Robust mixture regression using the t-distribution

dc.citation.doidoi:10.1016/j.csda.2013.07.019en_US
dc.citation.epage127en_US
dc.citation.jtitleComputational Statistics and Data Analysisen_US
dc.citation.spage116en_US
dc.citation.volume71en_US
dc.contributor.authorYao, Weixin
dc.contributor.authorWei, Yan
dc.contributor.authorYu, Chun
dc.contributor.authoreidwxyaoen_US
dc.date.accessioned2014-03-10T19:51:33Z
dc.date.available2014-03-10T19:51:33Z
dc.date.issued2014-03-10
dc.date.published2014en_US
dc.description.abstractThe traditional estimation of mixture regression models is based on the normal assumption of component errors and thus is sensitive to outliers or heavy-tailed errors. A robust mixture regression model based on the t-distribution by extending the mixture of t-distributions to the regression setting is proposed. However, this proposed new mixture regression model is still not robust to high leverage outliers. In order to overcome this, a modified version of the proposed method, which fits the mixture regression based on the t-distribution to the data after adaptively trimming high leverage points, is also proposed. Furthermore, it is proposed to adaptively choose the degrees of freedom for the t-distribution using profile likelihood. The proposed robust mixture regression estimate has high efficiency due to the adaptive choice of degrees of freedom.en_US
dc.identifier.urihttp://hdl.handle.net/2097/17209
dc.language.isoen_USen_US
dc.relation.urihttp://www.sciencedirect.com/science/article/pii/S0167947313002648en_US
dc.subjectEM algorithmen_US
dc.subjectMixture regression modelsen_US
dc.subjectOutliersen_US
dc.subjectRobust regressionen_US
dc.subjectt-distributionen_US
dc.titleRobust mixture regression using the t-distributionen_US
dc.typeArticle (author version)en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YaoCSDA2014.pdf
Size:
151.64 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: