Climate change scenarios of surface solar radiation in data sparse regions: a case study in Malaprabha River Basin, India

dc.citationAnandhi A, Srinivas VV, Nagesh Kumar D, Nanjundiah RS, Gowda PH (2014) Climate change scenarios of surface solar radiation in data sparse regions: a case study in Malaprabha River Basin, India. Clim Res 59:259-270. https://doi.org/10.3354/cr01180
dc.citation.doi10.3354/cr01180en_US
dc.citation.epage270en_US
dc.citation.issn0936-577X
dc.citation.issue3en_US
dc.citation.jtitleClimate Researchen_US
dc.citation.spage259en_US
dc.citation.volume59en_US
dc.contributor.authorAnandhi, Aavudai
dc.contributor.authorSrinivas, V. V.
dc.contributor.authorKumar, D. Nagesh
dc.contributor.authorNanjundiah, Ravi S.
dc.contributor.authorGowda, Prasanna H.
dc.contributor.authoreidanandhien_US
dc.date.accessioned2014-06-26T20:40:29Z
dc.date.available2014-06-26T20:40:29Z
dc.date.issued2014-06-26
dc.date.published2014en_US
dc.descriptionCitation: Anandhi A, Srinivas VV, Nagesh Kumar D, Nanjundiah RS, Gowda PH (2014) Climate change scenarios of surface solar radiation in data sparse regions: a case study in Malaprabha River Basin, India. Clim Res 59:259-270. https://doi.org/10.3354/cr01180
dc.description.abstractA variety of methods are available to estimate future solar radiation (SR) scenarios at spatial scales that are appropriate for local climate change impact assessment. However, there are no clear guidelines available in the literature to decide which methodologies are most suitable for different applications. Three methodologies to guide the estimation of SR are discussed in this study, namely: Case 1: SR is measured, Case 2: SR is measured but sparse and Case 3: SR is not measured. In Case 1, future SR scenarios are derived using several downscaling methodologies that transfer the simulated large-scale information of global climate models to a local scale (measurements). In Case 2, the SR was first estimated at the local scale for a longer time period using sparse measured records, and then future scenarios were derived using several downscaling methodologies. In Case 3: the SR was first estimated at a regional scale for a longer time period using complete or sparse measured records of SR from which SR at the local scale was estimated. Finally, the future scenarios were derived using several downscaling methodologies. The lack of observed SR data, especially in developing countries, has hindered various climate change impact studies. Hence, this was further elaborated by applying the Case 3 methodology to a semi-arid Malaprabha reservoir catchment in southern India. A support vector machine was used in downscaling SR. Future monthly scenarios of SR were estimated from simulations of third-generation Canadian General Circulation Model (CGCM3) for various SRES emission scenarios (A1B, A2, B1, and COMMIT). Results indicated a projected decrease of 0.4 to 12.2 W mˉ² yrˉ¹ in SR during the period 2001-2100 across the 4 scenarios. SR was calculated using the modified Hargreaves method. The decreasing trends for the future were in agreement with the simulations of SR from the CGCM3 model directly obtained for the 4 scenarios.en_US
dc.description.versionArticle (publisher version)
dc.identifier.urihttp://hdl.handle.net/2097/17890
dc.language.isoen_USen_US
dc.relation.urihttps://doi.org/10.3354/cr01180en_US
dc.rightsArticles marked "Open Access" or "Free Access" but not marked "CC BY" are made freely accessible at the time of publication but are subject to standard copyright law regarding reproduction and distribution. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/?language=en
dc.subjectDownscalingen_US
dc.subjectModified Hargreaves and Donatelli-Bellocchi methodsen_US
dc.subjectSupport vector machineen_US
dc.subjectSVMen_US
dc.subjectIPCC SRES scenariosen_US
dc.subjectCloud cover downscalingen_US
dc.titleClimate change scenarios of surface solar radiation in data sparse regions: a case study in Malaprabha River Basin, Indiaen_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
AnandhiClimRes2014.pdf
Size:
1.38 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: