting for missing data issues, constructing a fused data SDM

requires adequate model representations for DS and CR data that facilitates data fusion.

A fused data SDM utilizes information from both types of data to reduce the uncertainty

associated with limitations in individual data sources, hence improving the model predictions

and inferences (Dorazio, 2014; Fithian et al., 2015; Koshkina et al., 2017; Fletcher et al., 2019;

Hooten & Hefley, 2019; Farr et al., 2020). However, existing IPPP based modeling approaches

do not provide model representations for DS and CR data that can be adequately used for

data fusion. For example, the unified model proposed by Borchers et al. (2015) represented

the model for DS data based on the locations of the individuals and represented the model

for CR data based on home range centers which are hypothetical centroids for individuals’

activity. The locations of home range centers in CR data are irreconcilable with the locations

of the individuals in DS data. For example, the model fitted for CR data would estimate

the intensity of home range centers, and the model fitted for DS data would estimate the

intensity of the locations of the individuals. Therefore, building a fused data SDM where

both data sources share parameters in the underlying IPPP targetting the same inference is

not achievable.

A second main issue with existing IPPP based SDMs that involve data fusion is that they

often perform spatial aggregation. Spatial aggregation involves partitioning the study area
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and transforming the locations of the individuals to counts in each of the partitions (e.g.,

Dorazio, 2014; Koshkina et al., 2017; Farr et al., 2020). However, a significant drawback

of spatial aggregation is determining the spatial resolution for the partitions. If the spatial

resolution does not adequately represent the sampled region, the model may yield biased

estimates of parameters and abundance.

We propose a hierarchical modeling framework that provides adequate model represen-

tations for DS and CR data, thereby enabling data fusion and targeting the equivalent in-

ference regarding species-habitat relationship and abundance. We use theory and tools from

the missing data literature to build models for the missing data mechanism and account for

missing data issues. Our modeling framework can be viewed as a unified framework that

can be applied to many other data sources (e.g., presence-only data) and a fusion of them

addressing critical issues with missing data. Therefore, our approach advances the types of

models developed for species distribution studies. In our work, we propose two fused data

SDMs for DS and CR data, one SDM incorporating the recorded distances from DS data and

the other SDM without incorporating the recorded distances. We compare the two SDMs

and investigate the efficiency gain of the estimated parameters by incorporating additional

information regarding the observed individuals, such as the recorded distances. We conduct

a simulation experiment to evaluate the performance of our two SDMs compared to existing

approaches that use spatial aggregation. We assess the accuracy and the efficiency of the

estimated parameters for the species-habitat relationship and obtain an estimate for the

expected abundance in the study area. Finally, we demonstrate the approaches using data

collected for Grasshopper Sparrows (Ammodramus savannarum) in North-Eastern Kansas.

2.3 Materials and methods

2.3.1 Hierarchical modeling framework

Our proposed fused data SDM relies on a hierarchical modeling framework that is based

on an IPPP. The models for the observed DS and CR data are conditioned on a common
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underlying IPPP that represents the underlying point pattern of individuals in the study

area.

The underlying IPPP

The underlying IPPP describes the random number and the locations of individuals across

the study area based on a continuous inhomogeneous intensity function, a function of spa-

tially referenced covariates (e.g., elevation, temperature, soil attributes, vegetation, etc.).

The intensity describes the expected number of individuals per infinitely small unit area and

is usually defined as λ(s) = ex(s)
′β, where, s represents a vector containing coordinates of a lo-

cation within the study area S, x(s) ≡ (1, x1(s), x2(s), ..., xq(s))
′, and β ≡ (β0, β1, β2, ..., βq)

′.

The x1(s), x2(s), ..., xq(s) represent the spatial covariates at the location s, β0 represents the

intercept parameter, and β1, β2, ..., βq represent the regression coefficients associated with the

species-habitat relationship. Using the above notation, the probability distribution function

(PDF) for the IPPP can be written as (Cressie, 1991)

[u1,u2, ...,uN , N |λ(s)] =
e−

∫
S λ(s)ds(

∫
S λ(s)ds)

N

N !
×N !

N∏
i=1

λ(ui)∫
S λ(s)ds

, (2.1)

where u1,u2, ...,uN are the locations of all N individuals (missing and observed) in the study

area S (i.e., ui ∈ S). A property of IPPP is that an estimate of the expected abundance in

any sub-region B in the study area can be represented by λ̄ =
∫
B e

x(s)′βds.

Accounting for missing individuals that are MNAR

The missing individuals that are MNAR can be accounted for by identifying and modeling

the missing data mechanism. To model the missing data mechanism, we can label the

random locations of all individuals in the study area as missing or observed (Gelfand &

Schliep, 2018). We can define a vector m = (m(u1),m(u2), ...m(uN)), where m(ui) labels

the ith individual as missing (i.e., zero) or observed (i.e., one). Employing the missing data

mechanism, we can write the distribution of m(ui) as a zero-inflated Bernoulli distribution

conditioned on ui.
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[m(ui)|ui, q(s), r(s)] =

q(ui)
m(ui)(1− q(ui))

1−m(ui) , if r(ui) = 1

0 , if r(ui) = 0
, (2.2)

where, q(ui) denote the probability of observing the individual, r(ui) = 1 denotes that the

uth
i location is sampled within the study area, and r(ui) = 0 denotes that the uth

i location is

not sampled within the study area. The functional form of q(s) and r(s) at a location s can

be defined based on the missing mechanism. The r(s) accounts for the missing individuals

that are MNAR due to unsampled geographic regions in the study area, and q(s) accounts

for the missing individuals that are MNAR when the corresponding geographic region is

sampled, but the individuals are not detected or captured.

By using the distribution of m(ui), we can derive the PDF for the location of the ith

individual conditioned on the label m(ui) as

[ui|m(ui), λ(s), q(s), r(s)] =


q(ui)

m(ui)(1−q(ui))
1−m(ui)λ(ui)∫

S q(s)m(s)(1−q(s))1−m(s)λ(s)ds
, if r(ui) = 1

0 , if r(ui) = 0
. (2.3)

An important property of the distributional representation in (2.3) is that it enables the esti-

mation of the locations of unobserved individuals in addition to the locations of the observed

individuals. The locations of unobserved individuals can be estimated by augmenting the

unobserved individuals and modeling using a Bayesian framework. Many recent model-based

approaches based on IPPP use the so-called thinned IPPP (Diggle et al., 1976; Chakraborty

et al., 2011; Cressie, 1991; Kéry & Royle, 2015), an implicit representation of the data to

account for missing individuals as opposed to the complete distributional representation in

(2.3).

Accounting for partially missing location information

The distributional representation in (2.3) accounts for the missing individuals that are

MNAR; however, it does not account for the partially missing location information. We

propose two models to account for the partially observed location information in data; 1)
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a model that doesn’t incorporate the recorded distances from DS, and 2) a model that

incorporates the recorded distances from DS.

The DS and CR surveys each contain a sampled region in the study area, a region sur-

rounding the points, transects, or the traps where the probability of detection or capture

is greater than zero. We denote this region as the detection/capture region. In our first

proposed model, we assume that the observed location of an individual is uniformly dis-

tributed in the detection/capture region that surrounds the point, transect, or the trap it

was observed. Under this assumption, we can write the PDF of the observed location of the

ith individual conditioned on the actual location of the individual as

[yi|ui] =

|Aui
|−1I(yi ∈ Aui

) , if m(ui) = 1

0 , if m(ui) = 0
, (2.4)

where, yi denote the observed location of the ith individual, ui is the actual location of the

ith individual, and Aui
is the detection/capture region surrounding the point, transect or the

trap where the individual was observed.

We then propose a second model by incorporating the recorded distances from DS data

into the model. We expect that adding additional information regarding the observed loca-

tions of the individuals may increase the efficiency of the model parameter estimates. Hefley

et al. (2020) account for the partial location information in DS data by incorporating the

recorded distances. Based on their approach, and under the assumption that the distances

are recorded perfectly, we can assume that the observed location of an individual from a

transect is uniformly distributed along the parallel lines to the transect (Lui
) with a per-

pendicular distance that is equal to the recorded distance di. Under this assumption, we

can write the PDF of the observed location of the ith individual conditioned on the actual

location of the individual as

[yi|ui] =

|Lui
|−1I(yi ∈ Lui

) , if m(ui) = 1

0 , if m(ui) = 0
. (2.5)
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For a point, Lui
is the perimeter of the circle, where the radius is equal to the recorded

distance, di. The |Lui
| is the length of the lines or the length of the perimeter of the circle.

2.3.2 Model implementation

The distributions in (2.4) and (2.5) represent the observed location of the ith individual

conditioned on the actual location of the observed individual, ui; however, the actual location

of the observed individual is of little interest in our study. Therefore, we can remove ui from

the model by integrating the joint likelihood of yi and ui. The resulting PDFs representing

the observed location of the ith individual are

[yi|m(ui), λ(s), q(s), r(s)] =


∫
Aui

|Aui |
−1λ(ui)q(ui)dui∫

S λ(s)q(s)ds
, if r(ui) = 1 & m(ui) = 1

0 , otherwise
, (2.6)

[yi|m(ui), λ(s), q(s), r(s)] =


∫
Lui

|Lui |
−1λ(ui)q(ui)dui∫

S λ(s)q(s)ds
, if r(ui) = 1 & m(ui) = 1

0 , otherwise
. (2.7)

Moreover, our objectives in the study do not focus on estimating the locations of the un-

observed individuals. Therefore, we can retain the PDF for the observed individual locations

from (2.6) and (2.7) by setting m(ui)) = 1. The resulting PDF is a simple marginal distri-

bution that can be fitted using a likelihood-based or Bayesian approach. If practitioners are

interested in estimating the locations of unobserved individuals, they can fit the model using

a Bayesian hierarchical modeling approach from (2.3–2.5). Details associated with deriving

our models are provided in Appendix B.
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2.3.3 Fused data SDM

The distributional representations in (2.6) and (2.7) can be used to construct a fused data

SDM for DS and CR data. Our proposed distributional represntations represent both DS

and CR data based on observed locations of the individuals; therefore, the models share

parameters in the underlying IPPP that target the same inference. We assume that the

observed locations in the DS and CR data are independent across points, transects and

traps within and between the surveys. Representing DS and CR data using our proposed

distributional representations and jointly modeling them leads to the following two fused

data SDMs. The distribution in (2.8) does not incorporate the recorded distances from DS

data, and the distribution in (2.9) incorporates the recorded distances.

[y1, ...,ynds
,ynds+1, ...,ynds+ncr

, nds, ncr|λ(s), qds(s), rds(s), qcr(s), rcr(s)] =

e−
∫
S λ(s)qds(s)I(rds(s)=1)ds−

∫
S λ(s)qcr(s)I(rcr(s)=1)ds×

nds∏
i=1

∫
Aui

|Aui
|−1λ(ui)qds(ui)I(rds(ui) = 1)dui×

nds+ncr∏
i=nds+1

∫
Aui

|Aui
|−1λ(ui)qcr(ui)I(rcr(ui) = 1)dui,

(2.8)

[y1, ...,ynds
,ynds+1, ...,ynds+ncr

, nds, ncr|λ(s), qds(s), rds(s), qcr(s), rcr(s)] =

e−
∫
S λ(s)qds(s)I(rds(s)=1)ds−

∫
S λ(s)qcr(s)I(rcr(s)=1)ds×

nds∏
i=1

∫
Lui

|Lui
|−1λ(ui)qds(ui)I(rds(ui) = 1)dui×

nds+ncr∏
i=nds+1

∫
Aui

|Aui
|−1λ(ui)qcr(ui)I(rcr(ui) = 1)dui,

(2.9)

where, nds and ncr are the number of detected and captured individuals from DS and CR

respectively, qds(·) is the probability of detection from a point or transect which depends on

the distance from the point or transect to the individual, qcr(·) is the probability of capture

from a trap, rds(s) and rcr(s) are indicator functions defining the detection/capture regions

of the DS and CR data respectively, and n = nds + ncr is the total number of observed
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individuals from surveys. In our study, we define the probability of detection for DS data

by a half-normal function, that is qds(ui) = e−d2i /ϕ, where, di is the distance between the

point or transect and the the ith detected individual, and ϕ is a scale parameter. The

indicator function truncating the detection region from a point or transect is defined as,

rds(ui) = I(ui ∈ Ads), where Ads is the detection region surrounding a point or transect

where probability of detection is greater than zero. We define the probability of capture

from a trap as qcr(ui) = θ. The indicator function truncating the capture region of a trap is

defined as rcr(ui) = I(ui ∈ Acr), where Acr is the capture region surrounding a trap where

probability of capture is greater than zero.

In principle, including additional information regarding the observed individual locations

ought to increase the efficiency of parameter estimates from a model. Therefore, we expect

the fused data SDM in (2.9) to provide more efficient parameter estimates than the fused

data SDM (2.8) since the SDM in (2.9) incorporates the recorded distances from DS data.

We investigate this fact in both the simulation experiment and the data example that follows.

2.4 Simulation experiment

We conducted a simulation experiment to evaluate the performance of our two proposed

fused data SDMs and compare them to standard approaches that use spatial aggregation.

We assessed the performance of the models using the five scenarios listed below.

1. The model from (2.3) fit to DS and CR data containing complete location information

of the individuals.

2. The model proposed by Farr et al. (2020) for spatially aggregated data fit to DS and

CR data containing partial location information of the individuals.

3. The model from (2.3) tranformed for spatially aggregated data using change of support

fit to DS and CR data containing partial location information of the individuals.
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4. Our proposed fused data SDM from (2.8) without incorporating recorded distances fit

to DS and CR data containing partial location information of the individuals.

5. Our proposed fused data SDM from (2.9) incorporating recorded distances fit to DS

and CR data containing partial location information of the individuals.

In our simulation experiment, we simulated a single spatial covariate, x(s) using a reduced

rank Gaussian process on an unit square study area (i.e., S = [0, 1] × [0, 1], where s ∈ S).

We simulated the actual locations of the individuals using the IPPP represented by (2.1)

with the intensity λ(s) = ex(s)
′β. We set the parameter values as β0 = 9, β1 = 1, θ = 0.2,

ϕ = 0.025. We placed 15 points and 65 traps in the study area to obtain DS and CR

data, respectively (Fig. 2.1a). We set non-overlapping detection/capture regions to ensure

the independence of the observed data across surveys and within surveys (Fig. 2.1c). We

constructed the detection region surrounding each point by defining that the individual has

to be within a maximum distance of 0.04 from the point to be detected. We constructed

the capture region surrounding each trap by defining that the individual has to be within a

maximum distance of 0.02 from the trap to be attracted and captured. We obtained spatially

aggregated data required to fit the models in scenario 2 and scenario 3 by dividing the study

area into 100 non-overlapping partitions and obtaining the number of observed individuals

in each partition (Fig. 2.1b). If a partition does not consist of a survey point or a trap, we

defined the partition as an unsampled partition.

We simulated 1000 data sets and fitted the models described in scenarios 1–5. We used

the complete location information of the individuals in scenario 1, whereas the partial lo-

cation information of the individuals in scenarios 2–5. Scenario 1 acts as the benchmark

scenario where the data with complete location information matches the process described

by the fitted model. We evaluated the performance of the models in scenarios 2–5 for data

containing partial location information and compared them to benchmark scenario 1. For

each simulated data set, we obtained the parameter estimates for the intercept (β0), the

relationship to the spatial covariate (β1), and the expected abundance (λ̄). We assessed the

reliability of the parameter estimates by calculating the coverage probabilities of the 95%
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Wald-type confidence intervals (CIs). We included side-by-side box plots to visually compare

the empirical distributions of the parameter estimates. We obtained the relative efficiency

of the parameter estimates under scenarios 2–5 with reference to the efficiency of parameter

estimates obtained under benchmark scenario. The relative efficiency is calculated by divid-

ing the standard deviation of the respective empirical distribution of the estimates by the

standard deviation of the empirical distribution of the estimates under scenario 1.

The integrals in the likelihood functions and the integrated intensity function are approx-

imated using numerical quadrature. We used the Nelder-Mead algorithm in R to numerically

maximize the likelihoods and obtain the parameter estimates β̂0 and β̂1. The estimate for

the expected abundance is obtained using ˆ̄λ =
∫
S e

x(s)′β̂ds. We inverted the Hessian matrix

to approximate the standard errors of the parameter estimates β̂0 and β̂1 and then calculated

the 95% Wald-type CIs for β̂0 and β̂1. We approximated the standard error of the parameter

estimate ˆ̄λ using the delta method under first-order Taylor expansion and then calculated

95% Wald-type CI for ˆ̄λ.

2.5 Grasshopper Sparrows at Konza Prairie Biological

Station, Kansas

We illustrated our proposed models and the existing approaches using data on Grasshop-

per Sparrows (Ammodramus savannarum) from Konza Prairie Biological Station (KPBS).

KPBS is a long-term ecological research site in northeastern Kansas, comprised of native

tallgrass prairie (Knapp et al., 1998; Williams & Boyle, 2018, 2019). Grasshopper Spar-

rows are a migratory grassland songbird species that winter in the Southern United States

and Northern Mexico and breed throughout grasslands in the United States and Southern

Canada. However, the loss of prairie habitat has contributed to a long-term population

decline in Grasshopper Sparrows (Herse et al., 2018). Therefore, identifying suitable habi-

tats and investigating the abundance of Grasshopper Sparrow populations is essential for

directing conservation efforts.
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Figure 2.1: Panel (a) displays the points (red +) and traps (blue +) placed in the study
area to collect DS and CR data. Panel (b) shows the partitioning of the study area to
obtain spatially aggregated DS and CR data (for scenario 2 and scenario 3). Spatially
aggregated data are obtained by dividing the study area into 100 non-overlapping partitions
and choosing the partitions that include a point or a trap. Panel (c) displays the detection
and capture regions of DS and CR data (for scenario 4). Panel (d) displays the circle’s
perimeter surrounding the points, where the radius is equal to each individual’s recorded
distance (for scenario 5). Panel (d) also displays the capture regions of the traps.

We used observations from the 2019 breeding season for our analysis. The data con-

sist of 72 observations from 53 transects and 160 observations from 137 mist-net locations

(Fig. 2.2a). The transects were surveyed during the month of June as part of the long-term

monitoring efforts of birds at the Konza Prairie. Within 24 experimentally-managed pas-

tures, one to four 300m long transects bisect the topographic gradients within the sampling

site. A single observer slowly walks the transect, recording the individuals seen or heard on
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either side of the transect, with the distance to each individual (Boyle, 2019). The mist-nets

were used to capture individuals during the entire breeding season from shortly after the

adult male birds arrive in April until nests complete in August. The mist net locations

were selected to maximize chances of capturing the adult male birds within their territories,

and the birds were attracted to nets using a small speaker broadcasting a territorial song

(Williams & Boyle, 2018).

Male adult birds sing territorial songs from conspicuous perches in suitable habitats and

actively defend 0.5 ha territories from other male birds (Winnicki et al., 2020). Female birds

select and build nests within the territories of male birds. Their behavior is very secretive,

making them difficult to detect. Thus, both detections and captures consist of male adult

birds only. Upon arrival, the male adult birds establish breeding territories at the site. These

individual male adult birds may select territories based on many environmental cues such as

vegetation, topography, location of conspecifics, and land management (Andrews et al., 2015;

Shaffer et al., 2021). To illustrate our approach, we use elevation as the spatial covariate.

We illustrate our approach for DS and CR data using the detections from transects

and captures from mist-nets. We assume that the individual has to be within a maximum

distance of 150m from the transect to be detected, which is realistic given the topography,

song attenuation, and realized distance values (Fig. 2.2c). For captures from mist-nets,

we assume that the individual has to be within a maximum distance of 25m to elicit a

response and be attracted to the mist-net, a distance reasonable given the speaker volume and

observed behavior of the species (Fig. 2.2c). Furthermore, we assume that the observations

from the transects and the mist-nets are independent within and between the surveys.

As in scenarios 2–5 in the simulation experiment, we fit the four models to the observed

data: 1) the model proposed by Farr et al. (2020) for spatially aggregated data, 2) the

model from (2.3) transformed for spatially aggregated data using change of support, 3)

our proposed fused data SDM from (2.8) without incorporating recorded distances, and

4) our proposed fused data SDM from (2.9) incorporating recorded distances. We obtain

the spatially aggregated data by dividing the study area into non-overlapping partitions and

counting observed individuals in each partition. If a partition does not consist of a transect or
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a mist net, we define the partition as an unsampled partition which led to 66 non-overlapping

sampled partitions (Fig. 2.2b). Finally, we fit the models to the data, compare the maximum

likelihood estimates and the corresponding 95% Wald-type CIs for β0, β1, and λ̄.

2.6 Results

2.6.1 Simulation experiment

As expected, the benchmark scenario (i.e., scenario 1) yielded an unbiased estimate for β0,

with a high coverage probability of the 95% CIs, 0.942. When the data contained partial

location information, scenario 2 and scenario 3 yielded biased estimates for β0, whereas

scenario 4 and scenario 5 yielded unbiased estimates (see Fig. 2.3 for graphical comparison).

The coverage probabilities of the 95% CIs for β0 under scenarios 2–5 were 0.190, 0.180, 0.761,

and 0.925, respectively. The relative efficiencies of estimates for β0 obtained from scenarios

2–5 were 23.204, 15.949, 13.907, and 1.007, respectively. We noticed that the efficiency of

the estimate for β0 under scenario 5, surprisingly reaches the efficiency obtained under the

benchmark scenario 1 (see Table 2.1).

Similar to the parameter estimate for β0, scenario 1 yielded an unbiased estimate for

β1 with a high coverage probability of the 95% CIs, 0.948. However, when the data con-

tained partial location information, scenario 2 and scenario 3 yielded biased estimates for

β1, whereas scenario 4 and scenario 5 yielded unbiased estimates for β1 (see Fig. 2.3 for

graphical comparison). The coverage probabilities of the 95% CIs for β1 under scenarios 2–5

were 0.749, 0.838, 0.942 and 0.942, respectively. The relative efficiencies of estimates for β1

obtained from scenarios 2–5 were 1.891, 1.394, 1.089, and 1.041, respectively, where scenario

5 provides the most efficient parameter estimate for β1 (see Table 2.1).

Scenario 1 yielded an unbiased estimate for λ̄ with a high coverage probability of the 95%

CIs, 0.944. When the data contained partial location information, scenario 4 and scenario

5 yielded unbiased estimates for λ̄. The coverage probabilities of the 95% CIs for λ̄ under

scenarios 2–5 were 0.343, 0.430, 0.783, and 0.944, respectively. The relative efficiencies of
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the estimates for λ̄ obtained from scenarios 2–5 were 265.921, 285.819, 141.896, and 1.038,

respectively. We noticed that scenario 5 provides the most efficient parameter estimate for

λ̄, which surprisingly reaches the efficiency obtained under benchmark scenario 1 (see Table

2.1).

Table 2.1: Estimated coverage probability (CP) for the 95% confidence interval (CI) and
the relative efficiency (RE) for the parameters β0, β1, and expected abundance (λ̄) obtained
under scenario1, scenario 2 , scenario 3, scenario 4, and scenario 5 in the simulation exper-
iment. The parameter estimates are obtained by fitting the models to 1000 simulated data
sets.

Scenarios
β0 β1 λ̄

CP RE CP RE CP RE
Scenario 1 0.942 - 0.948 - 0.944 -
Scenario 2 0.190 23.204 0.749 1.891 0.343 265.921
Scenario 3 0.180 15.949 0.838 1.394 0.430 285.819
Scenario 4 0.761 13.907 0.942 1.089 0.783 141.896
Scenario 5 0.925 1.007 0.942 1.041 0.944 1.038

2.6.2 Grasshopper Sparrows at Konza Prairie Biological Station,

Kansas

The estimates obtained for the intercept parameter (β0) under our two proposed models were

similar, with narrow 95% CIs. The models that use spatially aggregated data yielded similar

estimates for β0, but with approximately 12 times wider CIs than our proposed models

(see Fig. 2.4a, and 95% CIs in Table 2.2). The estimates obtained for β1 under all four

models yielded similar inference regarding the relationship between species abundance and

elevation; however, the estimate for β1 under the model proposed by Farr et al. (2020) was

twice as large as the estimates obtained from the other models (see Fig. 2.4b, and 95% CIs

in Table reftable2.2). The crucial outcome from our fitted models is the estimates obtained

for λ̄. The models that use spatially aggregated data yielded inexplicable estimates for λ̄

with an approximate 163000 times wider 95% CIs than our proposed models (see Fig. 2.4c,

and 95% CIs in Table reftable2.2). Altogether, the parameter estimates β̂0, β̂1, and
ˆ̄λ from
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our proposed two models were similar and yielded narrower 95% CIs. The similarity of the

estimates obtained from our two models may be due to the smooth surface of the spatial

covariate ”elevation.”

Table 2.2: Parameter estimates and the width of the 95% CIs for the intercept (β0), the re-
lationship between the abundance and elevation (β1), and the log of the expected abundance
(λ̄) for Grasshopper Sparrows at Konza Prairie Biological Station, Kansas. The parameter
estimates are obtained from the model proposed by Farr et al. (2020) for spatially aggregated
data (Spatially aggregated: FARR), the model from (2.3) transformed for spatially aggre-
gated data using change of support (Spatially aggregated: from (2.3)), our proposed fused
data SDM from (2.8) without incorporating recorded distances (Fused SDM: from (2.8)),
and our proposed fused data SDM from (2.9) incorporating recorded distances (Fused SDM:
from (2.9)).

Models
β0 β1 log(λ̄)

β̂0 Width
of 95%
CI

β̂1 Width
of 95%
CI

log(ˆ̄λ) Width
of 95%
CI

Spatially
aggregated:
FARR

-4.767 6.034 0.022 0.015 12.766 6.033

Spatially
aggregated:
from (2.3)

-4.751 5.616 0.012 0.015 12.669 5.619

Fused SDM:
from (2.8)

-11.669 0.486 0.011 0.015 5.742 0.463

Fused SDM:
from (2.9)

-11.663 0.484 0.010 0.015 5.743 0.463
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Figure 2.2: Panel (a) displays the transects (red –) and mist nets (blue +) that are used to
collect data on Grasshopper Sparrows at Konza Prairie Biological Station (KPBS). The sur-
veys are conducted at watershed-level (grey – in panel (a)). Panel (b) shows the partitioning
of the study area (66 partitions) to obtain spatially aggregated data (dashed line) to fit the
two models; the model proposed by Farr et al. (2020) for spatially aggregated data, and the
model from (2.3) transformed for spatially aggregated data using change of support. Panel
(c) displays the detection and capture regions of transects and traps (dashed line) used for
our proposed fused data SDM from (2.8) without incorporating recorded distances. Panel
(d) displays the parallel lines to the transect with a perpendicular distance equal to each
individual’s recorded distance, which is used for our proposed fused data SDM from (2.9)
incorporating recorded distances. Panel (d) also displays the capture regions of the traps
(dashed line).
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Figure 2.3: The box plots display the estimates of parameters β0 (panel a), β1 (panel b),
and log(λ̄) (panel c) obtained under scenarios 1–5 for 1000 simulated data sets. The true
values of the parameters (β0 = 9, β1 =1, log(λ̄)= 9.5 ) are shown by the blue dash line (–).
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2.7 Discussion

2.7.1 IPPP generalization for DS and CR data that enables data

fusion

A critical aspect of data fusion is providing model representations for multiple data types

that target the same inference. The existing point process based models for DS data use

individual location information to infer about species-habitat relationship and abundance.

In contrast, the existing point process based models for CR explicitly use home range centers.

Therefore, the parameters in the underlying point process for the two data sources do not

target the same inference. This incompatibility in the underlying process model may explain

the lack of approaches for data fusion of DS and CR data. Our proposed approach provides

a generalization of Borchers et al. (2015)’s IPPP based model with model representations

for DS and CR data that share parameters in the underlying process that target the same

inference, hence enabling data fusion. Therefore, our approach enables the use of these two

types of high-quality planned survey data to obtain useful statistical inference regarding

the species-habitat relationship, accurate estimates for the expected abundance, and more

accurate spatial maps for species distributions.

2.7.2 Improvement of inference regarding species-habitat relation-

ship and estimate for the expected abundance by properly

accounting for missing data issues

Efficiently acquiring reliable parameter estimates for both β0 and β1 is of utmost importance.

However, many recent studies only attempt to improve the estimate of β1, focusing on species-

habitat relationships or relative abundance (a measure of expected abundance relative to

other species within a community). These approaches do not improve estimates of β0.

In contrast to relative abundance, expected abundance plays a vital role in studying the

dynamics of species populations, and estimating the expected abundance depends on both
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β0 and β1. It is also important to note that a small deviation of β̂0 and β̂1 from the true

parameter value would significantly affect the estimate for the expected abundance due to

the exponential function (i.e., λ̂(s) = ex(s)
′β̂). Our study shows that obtaining reliable, more

efficient parameter estimates for β0 and β1 crucially relies upon properly accounting for the

missing data issues. Our modeling framework explicitly acknowledges and accounts for the

missing data issues in DS and CR data using theory and tools from missing data literature.

Our results show that when the data contain partial location information, ad-hoc ap-

proaches such as spatial aggregation result in bias parameter estimates with poor efficiency

(see Table 2.1). Our proposed models provide reliable, more efficient parameter estimates

than existing approaches that use spatial aggregation (see Table 2.1). Furthermore, our

simulation experiment led to an important finding: the inclusion of additional information

regarding individual locations into the model, such as recorded distances, led to a significant

efficiency gain in the parameter estimates. In fact, the efficiency gain surprisingly reaches the

efficiency of the parameter estimates obtained under the benchmark scenario with complete

location information.

2.7.3 A spatio-temporal fused data SDM

In our simulation experiment, the non-overlapping detection/capture regions ensure the in-

dependence of observations across and within surveys. In our data example, we assumed that

the observations are independent across and within the surveys. However, we can strengthen

the independence assumption by extending our model to a spatio-temporal model. A spatio-

temporal model enables the modeling of species abundance patterns across both time and

space. By using a continuous-space discrete-time model with short time periods, we can

strengthen the independence assumption. However, a spatio-temporal model may have to

address the spatio-temporal autocorrelation, which can be addressed by adding a spatio-

temporal random effect. A bewildering number of approaches within the SDM literature are

developed to model the spatial and spatio-temporal autocorrelation (e.g., Chakraborty et al.,

2011; Renner et al., 2015; Mohankumar & Hefley, 2021a), which can be used to incorporate
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a spatial or a spatio-temporal random effect.

2.7.4 Detection and capture functions

In our study, we defined the probability of detection by a half-normal function of the dis-

tance between the point or the transect and the location of the individual. We defined the

probability of capture as a constant parameter. However, the probability of detection can be

defined by other functions such as uniform, hazard-rate, negative exponential, etc. Similarly,

the probability of capture can be defined as a function of covariates such as the observer’s

experience level or environmental or geographical features. Such extensions of the model

enable identifying the factors that influence the probability of detection or capture.

It is possible that the parameters in the detection function or capture function are con-

founded with the parameters in the intensity function. For example, in a model in which the

underlying intensity and the probability of capture are both functions of the same spatial

covariate, the underlying point process is confounded with the capture process. For another

example, if the underlying intensity function is a function of the distance from the transect,

the underlying point process is confounded with the detection process. Accounting for such

confounding of the underlying intensity and the detection/capture probability is an area that

needs further research. In most situations, we can avoid such confounding during the design

of the surveys.

2.7.5 Inclusion of the spatial and non-spatial covariates

The intensity function, probability of detection, and probability of capture can depend on

many covariates that are spatial or non-spatial. For instance, in our Grasshopper sparrow

data example, the practitioners may want to include ”effort” to define the probability of

detection, which is a non-spatial covariate, or they may want to include ”vegetation,” which

is a spatial covariate. A non-spatial covariate that is measured during the survey can be

easily incorporated into our model. However, for the spatial covariate, our approach requires

the spatial covariate values for the entire study region. In most cases, they can be obtained
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from a geographical information system. However, obtaining the spatial covariate values in

the entire study region can be trivial in some situations. In such situations, we can employ

an auxiliary model to utilize the available data to predict the spatial covariate values for the

entire region and use the predicted values as the input values for the spatial covariate in our

models.
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Chapter 3

Robustness of spatio-temporal point

process models to misspecified

temporal support

3.1 Abstract

Temporal dynamics of ecological processes are complex, and their influence on species-habitat

relationships and abundance operate on multiple spatio-temporal scales. Spatio-temporal

point process models are widely used to model species-habitat relationships and estimate

abundance across multiple spatio-temporal scales; however, the robustness of models to

changing temporal scales is rarely studied. Understanding the temporal dynamics of eco-

logical processes across the entirety of spatio-temporal scales is the key to learning about

species-habitat relationships and abundance. Therefore, investigating the influence of tem-

poral support on the robustness of spatio-temporal point process models is critical to un-

derstanding species distributions. We use a data fusion approach, as it lifts constraints in

individual data sources such as lack of spatio-temporal coverage and expands the spatio-

temporal scope of study to enable the study of complex phenomena on species-habitat re-

lationships and abundance across multiple time scales. In our approach, we fuse distance
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sampling and capture-recapture data in a spatio-temporal point process modeling framework

and investigate the robustness of the model to changing temporal scales. To evaluate the

performance of our modeling framework and evaluate the impact of temporal support on

models’ robustness, we conduct a simulation experiment with four scenarios where species

interact with spatio-temporal covariates on continuous, daily, weekly, and monthly temporal

scales. We illustrate the influence of temporal support to model species-habitat relation-

ships and abundance using data on Grasshopper Sparrows (Ammodramus savannarum) in

north-eastern Kansas, USA.

3.2 Introduction

Studying the temporal dynamics of ecological processes and how they drive species-habitat

relationships is crucial to understanding the key impacts of environmental and climate

changes on species distributions. Conservation and management heavily rely upon these

findings to implement conservation reserve planning strategies and administrative regula-

tions (Pressey et al., 2007; Hefley et al., 2015). However, ecological processes are inherently

complex, and they operate across a wide range of temporal scales (Fink et al., 2014). Species

may interact with these processes at various temporal scales that vary from species to species

(Fink et al., 2014). The ecological processes consist of biotic factors (e.g., birth, death, com-

petition, predation, immigration, and extinction) and abiotic factors (e.g., climate change,

resource availability, environmental heterogeneity, and human-caused habitat disturbances),

and they may directly or indirectly influence species-habitat relationships and cause short

to long-term fluctuations in species abundance. For example, soil microbe populations are

extremely sensitive to environmental changes, and events such as soil burning or wildfire

can cause immediate short-term fluctuations in their populations (Vázquez et al., 1993).

Also, long-term degradation of grasslands due to increased land use may influence long-term

population decline in grassland birds (Coppedge et al., 2001). Highly variable or heavy

rainfall can have direct and indirect physiological consequences on food supply, competition,

predation, and pathogens, leading to short-time fluctuations in grassland bird populations
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(Williams & Boyle, 2019; Boyle et al., 2020). Studying the temporal dynamics of ecological

processes on multiple scales can reveal the ecological context in which species interact with

and respond to their environment.

Spatio-temporal point process models are widely used to model species distribution across

geographic space and time (Hefley & Hooten, 2016; Renner et al., 2015). The notion of sup-

port that is used interchangeably as scale throughout this chapter is extremely important to

model species distribution using spatio-temporal models. However, the ultimate obstacle in

existing modeling approaches is identifying processes across the entirety of spatio-temporal

scales relevant to understanding dynamic changes in species-habitat interactions (Michener

& Jones, 2012; Worm & Tittensor, 2018; Rapacciuolo & Blois, 2019). Some studies have em-

phasized the significance of addressing scale dependence in habitat-selection models (Mayor

et al., 2009; McGarigal et al., 2016), but the impact of the scale dependence on point pro-

cess models to model species distributions is seldom discussed. The spatial scale can be

adequately dealt with because the spatial support is often known, and the locations of the

observed individuals can be adequately mapped into spatial covariates using appropriate spa-

tial support. Unlike the spatial scale, the influence of the temporal scale is critical and more

complex since ecological processes drive biodiversity patterns across multiple temporal scales

(Fink et al., 2014). There is rarely a single temporal scale that best identifies how specific

ecological processes drive species-habitat relationships and abundance patterns. Therefore,

adequately specifying the temporal support in the point process model is unfeasible, and

therefore the temporal support in the spatio-temporal point process model may affect the

model’s accuracy in identifying species-habitat relationships and abundance patterns.

Practitioners often define the temporal support in spatio-temporal point process mod-

els based on the resolution at which the phenomenon is being studied (Cressie & Wikle,

2015). Cressie & Wikle (2015) state a motivating example in this context, where the spatio-

temporal process under study was the monthly average of maximum temperatures over an

area surrounding Iowa for 240 months. Here the spatial support was continuous and the

temporal support was discrete on a monthly scale, and the modeling was used to predict

the seasonal (monthly) pattern of temperatures. An equivalent species distribution study
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using spatio-temporal point process models may attempt to learn the seasonal (monthly)

pattern of species abundance over an area as a function of monthly averaged covariates such

as monthly average temperature. However, questions that remain to be answered include

whether species interact with the covariates at monthly scales, whether the use of monthly

temporal support in the point process model is adequate, and whether the estimated monthly

abundance pattern explains the true temporal dynamics of the species. With enough ob-

servations at all appropriate temporal and spatial scales without missing data issues, one

can investigate the robustness of the models with varying temporal supports to identify the

true underlying species-habitat relationships that are inherent in the process. However, the

process cannot be observed at all temporal and spatial scales, and the data may often con-

tain missing data issues (Cressie & Wikle, 2015). For example, data from planned surveys

may suffer from lack of spatial and temporal coverage because it requires a large amount of

effort and cost to densely cover a large geographic region throughout a long period of time.

Opportunistic surveys may contain missing data issues such as sampling bias and location

uncertainty that are challenging to account for with unknown sampled regions. Therefore,

it is challenging to use individual data sources to investigate the temporal support of the

point process models across the entirety of spatio-temporal scales relevant to understanding

the dynamic ecological processes.

Data fusion is an increasingly discussed concept in recent years as the availability of eco-

logical data from various ecological sub-disciplines across multiple spatio-temporal scales is

increasing. It involves incorporating multiple data sources in a unified modeling framework

that can account for the limitations associated with each data source alone and provide

more accurate model predictions and inference (Dorazio, 2014; Fletcher et al., 2019; Hooten

& Hefley, 2019; Zipkin et al., 2021; Strebel et al., 2022). Therefore, data fusion offers practi-

tioners an opportunity to expand the spatio-temporal scope of research, enabling the inves-

tigation of complex phenomena on species-habitat relationships and abundance in multiple

temporal scales.

Many of the data fusion approaches developed use spatio-temporal point processes, and

most of them are built based on an inhomogeneous Poisson point process (IPPP) (Mohanku-
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mar et al., 2022). An IPPP can accommodate spatio-temporal inhomogeneity (Diggle et al.,

1976; Cressie, 1991; Kéry & Royle, 2015) and enable inferences on the species-habitat re-

lationship and abundance across space and time (Warton & Shepherd, 2010; Renner et al.,

2015; Hefley & Hooten, 2016). Few IPPP based studies discuss models’ robustness to the

spatial support in which habitat preference of the species may operate; however, the influ-

ence of temporal support is seldom discussed (Lin et al., 2011; Ramon et al., 2018). Another

crux in most IPPP-based approaches is that they often involve aggregating the individual-

level data into counts or presence-absence data without addressing the key scaling dynamics

associated with aggregating data across scales (Fletcher et al., 2019; Farr et al., 2020). As we

mentioned before, accounting for inadequacies in spatial support is straightforward because

spatial support is often known. In fact, many IPPP-based approaches discuss spatial sup-

port in the context of location error and spatial aggregation and use the change of support

technique to address inadequacies in spatial support (Walker et al., 2020; Hefley et al., 2020;

Mohankumar et al., 2022). Unlike the spatial support, identifying the appropriate tempo-

ral support at which species interact with ecological processes is more complex and may

not always be known a priori. Expanding the scope of IPPP-based data fusion approaches

to investigate temporal support would provide a thorough understanding of the effect of

misspecified temporal support on the model parameter estimates.

We use an IPPP-based data fusion approach using distance sampling (DS) and capture-

recapture (CR) data to investigate the effect of temporal support on the robustness of the

spatio-temporal point process models. DS and CR are two types of widely used high-quality

data used to study species-habitat relationships and abundance. DS data are collected by

recording distances to an individual in the study area from a point or transect (Burnham

et al., 1980; Burnham & Anderson, 1984; Buckland et al., 2001). CR data are collected

by capturing an individual in the study area, either by physically capturing the individual

using a trap (e.g., mist nets) or by taking a picture (e.g., camera traps; Otis et al., 1978;

Seber, 1982; Pollock et al., 1990). Due to the high cost and effort required to collect DS and

CR data, they may lack the spatio-temporal coverage to model fine-scale species-habitat

relationships and abundance patterns. However, fusing the DS and CR data sources will
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have increased spatio-temporal coverage rather than using the data sources alone. There are

many IPPP-based approaches developed in the DS and CR literature individually (Borchers

et al., 2015; Fletcher et al., 2019; Farr et al., 2020; Hefley et al., 2020; Mohankumar et al.,

2022). Mohankumar et al. (2022) proposed an IPPP-based approach that fuses DS and CR

data in a unified modeling framework. They incorporate the missing data mechanism in

building their models that account for missing data issues unique to each data source. By

doing so, their approach provided more accurate model predictions and inference regarding

species-habitat relationships and abundance. Nevertheless, their modeling framework only

involved the study of species-habitat relationship and abundance across space, but not time.

To estimate species-habitat relationships and abundance across time, an extension of the

approach (Mohankumar et al., 2022), including the temporal component, is needed.

Our fused data spatio-temporal modeling framework proposed here is built upon the

approach by Mohankumar et al. (2022). We extend their modeling framework by incorpo-

rating a temporal component that enables the estimation of species-habitat relationships

and abundance patterns across both space and time. We implement models in continuous

and discrete time scales and evaluate the models’ robustness to the temporal support using

a simulation experiment. Finally, we fit the proposed fused data spatio-temporal models

to data on Grasshopper Sparrows (Ammodramus savannarum) in north-eastern Kansas and

illustrate the influence of the temporal support to learn about species-habitat relationships

and the temporal abundance pattern.

3.3 Materials and methods

3.3.1 Underlying continuous-time point process

Our modeling framework is based on an underlying IPPP that depends on continuous space

and continuous time. The IPPP describes the random number of individuals and the time

and the locations of the individuals in the study area at a given time period based on

a continuous inhomogeneous intensity function λ(s, t), described by a function of spatio-
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temporal covariates. The λ(s, t) describes the expected number of individuals per infinitely

small unit area at a unit time scale and is usually defined as λ(s, t) = ex(s,t)
′β, where the s

represents a vector containing coordinates of a location within the study area S, t represents

a time point in T , x(s, t) ≡ (1, x1(s, t), x2(s, t), ..., xq(s, t))
′ and β ≡ (β0, β1, β2, ..., βq)

′. The

x1(s, t), x2(s, t), ..., xq(s, t) represent q spatio-temporal covariates at the location s at time t,

β0 represents the intercept parameter, and β1, β2, ..., βq represent the regression coefficients

associated with the species-habitat relationship. The probability distribution function (PDF)

of the IPPP can be written as

[(u1, k1), (u2, k2), ..., (uN , kN), N |λ(s, t)] =
e−

∫
S
∫
T λ(s,t)dtds(

∫
S

∫
T λ(s, t)dtds)

N

N !
×

N∏
i=1

λ(ui, ki)∫
S

∫
T λ(s, t)dtds

= e−
∫
S
∫
T λ(s,t)dtds

N∏
i=1

λ(ui, ki),

(3.1)

where, N is the total number of individuals in the study area S during the study period T .

The (u1, k1), (u2, k2), ..., (uN , kN) are the coordinates and the time points of all N individuals

such that ui ∈ S and ki ∈ T . The expected abundance in the study area S at any given

time t can be obtained by λ̄t =
∫
S λ(s, t)dtds =

∫
S e

x(s,t)′βds.

3.3.2 Underlying discrete-time point process

The distributional representation in (3.1) assumes that the species interact with the tem-

poral covariate in a continuous time scale and that the temporal support is continuous.

However, species may interact with the ecological process at discrete time scales, where now

the underlying point process becomes discrete in time. In this context, the spatio-temporal

point process can be thought of as a spatial process at a temporal aggregation (Cressie &

Wikle, 2015), where the aggregation can be any given time period. Therefore, the underlying

discrete-time point process can be defined by partitioning the total time period T into J

time periods K1, K2, ..., KJ (e.g., days, weeks, or months) and transforming the temporal
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support in (3.1) from continuous to discrete. For each time period, an intensity function

λKj
(s) can be defined as discrete in time. Now the PDF for the locations of individuals at

discrete time period Kj can be written as

[(u1, Kj), (u2, Kj), ..., (uNKj
, Kj), NKj

|λKj
(s)] = e−

∫
S λKj

(s)ds ×
NKj∏
i=1

λKj
(ui), (3.2)

where, NKj
is the number of individuals in the study area during the time period Kj. In

the following subsections we discuss two of the most common representations to define the

discrete-time intensity function λKj
(s).

Discrete-time intensity function using a temporally aggregated covariate

A discrete-time intensity λKj
(s) can be defined as a function of a vector of covariates at a

location s during time period Kj (i.e., xKj
(s)), whose values are constant within Kj. The

xKj
(s) can be discrete with levels associated to each time periodKj, or it can be a continuous

covariate that is transformed into a discrete covariate by aggregating over each time period

Kj such that xKj
(s) =

∫
Kj

x(s, t)dt. In fact, implementing discrete spatio-temporal models

by transforming continuous covariates to discrete is extremely common in species distribution

studies (Dorazio, 2014; Farr et al., 2020; Farr, 2021). Using the vector of covariates xKj
(s),

the intensity at a given location s during a time period Kj can be written as

λKj
(s) = exKj

(s)′β. (3.3)

The expected abundance in the study area S during the time period Kj can be obtained as

the integral over the continuous spatial domain S, λ̄Kj
=

∫
S λKj

(s)ds =
∫
S e

xKj
(s)′βds.

Discrete-time intensity function using Change of support (COS)

Change of support (COS) is a technique that can be used to transform the temporal process

from continuous support to discrete support. COS is used in many IPPP-based studies that

involve spatial aggregation to model species distribution (Fletcher et al., 2019; Farr et al.,
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2020). Recent studies include using the COS to account for location error in data (Walker

et al., 2020; Hefley et al., 2020; Mohankumar et al., 2022). Many of these studies argue that

modeling species distribution across space using a surrogate predictor such as a spatially ag-

gregated covariate may lead to location error problems and yield biased parameter estimates

about species habitat relationships and abundance (Hefley et al., 2020; Mohankumar et al.,

2022). This is primarily because the spatial support is often known, and the locations of

the observed individuals can be adequately mapped into spatial covariates using COS using

appropriate spatial support. However, this concept is not quite clear in the temporal do-

main because the temporal support is hardly known, and species may interact with temporal

covariates across multiple scales. Therefore, the adequacy of using COS over a temporally

aggregated covariate merely depends on the underlying temporal process by which species

interact with the environment.

By applying COS, the intensity at a given location s during a time period Kj can be

written as

λKj
(s) =

∫
Kj

ex(s,t)
′βdt. (3.4)

The expected abundance in the study area S at the time period Kj can be obtained by

λ̄Kj
=

∫
S λKj

(s)ds =
∫
S

∫
Kj
ex(s,t)

′βdtds.

3.3.3 Accounting for missing individuals and location uncertainty

We propose distributional representations for observed DS and CR data extending upon the

modeling framework proposed by Mohankumar et al. (2022) that accounts for missing indi-

viduals and location uncertainty. For observed data from DS survey, under the assumption

that distances are recorded perfectly, the observed location of the ith individual is assumed

to be uniformly distributed along the parallel lines to the transect with a perpendicular

distance that is equal to the recorded distance (Hefley et al., 2020). Suppose DS data are

collected using points, the observed location of the ith individual is assumed uniformly dis-

tributed along the perimeter of a circle, with a radius equal to the recorded distance (Hefley

et al., 2020). For observed data from CR survey, the observed location of an individual is
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assumed to be uniformly distributed in the capture region that surrounds the trap where

the individual was captured. The capture region is the region where the probability of cap-

ture is greater than zero. By adding a temporal component to the modeling framework of

Mohankumar et al. (2022) and assuming that the time at which the individual was observed

is recorded perfectly, we can write the PDF of the observed location and time of the ith

individual conditioned on the actual location and time of the individual as

[(yi, ki)|(ui, ki)] = |Aui
|−1I(yi ∈ Aui

), (3.5)

where, (yi, ki) is the observed location and time of the ithindividual, (ui, ki) is the actual

location and time of the ithobserved individual represented in the continuous-time underlying

point process in (3.1). For DS data, Aui
indicates the parallel lines to the transect with a

perpendicular distance that is equal to the recorded distance or the perimeter of the circle

surrounding the point with radius equal to the recorded distance, whereas, |Aui
| is the

length of the parallel lines or the length of the perimeter of the circle. For CR data, Aui
is

the capture region surrounding the trap, and |Aui
| is the area of the capture region. Since

the distributional representation in (3.5) does not depend on time, the PDF of the observed

location of the individual in discrete time period Kj (i.e., [(yi, Kj)|(ui, Kj)]) is equivalent to

the distributional representation in (3.5).

Now, we can derive the PDF for the locations and time of observed individuals as,

[(y1, k1), (y2, k2), ..., (yn, kn), n|λ(s, t), q(s, t), r(s, t)] = e−
∫
S
∫
T λ(s,t)q(s,t)I(r(s,t)=1)ds,t×

n∏
i=1

∫
Aui

|Aui
|−1λ(ui, ki)q(ui, ki)I(r(ui, ki) = 1)dui,

(3.6)

where, n is the number of observed individuals. For DS data, q(·) represents the probability

of detection and for CR data, q(·) is the probability of capture. The representation for

q(·) can be written as a function of covariates such as distance to the individual, height of

the mist-net, observer’s experience level, or environmental or geographical features. In our

study, we defined q(·) for DS data using a half-normal function (Hefley et al., 2020), that
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is q(ui, ki) = q(ui) = e−d2i /ϕ, where, di is the distance between the actual location of the

ithdetected individual and the transect, ϕ is a scale parameter (Hefley et al., 2020). However,

q(·) can be defined by other functions such as hazard-rate, negative exponential, etc. We

define q(·) for CR data as q(ui, ki) = q(ui) = θ. The r(s, t) is an indicator function defining

whether the location s and time t is sampled within the study area and the study period.

In our study, we define r(ui, ki) = r(ui) = I(ui ≤ B), where B is the region surrounding

a point, transect, or a trap where probability of detection or capture is greater than zero.

Now, the continuous-time fused data spatio-temporal model for DS and CR data can be

obtained by representing DS and CR data using the distributional representation in (3.6)

and obtaining the joint distribution.

Similarly, PDF for the locations of observed individuals in discrete time can be obtained

using the PDF represented in (3.2) and the discrete-time intensity functions described in

(3.3) and (3.4). The PDF for the locations of observed individuals at discrete time period

Kj can be written as

[(y1, Kj), (y2, Kj), ..., (ynKj
, Kj), nKj

|λKj
(s), q(s, t), r(s, t)] = e−

∫
S λKj

(s)q(s)I(r(s)=1)ds×
nKj∏
i=1

∫
Aui

|Aui
|−1λKj

(ui)q(ui)I(r(ui) = 1)dui,
(3.7)

where, nKj
is the number of individuals observed in the study area S during the time

period Kj. The discrete-time fused data spatio-temporal model for DS and CR data can be

obtained by representing DS and CR data using the distributional representation in (3.7)

and obtaining the joint distribution.

3.4 Simulation experiment

We conducted a simulation experiment under four scenarios in which the temporal covariates

drive species abundance in 1) continuous, 2) daily, 3) weekly, and 4) monthly time scales. We

simulated 300 datasets for each scenario and fitted seven fused data spatio-temporal models
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to each simulated dataset: 1) the continuous-time fused data spatio-temporal model using

the distributional representation in (3.6), 2) the discrete-time fused data spatio-temporal

model using the distributional representation in (3.7) with daily support using a temporally

aggregated covariate, 3) the discrete-time fused data spatio-temporal model using the dis-

tributional representation in (3.7) with daily support using COS, 4) the discrete-time fused

data spatio-temporal model using the distributional representation in (3.7) with weekly sup-

port using a temporally aggregated covariate, 5) the discrete-time fused data spatio-temporal

model using the distributional representation in (3.7) with weekly support using COS, 6)

the discrete-time fused data spatio-temporal model using the distributional representation

in (3.7) with monthly support using a temporally aggregated covariate, and 7) the discrete-

time fused data spatio-temporal model using the distributional representation in (3.7) with

monthly support using COS (Table 3.1).

Since the focus of our study was to investigate the influence of temporal support on mod-

els’ robustness, we simulated a single temporally varying covariate, x(s, t) using a reduced

rank Gaussian process on a unit square study area (i.e., S = [0, 1]× [0, 1], where s ∈ S) and a

unit time scale (i.e., T = [0, 1]). In our first scenario, we simulated the actual locations and

time of the individuals using the model represented in (3.6) with intensity λ(s, t) = ex(s,t)
′β

assuming that the temporal covariate drives species abundance in a continuous time scale

(Fig. 3.1). In our second, third, and fourth scenarios, we assume that the temporal co-

variate drives species abundance in discrete time scales; daily, weekly, and monthly and we

simulated the actual locations and time of the individuals using the model represented in

(3.7) with the intensity λKj
(s) = exKj

(s)′β (Fig. 3.1). Here the time periods Kj are obtained

by partitioning T into daily, weekly, and monthly partitions, and the discrete-time intensity

function is defined by temporally aggregating x(s, t) such that, xKj
(s) =

∫
Kj

x(s, t)dt. In

all four scenarios, the observed data for DS and CR was obtained by placing 15 transects

and 65 traps in the study area. We assume that the individual must be within a maximum

distance of 0.04 to be detected from a transect and within a maximum distance of 0.02 from

a trap to be attracted and captured. The parameter values used to simulate the data were

β0 = 9, β1 = 1, θ = 0.2, and ϕ = 0.025.
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We obtained the maximum likelihood estimates for the intercept (β0), species-habitat

relationship (β1), and the expected abundance across time (λ̄t) for each simulated data set.

We assessed the reliability of the parameter estimates for the species-habitat relationship

(β1) by calculating the bias and the coverage probabilities of the 95% Wald-type confidence

intervals (CIs). To assess the reliability of the estimates for the expected abundance across

time (λ̄t), we calculated the mean integrated absolute error (MIAE) and the average coverage

probabilities of the 95% Wald-type CIs. The 95% Wald-type CIs for the estimated expected

abundance was obtained using the delta method under first-order Taylor expansion. To

compare the predictive accuracy of the models, we calculated the proportion of the times

Akaike information criterion (AIC) selected each fitted model as the best model among the

fitted models.

Table 3.1: Models fitted to data under the scenarios in the simulation experiment.

Model Description

Model 1
Continuous-time fused data spatio-temporal model using the distribu-
tional representation in (3.6)

Model 2
Discrete-time fused data spatio-temporal model using the distributional
representation in (3.7) with daily support using the temporally aggre-
gated x(s, t)

Model 3
Discrete-time fused data spatio-temporal model using the distributional
representation in (3.7) with daily support using COS

Model 4
Discrete-time fused data spatio-temporal model using the distributional
representation in (3.7) with weekly support using the temporally aggre-
gated x(s, t)

Model 5
Discrete-time fused data spatio-temporal model using the distributional
representation in (3.7) with weekly support using COS

Model 6
Discrete-time fused data spatio-temporal model using the distributional
representation in (3.7) with monthly support using the temporally ag-
gregated x(s, t)

Model 7
Discrete-time fused data spatio-temporal model using the distributional
representation in (3.7) with monthly support using COS
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3.5 Case study: Grasshopper Sparrows at Konza Prairie

Biological Station, Kansas

Grasshopper Sparrows are a migratory grassland bird species that has been increasingly

studied in recent years due to their population decline (West et al., 2016; Herse et al., 2018).

In fact, they are one of the most threatened groups of birds in the United States (Brennan &

Kuvlesky Jr, 2005). The Grasshopper Sparrows’ annual migratory cycle includes wintering in

the southern United States and northern Mexico and breading throughout grasslands in the

United States and southern Canada (Maćıas-Duarte et al., 2017). Loss of grassland habitat

from agricultural intensification and urbanization and unfavorable climatic conditions con-

tributed to a significant decline in Grasshopper Sparrows populations over the years (West

et al., 2016; Herse et al., 2018). It is assumed that Grasshopper Sparrows are affected by

these environmental processes across multiple spatial and temporal scales; however, how they

respond to the temporal variation in the environmental processes is hardly understood. Pre-

cipitation is identified as a key driver that affects the Grasshopper Sparrows population both

directly and indirectly (Williams & Boyle, 2019) through predation, competition, foraging

behavior, vegetation, and growth rate in multiple temporal scales that are often difficult to

identify. Furthermore, Grasshopper Sparrows are highly mobile and interact with ecological

processes at small time scales; therefore, small-scale fluctuations in precipitation can have

large effects on the species population. The timing and magnitude of storms are also varying

over the years, and scientists seldom know how they affect Grasshopper Sparrow populations.

Therefore, identifying the effect of temporal variation of precipitation on Grasshopper Spar-

rows’ habitat interactions and their abundance across multiple temporal scales may reveal

micro and macro scale dynamics influencing Grasshopper Sparrow populations.

Here, we investigate and illustrate how temporal support in models may affect estimat-

ing the species-habitat relationships and abundance using data on Grasshopper Sparrows

from Konza Prairie Biological Station (KPBS), a long-term ecological research site in north-

eastern Kansas (Knapp et al., 1998; Williams & Boyle, 2018, 2019). Daily data with 651
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observations from 54 transects and 944 observations from 790 mist-net locations were col-

lected during the breeding seasons from 2013 to 2018 (Fig. 3.2a). We assume that the

individual had to be within a maximum distance of 150m from the transect to be detected

(DS data) and within a maximum distance of 25m to elicit a response and be attracted to

the mist-net (CR data).

To implement our models, we used precipitation as a temporal covariate. KPBS annu-

ally receives 83.5 cm of precipitation, with the majority of precipitation occurring between

April and September (Fig. 3.2b). It is assumed that the Grasshopper Sparrows’ interac-

tion with the precipitation is not confined to a single spatio-temporal location. Instead, the

species seems to interact with precipitation on a larger time scale (e.g., weekly or monthly

precipitation) or as a lagged effect (e.g., running average of precipitations through the prior

month or week). Therefore, to fit our continuous-time fused data spatio-temporal models

we used a temporally integrated covariate, x̃(s, t) =
∫ t

t−14
x(s, t∗)dt∗, where x(s, t∗) is the

precipitation at a location s at time t∗ and x̃(s, t) is the precipitation at location s inte-

grated over the prior two weeks. Using an integrated covariate over space and time allows

the point-level relationship to extend across space and time. An extension of this approach

is the inclusion of kernel functions to weight the spatio-temporal covariate surface (Heaton

& Gelfand, 2011, 2012). Using the integrated covariate, we define the continuous-intensity

function as λ(s, t) = ex̃(s,t)β and the discrete-intensity functions from (3.3) and (3.4) as

λKj
(s) = e

∫
Kj

x̃(s,t)dt
and λKj

(s) =
∫
Kj
ex̃(s,t)

′βdt, respectively.

We fitted five fused data models to the data 1) the continuous-time fused data spatio-

temporal model represented in (3.6), 2) the discrete-time fused data spatio-temporal model

represented in (3.7) with weekly support by temporally aggregating x̃(s, t) over each week, 3)

the discrete-time fused data spatio-temporal model represented in (3.7) with weekly support

using COS, 4) the discrete-time fused data spatio-temporal model represented in (3.7) with

monthly support by temporally aggregating x̃(s, t) over each month, and 5) the discrete-time

fused data spatio-temporal model represented in (3.7) with monthly support using COS. We

obtained the maximum likelihood estimates, β̂0, and β̂1 and calculated the 95% Wald-type

CIs. We obtained the estimates for expected abundance across the study region covered by
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the surveyed watersheds. We used the delta method under first-order Taylor expansion to

calculate the 95% Wald-type CIs for estimated expected abundance. We obtained the AIC

values to compare the predictive accuracy of the models.
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Figure 3.1: A single simulated data set for each of the four scenarios represented in the
simulation experiment. Panel (a) represent expected abundance under scenario 1 for a
single data set, where the temporal covariate drives species abundance on a continuous time
scale; panel (b) represents expected abundance under scenario 2 for a single data set, where
the temporal covariate drives species abundance on a daily time scale; panel (c) represent
expected abundance under scenario 3 for a single data set, where the temporal covariate
drives species abundance in weekly time scale, and panel (d) represent expected abundance
under scenario 4 for a single data set, where the temporal covariate drives species abundance
in monthly time scale.
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Figure 3.2: Panel (a) displays the line transects (red –) and mist nets (blue +) that are
used to collect data on Grasshopper Sparrows at Konza Prairie Biological Station, Kansas.
The DS and CR surveys are conducted at watershed-level (grey –). Panel (b) displays
the distribution of the time-dependent covariate, precipitation integrated over the prior two
weeks (i.e., x̃(s, t)).
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3.6 Results

3.6.1 Simulation experiment

Under the models fitted to data under scenario 1, the continuous-time fused data spatio-

temporal model reported the lowest bias, highest coverage probability of the 95% CIs, and

the highest proportion of the times that AIC selected as the best model. This was expected

since the data generating mechanism in scenario 1 matches the process described by the

continuous-time fused data spatio-temporal model. In fact, the discrete-time fused data

spatio-temporal model with daily support using the temporally aggregated x(s, t), and the

discrete-time fused data spatio-temporal model with daily support using COS also reported

similar bias and coverage probability of the 95% CIs (see Table 3.2). Furthermore, all three

models yielded lower MIAE values for the estimated expected abundance (λ̄t) with higher

average coverage probability of the 95% CIs compared to other fitted models that used weekly

and monthly temporal support (see Table 3.3). The similar performances of the three models

with continuous and daily temporal support was because there was no substantial variation

in the temporal covariate between continuous and daily temporal scales.

Under the models fitted to data under scenario 2, the discrete-time fused data spatio-

temporal model with daily support using the temporally aggregated x(s, t) reported the

lowest bias, highest coverage probability of the 95% CIs and the highest proportion of the

times that AIC selected as the best model (see Table 3.2). This was expected since the

data generating mechanism in scenario 2 matches the process described by the discrete-

time fused data spatio-temporal model with daily support using the temporally aggregated

x(s, t). In fact, the discrete-time fused data spatio-temporal model with daily support using

COS also reported similar bias and coverage probability of the 95% CIs (see Table 3.2).

Furthermore, these two models with daily temporal support yielded the lowest MIAE values

for the estimated expected abundance (λ̄t) with the highest average coverage probability of

the 95% CIs compared to other fitted models with alternate temporal supports (see Table

3.3).
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Under the models fitted to data under scenario 3, the discrete-time fused data spatio-

temporal model with weekly support using the temporally aggregated x(s, t) reported the

lowest bias, highest coverage probability of the 95% CIs, and the highest proportion of

the times that AIC selected as the best model (see Table 3.2). This is expected since the

data generating mechanism in scenario 2 matches the process described by the discrete-time

fused data spatio-temporal model with weekly support using the temporally aggregated

x(s, t). Furthermore, the model yielded the lowest MIAE values for the estimated expected

abundance (λ̄t) with the highest average coverage probability of the 95% CIs compared to

other fitted models (see Table 3.3).

Under the models fitted to data under scenario 4, the discrete-time fused data spatio-

temporal model with monthly support using the temporally aggregated x(s, t) reported the

lowest bias, highest coverage probability of the 95% CIs, and the highest proportion of

the times that AIC selected as the best model (see Table 3.2). This is expected since the

data generating mechanism in scenario 2 matches the process described by the discrete-time

fused data spatio-temporal model with monthly support using the temporally aggregated

x(s, t). Furthermore, the model yielded the lowest MIAE values for the estimated expected

abundance (λ̄t) with the highest average coverage probability of the 95% CIs compared to

other fitted models (see Table 3.3).

Under all scenarios, the proportion of the times that AIC selected each model as the best

model was higher for the models that match or closely match the temporal support in which

the data were simulated. However, suppose the models have the same temporal support, one

with a temporally aggregated covariate and one without aggregation, AIC may not identify

whether the covariate that influences species abundance is temporally aggregated or not.
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3.6.2 Case study: Grasshopper Sparrows at Konza Prairie Bio-

logical Station, Kansas

All five models yielded similar parameter estimates for β0 with overlapping 95% CIs (see

Table 3.4). The estimates for β1 and the associated 95% CIs obtained from all five models

indicated that the species abundance is positively influenced by precipitation (see Table 3.4).

Even though the width of the 95% CIs for β̂1 across the fitted models were similar, the CIs

from the fitted models with monthly temporal support did not overlap with the CIs from the

fitted models with continuous or weekly support (see Table 3.4). Therefore the strength of the

inferred species’ relationship to precipitation was different between the models with monthly

temporal support and the models with continuous or weekly support. The discrete-time

fused data spatio-temporal model with monthly support using the temporally aggregated

x∗(s, t) reported the lowest AIC value that is >200 lower than other fitted models, indicating

that using monthly temporal support in the model increases predictive accuracy (see Table

3.4). Even though it is tempting to use AIC to compare the predictive accuracy of the

two models with monthly temporal support, our simulation experiment suggested that AIC

may not be able to identify the best model between them. Based on the estimates obtained

from the discrete-time fused data spatio-temporal model with monthly support using the

temporally aggregated x∗(s, t), the relationship between the estimated expected abundance

of Grasshopper Sparrows and the temporally aggregated x∗(s, t) is visualized in Fig. 3.4f,

including the 95% CIs of the estimated expected abundance.

The estimated expected abundance of Grasshopper Sparrows under all five models showed

a seasonal variation. Each year, during the breeding season, the estimated expected abun-

dance gradually increased and peaked and gradually decreased towards the latter period of

the breeding season (Fig. 3.4). Across the models that use monthly temporal support, the

estimated expected abundance in the study area ranged from 205 to 665 with a maximum

width of 95% CIs of 200. Across the models that use daily and weekly temporal support,

the range was 299 to 862 with a maximum width of 95% CIs of 750.
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3.7 Discussion

Ecological processes evolve with time and unfold at vastly different time scales (Carroll et al.,

2007). Species-habitat relationships and species abundance are strongly influenced by multi-

scale ecological processes (Fink et al., 2014). The temporal scale at which species interact

with the ecological processes is especially important to study in seasonally fluctuating species

populations as they continuously interact with the ecological processes across small to large

time scales. Though spatio-temporal point process models are vastly used to model species-

habitat relationships and abundance across space and time (Hefley & Hooten, 2016; Renner

et al., 2015), the studies seldom discuss the impact of temporal support on the robustness of

the models. Our study provides two important contributions; 1) propose a spatio-temporal

point process modeling framework using a data fusion approach that enables modeling of

the species-habitat relationship and abundance across finer to coarse temporal scales, and

thereby 2) study the influence of the temporal support in spatio-temporal point process

models to model species- habitat relationships and estimate abundance.

Our study indicates that the parameter estimates associated with the species-habitat

relationship (i.e., β1) is sensitive to the temporal support in the model and may provide bi-

ased parameter estimates. Therefore, misspecified temporal support may provide misleading

inferences on species-habitat relationships. Moreover, since the estimate for the expected

abundance is a function of β̂1, misspecified temporal support may yield biased estimates

for the estimated expected abundance. Therefore, caution is necessary when defining the

temporal support in the model to examine species-habitat relationships and the abundance

of a species. Our study indicates that AIC adequately identifies the temporal scale at which

the covariate influences species-habitat relationships and abundance. However, under the

same temporal support in the model, AIC may not be able to identify whether the covariate

that influences species abundance is temporally aggregated or not.

Moreover, we discovered that if the true data generating process is on a high temporal

resolution (i.e., covariates drive species abundance in finer temporal scales), there appears

to be not much penalty paid for misspecification of the temporal support. In this case, the
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fitted model with misspecified temporal support still may yield unbiased estimates for species

habitat relationships and expected abundance, but with poor efficiency. However, suppose

the true data generating process is on coarser temporal resolution (i.e., covariates drive

species abundance in coarser temporal scales), a higher penalty is paid for misspecification

of the temporal support. In this case, the fitted model with misspecified temporal support

may yield biased estimates misleading the inferences on species habitat relationship and

expected abundance. Such asymmetry in misspecification of the temporal support suggests

that practitioners should pay more attention to the temporal support of the models if they

suspect that the covariates drive species abundance in coarser temporal scales.

3.7.1 Future directions

Future directions of our work involves investigating the influence of spatio-temporal support

in spatio-temporal autocorrelation. Spatio-temporal autocorrelation may include traditional

patterns such as correlated normally distributed effects as well as non-traditional patterns

such as discontinuities and abrupt transitions (Mohankumar & Hefley, 2021a). These pat-

terns may operate in multiple spatio-temporal scales, and studying the influence of varying

spatial and temporal support on spatio-temporal autocorrelation may provide further insight

into understanding species dynamics. In fact, models can be developed to account for the

multi-scale spatial dependence by incorporating scientific knowledge of the spatio-temporal

data generating process (Hefley et al., 2017b).

Our study investigates the influence of temporal support across continuous and discrete

temporal scales using continuous-time and discrete-time intensity functions using temporally

aggregated covariates and COS. The continuous intensity function may also be defined by

incorporating lagged effects. For example, the continuous intensity function can be defined

as, λ(s, t) = ex(s,t−θ)′β or λ(s, t) = λ(s, t− θ)ex(s,t)
′β where the intensity at t may depend on

ecological processes at previous states. Furthermore, model-based approaches can be devel-

oped to estimate the time lag θ. Future directions may involve including kernel functions to

weight the spatio-temporal covariate surface (Hooten & Johnson, 2017; Heaton & Gelfand,
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2011, 2012). Such extensions would enable investigating more complex species-habitat rela-

tionships and ecological processes.
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Chapter 4

Conclusion

4.1 Summary of dissertation

Advancing the types of models to model species distributions across space and time involves

properly accounting for the limitations associated with the data types used in species dis-

tribution studies and addressing limitations in existing modeling approaches that limit the

ability to model species distributions reliably. In this dissertation, I studied and addressed

some of the most pressing limitations associated with existing modeling approaches for the

three most common planned survey data types that are used in species distribution studies:

1) occupancy data, 2) distance sampling data, and 3) capture-recapture data.

In chapter 1, I proposed a hierarchical modeling framework for occupancy data that simul-

taneously accounts for false absences and accounts for both traditional and non-traditional

spatial dependence. Models for occupancy data are used to estimate and map the true

presence of a species that typically involves observation errors such as false absences Hepler

et al., 2018; Joseph, 2020. Furthermore, researchers often account for spatial dependence in

occupancy data by using a correlated, normally distributed site-level random effect (Johnson

et al., 2013a), which can account for traditional spatial dependence but might be incapable

of modeling non-traditional spatial dependence such as discontinuities and abrupt transi-

tions. This lack of spatial modeling options for occupancy data is in contrast to species
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distribution models (SDM) that predict the spatial distribution of a species using statisti-

cal, and machine learning approaches applied to presence-only, count, and presence-absence

data De’ath & Fabricius, 2000; Cutler et al., 2007; Elith et al., 2008. There is a bewildering

number of approaches within the SDM literature that are used to model the spatial pro-

cess. Unfortunately, many of the SDM approaches do not account for false absences in data

De’ath & Fabricius, 2000; Cutler et al., 2007; Elith et al., 2008. The proposed approach in

this chapter incorporates machine learning approaches into a Bayesian hierarchal modeling

framework that can simultaneously account for false absences and account for traditional

and non-traditional spatial dependence to estimate and map the true presence of a species

reliably. Furthermore, the modeling framework enables any appropriate machine earning

approach to be used to model the spatial dependence expanding the types of spatial models

practitioners can use for data that fit within the occupancy model framework.

In chapter 2, I propose a fused data modeling approach that combines DS and CR to

model species distribution. DS and CR data are high-quality planned survey data (Otis et al.,

1978; Burnham et al., 1980; Seber, 1982), but they are seldom used in SDMs due to lack of

spatial coverage (McShea et al., 2016). I combine the two data sources using a hierarchical

modeling framework that increases spatial coverage, reduces parameter uncertainty, and

makes predictions more accurate (Hooten & Hefley, 2019); therefore, it can be used for species

distribution modeling. Furthermore, the construction of an adequate fused data SDM for DS

and CR data relies upon accounting for missing data issues (Little & Rubin, 2019) unique

to each data source. I account for the missing data issues by building models for the missing

data mechanism using theory and tools from the missing data literature. I account for two

most common missing data issues in DS and CR data: 1) missing individuals that are missing

not at random (MNAR) (Little & Rubin, 2019) and 2) partially missing location information.

The proposed modeling approach significantly increased the reliability and efficiency of the

parameter estimates for species-habitat relationship and expected abundance compared to

existing modeling approaches. Furthermore, our modeling framework can be viewed as a

unified framework that can be applied to many other data sources (e.g., presence-only data)

and a fusion of them addressing critical issues with missing data, advancing the types of
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models used for species distribution studies.

Finally, in chapter 3, I extend my data fusion approach in chapter 2 to a spatio-temporal

modeling framework to investigate the influence of temporal support in spatio-temporal point

process models to model species distribution. The temporal dynamics of ecological processes

are inherently complex (Fink et al., 2014). Their influence on species-habitat relationships

and abundance operates on multiple spatio-temporal scales (Fink et al., 2014); however, the

robustness of models to changing temporal scales is rarely studied. The proposed approach

in chapter 3 enabled the modeling of the species-habitat relationship and abundance across

finer to coarse temporal scales. Therefore the study enables the investigation of the influence

of the temporal support in spatio-temporal point process models to model species- habitat

relationships and estimate expected abundance.

4.2 Future research

Extensions of the occupancy modeling framework

Although the proposed occupancy modeling framework in chapter 1 is focused on spatial

dependence, the model can be extended to use machine learning approaches to capture non-

linear and unknown relationships between covariates and the probability of occupancy. Since

machine learning approaches are often superior in dealing with a large number of covariates,

such extension increases the ability to incorporate large sets of site-level covariates into the

model and identify complex relationships Shaby & Fink (2012). The model framework can

also be extended to use machine learning approaches to model the probability of detection

as a function of predictor variables such as Julian date and observer effort (e.g., similar to

the use of cubic splines used by Johnston et al., 2018). Another future direction is that the

proposed spatial occupancy model can be extended to account for other types of observation

errors in occupancy data, such as false positives (Hooten & Hefley, 2019). This involves

modifying the distributional representation for observed data presented in chapter 1.
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Account for the confounding of parameters in the detection/capture functions

with the parameters in the intensity function

The model framework proposed for the data fusion of DS and CR data in both chapter 2 and

chapter 3 does not investigate the confounding between parameters in the detection/capture

functions and the underlying intensity function. However, such confounding is possible

(Borchers et al., 2006). For example, the underlying intensity and the probability of detection

can be a function of the same covariate. Accounting for such confounding of the underlying

intensity and the detection/capture probability is an area that needs further research.

Approaches to account for missing spatial covariate values

The proposed model frameworks in both chapter 2 and chapter 3 require spatial covariate

values for the entire study region. However, obtaining the spatial covariate values in the

entire study region can be trivial in some situations. Some alternate solutions would be to

employ an auxiliary model to utilize the available data to predict the spatial covariate values

for the entire region and use the predicted values as the input values for the spatial covariate

in our models (Hefley et al., 2020). However, further research is needed to account for such

missing spatial covariate values explicitly.

Extensions of the fused data framework to identify the factors that influence the

probability of detection or capture.

The probability of detection or capture in DS and CR data can be influenced by many

covariates, such as the observer’s experience level or environmental or geographical features.

In the models presented in this dissertation, the probability of detection is defined as only

depending on the distance from the transect to the individual, and the probability of capture

is defined using a constant parameter. The functions for the probability of detection and

capture can be extended to investigate factors that influence the probability of detection or

capture.
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Investigate the influence of spatio-temporal support in spatio-temporal autocor-

relation

The proposed occupancy modeling framework enables the use of machine learning techniques

to model complex patterns in spatial dependence. However, the data fusion framework

proposed in chapter 2 and chapter 3 does not incorporate a spatial or a spatio-temporal

random effect. A bewildering number of approaches within the SDM literature are developed

to model the spatial and spatio-temporal autocorrelation (e.g., Chakraborty et al., 2011;

Renner et al., 2015; Mohankumar & Hefley, 2021a), which can be used to incorporate a

spatial or a spatio-temporal random effect into the proposed fused data modeling framework.

However, spatio-temporal autocorrelation may include traditional patterns such as correlated

normally distributed effects as well as non-traditional patterns such as discontinuities and

abrupt transitions (Mohankumar & Hefley, 2021a) as mentioned in chapter 1. These patterns

may operate in multiple spatio-temporal scales, and studying the influence of varying spatial

and temporal support on spatio-temporal autocorrelation may provide further insight into

understanding species dynamics.

Investigate the influence of temporal support on the models’ robustness using

kernel functions

The study in this dissertation focuses on investigating the influence of temporal support on

the models’ robustness across continuous and discrete temporal scales using continuous-time

and discrete-time intensity functions. However, the intensity function can be defined using

kernel functions to study the influence of more complex species-habitat relationships and

ecological processes across time. Kernel functions can be used to weight the spatio-temporal

covariate surface (Hooten & Johnson, 2017; Heaton & Gelfand, 2011, 2012) providing further

insight into understanding species dynamics.
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Appendix A

Additional material associated with

our spatial modeling framework,

synthetic data examples and data

examples from chapter 1

A.1 Introduction

This appendix contains an in-depth description and explanation of our spatial occupancy

model and the Markov chain Monte Carlo (MCMC) algorithm in Chapter 1. Additionally,

this appendix contains the figures and the results associated with scenarios 2-6 in the syn-

thetic data examples discussed in the Chapter 1. We begin by providing additional details

about our modeling framework, including the prior distributions. We then introduce the

latent variable approach, which enables the construction of an MCMC algorithm that uses

closed-form full-conditional distributions. Finally, we describe how to construct an MCMC

algorithm that enables the embedding of machine learning approaches within our spatial

occupancy model.
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A.2 Prior distributions

As described in Chapter 1, we take a Bayesian approach, which requires the specification of

prior distributions for unknown parameters in our spatial occupancy model. Assuming pij

in (1.1) in Chapter 1 is constant at all the sites during all sampling periods (i.e. pij ≡ p),

we assign the priors p ∼ Beta(1, 1). The prior for β in (1.3) of the Chapter 1 is defined as,

β ∼ N(0, σ2
βI). Implementation of our spatial occupancy model using the MCMC algorithm

developed by Shaby & Fink (2012) requires that we assign a prior to a temporary intermediate

variable, fi. We assign the prior for fi as fi ∼ N(0, σ2
f ). The temporary intermediate variable

fi is explained in-detail in section A.4 in this appendix.

The construction of the MCMC algorithm requires the full-conditional distributions of

the parameters. To obtain the full-conditionals, we use the latent normal random variable

approach described in the next section.

A.3 Latent normal random variable approach

The latent normal random variable approach enables the Gibbs sampler to be constructed

using closed-form full-conditional distributions, as shown by Dorazio & Rodriguez (2012).

Using this approach, zi in (1.2) of Chapter 1 (true presence or absence at the ithsite) is

expressed as

zi =


1 , vi ≥ 0

0 , vi < 0

, (A.1)

where vi is a latent variable (Albert & Chib, 1993; Dorazio & Rodriguez, 2012). If the link

function in (1.5) in Chapter 1 is a probit, then the latent variable vi is distributed as

vi|f(si),β ∼ N(x′
iβ + f(si), 1). (A.2)
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Here, xi ≡ (1, x1, x2, ..., xq)
′ and β ≡ (β0, β1, β2, ..., βq)

′ where x1, x2, ..., xq represent the

site-level covariates, β0 represents the intercept parameter, and β1, β2, ..., βq represent the

regression coefficients. The function f(si) represent the unknown spatially varying process

that depends on the coordinate vector, si, of the i
th site.

The univariate full-conditional distribution of zi is

[zi|yi·,β, ˆf(si), p] =


1 , yi· = 1

Bernoulli

(
Φ(x′

iβ+
ˆf(si))

∏Ji
j=1(1−p)

Φ(x′
iβ+

ˆf(si))
∏Ji

j=1(1−p)+1−Φ(x′
iβ+

ˆf(si))

)
, yi· = 0

,

where, yi· =
∑Ji

j=1 yij, Φ(·) denotes the inverse probit link, and ˆf(si) is a scalar. We explain

ˆf(si) in section A.4 as this relates to embedding of the machine learning approaches. The

univariate full-conditional distribution of p is

[p|yi·, zi] = Beta(1 +
∑n

i=1 ziyi·, 1 +
∑n

i=1 Ji −
∑n

i=1 ziyi·).

The univariate full-conditional distribution of vi is

[vi|zi, ˆf(si),β] =


TN(x′

iβ + ˆf(si), 1)|∞0 , zi = 1

TN(x′
iβ + ˆf(si), 1)|0−∞ , zi = 0

,

where, TN denotes a truncated normal distribution. The multivariate full-conditional dis-

tribution of β is

[β|v, ˆf(S)] = N

((
X′X+ 1

σ2
β
I
)−1

X′(v − ˆf(S)),
(
X′X+ 1

σ2
β
I
)−1

)
,

where, ˆf(S) ≡ ( ˆf(s1), ˆf(s2), ..., ˆf(sn))
′, v ≡ (v1, v2, ..., vn)

′, and X ≡ (x′
1|x′

2| · · · |x′
n). See

chapter 23 in Hooten & Hefley (2019) for more details on deriving the above full-conditionals.

A.4 Embedding machine learning approaches

As described in Chapter 1, the functional form of f(si) presented in (A.2) is unknown.

To approximate the function f(si), we use machine learning approaches within our spatial
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occupancy model. To accomplish this, Shaby & Fink (2012) developed an approximate Gibbs

sampler where in each iteration of the Gibbs sampler, f(si) is replaced with a temporary

intermediate variable fi. The temporary intermediate variable fi is sampled from the full-

conditional distribution

[fi|vi,β] = N
(

σ2
f

σ2
f+1

(vi − x′
iβ),

σ2
f

σ2
f+1

)
.

The sampled fi enables the use of off-the-shelf software for machine learning approaches.

To accomplish this, Shaby & Fink (2012) used the sampled fi as a response variable and

the coordinate vector si as the predictor in a machine learning approach. Then obtain

the predicted values ˆf(si), that is an approximation of the underlying spatial process f(si).

Additional details about this approximate Gibbs sampler is provided in Shaby & Fink (2012).

A.5 Markov chain Monte Carlo Algorithm

This section contains MCMC algorithm and the R code to implement our modeling frame-

work.
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Algorithm 1 The MCMC algorithm used to sample from the posterior distributions of our
spatial occupancy model. In this algorithm, l is the current iteration and m is the total
number of iterations. The y ≡ (y1·, y2·, ..., yn·)

′ is a (n×1) vector with ith row representing
the number of detections at the ith site, z ≡ (z1, z2, ..., zn)

′ represents the true presence or
absence at each site, S ≡ (s′1|s′2| · · · |s′n) is a (n×2) matrix with ith row representing the
coordinate vector of the ith site, and f ≡ (f1, f2, ..., fn)

′ represents the vector of temporary

intermediate variables discussed in section S4 in this appendix. The ˆf(S) and v are defined
in section A.4 , β is defined in section A.3 , and p is defined in section A.2 .

1: Set initial values for f ,β, and p

2: Set l=0

3: while l < m do

4: Sample z from its full-conditional distribution, z(l) ∼ [z(l)|y,β(l−1), ˆf(S)
(l−1)

, p(l−1)];

5: Sample p from its full-conditional distribution, p(l) ∼ [p(l)|y, z(l−1)];

6: Sample v from its full-conditional distribution, v(l) ∼ [v(l)|z(l−1), ˆf(S)
(l−1)

,β(l−1)];

7: Sample β from its full-conditional distribution, β(l) ∼ [β(l)|v(l−1), ˆf(S)
(l−1)

];

8: Sample the temporary intermediate vector f from its full-conditional distribution,

f (l) ∼ [f (l)|v(l−1),β(l−1)];

9: Use the sampled f(l) as a response and the coordinate matrix S as the predictor in a

machine learning approach. Then, obtain the predicted values ˆf(S)
(l)

= g(S), where

g(·) is a machine learning approach;

10: Use ˆf(S)
(l)

to sample from the remaining full-conditional distributions of the parame-

ters.

11: end while

A.6 Model extensions

In this section, we discuss the general framework and the extensions of our model. In Chapter

1, in (1.5), we present an additive model to model the probability of true presence ψi using

site-level covariates xi and the spatial dependence f(si). Our modeling framework can be

generalized by writing the effects of site-level covariates using a function h(xi), where h(xi)

95



can also be modeled using machine learning approaches the same as f(si). The (1.5) in

Chapter 1 can be generalized as

g(ψi) = h(xi) + f(si). (A.3)

This generalized version (A.3) increases the ability to incorporate large sets of site-level

covariates into the model and identify complex relationships using machine learning ap-

proaches. Shaby & Fink (2012) provide a thorough explanation of how to incorporate ma-

chine learning approaches to model the effect of site-level covariates.

Another extension of our modeling framework is including machine learning approaches

to model the probability of detection. In the manuscript, we assumed that the probability

of detection does not change across sites. However, we can use machine learning approaches

to include informative covariates for detection in to the model such as, Julian date, effort,

etc., and identify their complex relationship to the probability of detection. The model can

be written as

q(pi) = hp(xi), (A.4)

where, q(·) is an appropriate link function and hp(·) is a function of covariates for detection.

As discussed in the manuscript, our spatial occupancy model can be easily adapted

to account for other types of contamination in occupancy data, such as false positives. To

account for false positives, we can extend our model framework by modifying (1.1) in Chapter

1 to

yij|zi, pij1 ∼


Bernoulli(pij0) , zi = 1

Bernoulli(pij) , zi = 0

, (A.5)

where, pij1 is the probability of detecting at least one individual at ith site during the jth

sampling period, and pij0 is the probability of false positives at i
th site during the jth sampling

period. Hooten & Hefley (2019) provide in detail description of the model specification to

account for false positives in occupancy models.
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A.7 Figures and results associated with synthetic data

examples (scenarios 2-6)

A.7.1 Figures for synthetic data examples

The below figure is associated with scenario 2 in the synthetic data example, where the

spatial dependence forms a circle with the probability of occupancy being low in the center

and smoothly increasing towards the edge of the circle.
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Figure A.1: The probability of occupancy from scenario 2 of the synthetic data example
(panel a) and the posterior mean of the probability of occupancy (E(ψi|y)) obtained by
fitting spatial occupancy models that include an embedded regression tree (panel b), a
support vector regression (panel c), a low-rank Gaussian process (panel d), and a Gaussian
Markov random field (panel e). The gray squares in the panel show the location of the 200
sampled sites used for model fitting.

The below figure is associated with scenario 3 in the synthetic data example, where the

spatial dependence is defined by a cosine function.
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Figure A.2: The probability of occupancy from scenario 3 of the synthetic data example
(panel a) and the posterior mean of the probability of occupancy (E(ψi|y)) obtained by
fitting spatial occupancy models that include an embedded regression tree (panel b), a
support vector regression (panel c), a low-rank Gaussian process (panel d), and a Gaussian
Markov random field (panel e). The gray squares in the panel show the location of the 200
sampled sites used for model fitting.

97



The below figure is associated with scenario 4 in the synthetic data example, where the spatial

dependence is a normally distributed random effect with a correlation matrix specified by a

conditional autoregressive process.
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Figure A.3: The probability of occupancy from scenario 4 of the synthetic data example
(panel a) and the posterior mean of the probability of occupancy (E(ψi|y)) obtained by
fitting spatial occupancy models that include an embedded regression tree (panel b), a
support vector regression (panel c), a low-rank Gaussian process (panel d), and a Gaussian
Markov random field (panel e). The gray squares in the panel show the location of the 200
sampled sites used for model fitting.

The below figure is associated with scenario 5 in the synthetic data example, where the spatial

dependence is a normally distributed random effect with a correlation matrix specified by

an exponential covariance function.
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Figure A.4: The probability of occupancy from scenario 5 of the synthetic data example
(panel a) and the posterior mean of the probability of occupancy (E(ψi|y)) obtained by
fitting spatial occupancy models that include an embedded regression tree (panel b), a
support vector regression (panel c), a low-rank Gaussian process (panel d), and a Gaussian
Markov random field (panel e). The gray squares in the panel show the location of the 200
sampled sites used for model fitting.
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The below figure is associated with scenario 6 in the synthetic data example, where the spatial

dependence is a normally distributed random effect with a correlation matrix specified by a

squared exponential covariance function.
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Figure A.5: The probability of occupancy from scenario 6 of the synthetic data example
(panel a) and the posterior mean of the probability of occupancy (E(ψi|y)) obtained by
fitting spatial occupancy models that include an embedded regression tree (panel b), a
support vector regression (panel c), a low-rank Gaussian process (panel d), and a Gaussian
Markov random field (panel e). The gray squares in the panel show the location of the 200
sampled sites used for model fitting.
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A.7.2 Results for synthetic data examples

Table A.1: The -2×log posterior predictive density (i.e., -2×LPPD) for all scenarios. The
results are obtained by embedding a regression tree (REG), a support vector regression
(SVR), a low-rank Gaussian process (LRGP), and a Gaussian Markov random field (GMRF).
We also include the -2× LPPD obtained by fitting the traditional occupancy model without
including the spatial effect (NOSP).

Scenario REG SVR LRGP GMRF NOSP

Scenario 2 402.60 398.46 424.75 419.82 446.09

Scenario 3 445.96 436.11 448.13 442.04 465.79

Scenario 4 466.40 462.77 466.55 462.30 464.71

Scenario 5 441.05 441.02 445.83 441.83 468.39

Scenario 6 425.89 426.49 434.67 432.21 450.24

A.7.3 Moran’s I correlogram plots associated with synthetic data

examples

In this section, we obtain the Moran’s I correlogram plots to investigate the residual spatial

dependence. The below figure shows the Moran’s I correlogram plots for scenario 1.
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Figure A.6: Moran’s I correlogram plots for the fitted occupancy models embedding a)
regression trees, b) support vector regression, c) low-rank Gaussian process, and d) Gaussian
Markov random field. For each fitted occupancy model, we plot the posterior mean of the
Moran’s I against the distance class of neighbouring sites (black –) and display the associated
95% credible interval (the band represented by the shaded region). For comparison, we
include the posterior mean of the Moran’s I that we obtained from the traditional occupancy
model fitted without the spatial effect (red –).
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The below figure shows the Moran’s I correlogram plots for scenario 2.
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Figure A.7: Moran’s I correlogram plots for the fitted occupancy models embedding a)
regression trees, b) support vector regression, c) low-rank Gaussian process, and d) Gaussian
Markov random field. For each fitted occupancy model, we plot the posterior mean of the
Moran’s I against the distance class of neighbouring sites (black –) and display the associated
95% credible interval (the band represented by the shaded region). For comparison, we
include the posterior mean of the Moran’s I that we obtained from the traditional occupancy
model fitted without the spatial effect (red –).
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The below figure shows the Moran’s I correlogram plots for scenario 3.
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Figure A.8: Moran’s I correlogram plots for the fitted occupancy models embedding a)
regression trees, b) support vector regression, c) low-rank Gaussian process, and d) Gaussian
Markov random field. For each fitted occupancy model, we plot the posterior mean of the
Moran’s I against the distance class of neighbouring sites (black –) and display the associated
95% credible interval (the band represented by the shaded region). For comparison, we
include the posterior mean of the Moran’s I that we obtained from the traditional occupancy
model fitted without the spatial effect (red –).
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The below figure shows the Moran’s I correlogram plots for scenario 4.
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Figure A.9: Moran’s I correlogram plots for the fitted occupancy models embedding a)
regression trees, b) support vector regression, c) low-rank Gaussian process, and d) Gaussian
Markov random field. For each fitted occupancy model, we plot the posterior mean of the
Moran’s I against the distance class of neighbouring sites (black –) and display the associated
95% credible interval (the band represented by the shaded region). For comparison, we
include the posterior mean of the Moran’s I that we obtained from the traditional occupancy
model fitted without the spatial effect (red –).
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The below figure shows the Moran’s I correlogram plots for scenario 5.
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Figure A.10: Moran’s I correlogram plots for the fitted occupancy models embedding a)
regression trees, b) support vector regression, c) low-rank Gaussian process, and d) Gaussian
Markov random field. For each fitted occupancy model, we plot the posterior mean of the
Moran’s I against the distance class of neighbouring sites (black –) and display the associated
95% credible interval (the band represented by the shaded region). For comparison, we
include the posterior mean of the Moran’s I that we obtained from the traditional occupancy
model fitted without the spatial effect (red –).

105



The below figure shows the Moran’s I correlogram plots for scenario 6.
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Figure A.11: Moran’s I correlogram plots for the fitted occupancy models embedding a)
regression trees, b) support vector regression, c) low-rank Gaussian process, and d) Gaussian
Markov random field. For each fitted occupancy model, we plot the posterior mean of the
Moran’s I against the distance class of neighbouring sites (black –) and display the associated
95% credible interval (the band represented by the shaded region). For comparison, we
include the posterior mean of the Moran’s I that we obtained from the traditional occupancy
model fitted without the spatial effect (red –).
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A.8 Moran’s I correlogram plots associated with the

Thomson’s gazelle data example in Chapter 1
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Figure A.12: Moran’s I correlogram plots for the fitted occupancy models embedding a)
regression trees, b) support vector regression, c) low-rank Gaussian process, and d) Gaussian
Markov random field. For each fitted occupancy model, we plot the posterior mean of the
Moran’s I against the distance class of neighbouring sites (black –) and display the associated
95% credible interval (the band represented by the shaded region). For comparison, we
include the posterior mean of the Moran’s I that we obtained from the traditional occupancy
model fitted without the spatial effect (red –).
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A.9 Moran’s I correlogram plots associated with the

sugar glider data example in Chapter 1
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Figure A.13: Moran’s I correlogram plots for the fitted occupancy models embedding a)
regression trees, b) support vector regression, c) low-rank Gaussian process, and d) Gaussian
Markov random field. For each fitted occupancy model, we plot the posterior mean of the
Moran’s I against the distance class of neighbouring sites (black –) and display the associated
95% credible interval (the band represented by the shaded region). For comparison, we
include the posterior mean of the Moran’s I that we obtained from the traditional occupancy
model fitted without the spatial effect (red –).
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Appendix B

Details associated with deriving the

models in chapter 2.

B.1 Models accounting for missing individuals that are

missing not at random (MNAR)

The construction of the inhomogeneous Poisson point process (IPPP) represented by (2.1)

in Chapter 2 involves specifying the PMF for the random number of individuals in the

study area S (i.e., N), and the PDF for a coordinate vector that contains the location of an

individual (i.e., ui) in the study area S. The N follows a Poisson distribution, and the PMF

of N can be written as

[N |λ(s)] =
e−

∫
S λ(s)ds(

∫
S λ(s)ds)

N

N !
. (B.1)

The PDF for the location of the ith individual, ui is

[ui|λ(s)] =
λ(ui)∫

S
λ(s)ds

. (B.2)

To incorporate the missing data mechanism that produce MNAR individuals, we can add
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a label m(ui) to the location of the ith individual representing whether the individual is

missing or observed. Gelfand & Schliep (2018) viewed adding a label such as m(ui) to a

point process as adding an additional coordinate to the points in the point process. That

is, the location of the ith individual is represented as a pair (ui,m(ui)). Using the product

space representation, (ui,m(ui)) is a point over S × M , where M is the support for the

labels (m(ui) ∈ M). By incorporating the distribution of the m(ui) represented by (2.2) in

Chapter 2, we can write

[ui,m(ui)|λ(s), q(s), r(s)] = [m(ui)|ui, q(s), r(s)][ui|λ(s)]

=


q(ui)

m(ui)(1− q(ui))
1−m(ui) × λ(ui)∫

S λ(s)ds
, if r(ui) = 1

0 , if r(ui) = 0

.
(B.3)

Now, using (B.2) and (B.3), we can derive (2.3) in Chapter 2 the PDF for the location

of the ith individual conditioned on the label m(ui), which is

[ui|m(ui), λ(s), q(s), r(s)] =
[ui,m(ui)|λ(s), q(s), r(s)]∫

S [ui,m(ui)|λ(s), q(s), r(s)]dui

=


q(ui)

m(ui)(1−q(ui))
1−m(ui)λ(ui)∫

S q(s)m(s)(1−q(s))1−m(s)λ(s)ds
, if r(ui) = 1

0 , if r(ui) = 0

.

We assume that if the location of the ith individual ui is not in the sampled region within

the study area, ith individual is not observed (i.e., m(ui) = 0). Therefore, m(ui) = 0 implies

r(ui) = 0 and we can rewrite the PDF for the location of the ith individual conditioned on

the label m(ui) as
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[ui|m(ui), λ(s), q(s), r(s)] =


λ(ui)q(ui)∫
S λ(s)q(s)ds

, if r(ui) = 1 & m(ui) = 1

0 , otherwise

. (B.4)

The model representation in (B.4) accounts for the missing individuals that are MNAR;

however, the model requires complete location information of the individuals (i.e., the exact

geographic coordinates of the locations of the individuals). Since distance sampling and

capture-recapture data often do not contain complete location information of the individuals,

we need to construct models that account for the partially missing location information to

represent the observed data.

B.2 Data models accounting for partially missing loca-

tion information

In (2.4) and (2.5) in Chapter 2, we represent two PDFs for the observed location of the ith

individual conditioned on the true location of the individual (i.e., [yi|ui]). The distributional

representations in (2.4) and (2.5) account for the partially missing location information of

the individuals.

However, in (2.4) and (2.5), the observed location of the ith individual is conditioned

on the true location of the individual ui, but the true location of the individual is of little

interest in our study. Therefore, we can integrate the joint likelihood of yi and ui and remove

ui from the model as below.

[yi|m(ui), λ(s), q(s), r(s)] =

∫
S
[yi|ui][ui|m(ui), λ(s), q(s), r(s)]dui. (B.5)

Substituting (B.4) and the PDF [yi|ui] represented by (2.4) in Chapter 2 we can obtain
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[yi|m(ui), λ(s), q(s), r(s)] =


∫
S

|Aui |
−1I(yi∈Aui )λ(ui)q(ui)∫

S λ(s)q(s)ds
dui , if r(ui) = 1 & m(ui) = 1

0 , otherwise

=



∫
Aui

|Aui |
−1λ(ui)q(ui)∫

S λ(s)q(s)ds
dui , if r(ui) = 1 & m(ui) = 1

0 , otherwise

.

(B.6)

Similarly, by substituting the PDF [yi|ui] represented by (2.5) in Chapter 2 we can obtain

[yi|m(ui), λ(s), q(s), r(s)] =



∫
Lui

|Lui |
−1λ(ui)q(ui)dui∫

S λ(s)q(s)ds
, if r(ui) = 1 & m(ui) = 1

0 , otherwise.

. (B.7)

The (B.6) and (B.7) are equivalent to (2.6) and (2.7) in Chapter 2.

B.3 Data models for the observed data removing miss-

ing individuals

To represent the distribution of observed data, the missing individuals should be removed,

and the observed individuals should be retained (i.e., m(ui) = 1). If n is the number of

observed individuals in the study area S, the locations of the n individuals out of the total

N individuals contain the label m(ui) = 1. Therefore, n follows a Poisson distribution with

the rate parameter λ̄1 =
∫
S
λ(s,m(s) = 1)ds =

∫
S λ(s)q(s)I(r(s) = 1)ds. The PMF of n can

be written as
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[n|λ(s), q(s), r(s)] =
e−

∫
S λ(s)q(s)I(r(s)=1)ds(

∫
S λ(s)q(s)I(r(s) = 1)ds)n

n!
. (B.8)

Combining the Poisson distribution in (B.8) and the PDF in (B.6) conditioned onm(ui) = 1,

we can write

[y1,y2, ...,yn, n|λ(s), q(s), r(s)] =
e−

∫
S λ(s)q(s)I(r(s)=1)ds(

∫
S λ(s)q(s)I(r(s) = 1)ds)n

n!
×

n!
n∏

i=1

∫
Aui

|Aui
|−1λ(ui)q(ui)I(r(ui) = 1)∫

S λ(s)q(s)I(r(s) = 1)ds

= e−
∫
S λ(s)q(s)I(r(s)=1)ds×

n∏
i=1

∫
Aui

|Aui
|−1λ(ui)q(ui)I(r(ui) = 1).

(B.9)

Similarly, by combining the Poisson distribution in (B.8) and the PDF in (B.7) conditioned

on m(ui) = 1, we can write

[y1,y2, ...,yn, n|λ(s), q(s), r(s)] = e−
∫
S λ(s)q(s)I(r(s)=1)ds×

n∏
i=1

∫
Lui

|Lui
|−1λ(ui)q(ui)I(r(ui) = 1).

(B.10)

The joint distributions in (B.9) and (B.10) are the two distributional representations for

the observed data used in our approaches that is based on the assumption that the observed

individual locations are conditionally independent given λ(s), q(s), and r(s). By representing

distance sampling and capture-recapture data using (B.9) and (B.10) and by obtaining the

joint likelihood, the proposed two fused data SDMs in (2.8) and (2.9) in Chapter 2 are

obtained.
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