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Robust mixture regression using the t−distribution

Weixin Yao,∗ Yan Wei, and Chun Yu

Kansas State University

Abstract

The traditional estimation of mixture regression models is based on the normal

assumption of component errors and thus is sensitive to outliers or heavy-tailed er-

rors. A robust mixture regression model based on the t−distribution by extending

the mixture of t−distributions to the regression setting is proposed. However, this

proposed new mixture regression model is still not robust to high leverage outliers.

In order to overcome this, a modified version of the proposed method, which fits

the mixture regression based on the t−distribution to the data after adaptively

trimming high leverage points, is also proposed. Furthermore, it is proposed to

adaptively choose the degrees of freedom for the t−distribution using profile like-

lihood. The proposed robust mixture regression estimate has high efficiency due

to the adaptive choice of degrees of freedom.

Key words: EM algorithm; Mixture regression models; Outliers; Robust regression;

t−distribution.
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1 Introduction

Mixture regression models are well known as switching regression models in economet-

rics literature, which were introduced by Goldfeld and Quandt (1973). These models

have been widely used to investigate the relationship between variables coming from

several unknown latent homogeneous groups and applied in many fields, such as busi-

ness, marketing, and social sciences (Jiang and Tanner, 1999; Böhning, 1999; Wedel

and Kamakura, 2000; McLachlan and Peel, 2000; Skrondal and Rabe-Hesketh, 2004;

Frühwirth-Schnatter, 2006).

Let Z be a latent class variable such that given Z = j, the response y depends on

the p−dimensional predictor x in a linear way

y = xTβj + ϵj, j = 1, 2, · · · ,m, (1.1)

where m is the number of homogeneous groups (also called components in mixture

models) in the population and ϵj ∼ N(0, σ2
j ) is independent of x. Suppose P (Z = j) =

πj, j = 1, 2, · · · ,m, and Z is independent of x, then the conditional density of Y given

x, without observing Z, is

f(y|x,θ) =
m∑
j=1

πjϕ(y;x
Tβj, σ

2
j ), (1.2)

where ϕ(·;µ, σ2) is the density function ofN(µ, σ2) and θ = (π1,β1, σ1, . . . , πm,βm, σm)
T .

The model (1.2) is the so called mixture of regression models. Hennig (2000) proved iden-

tifiability of model (1.2) under some general conditions for the covariates. In general, the

model (1.2) is identifiable if the number of components, m, is smaller than the number

of distinct (p − 1)−dimensional hyperplanes that one needs to cover the covariates of

each cluster. The above conditions are usually satisfied if the domain of x contains an
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open set in Rp

The unknown parameter θ in (1.2), given observations {(x1, y1), . . . , (xn, yn)}, is

traditionally estimated by the maximum likelihood estimate (MLE):

θ̂ = argmax
θ

n∑
i=1

log

[
m∑
j=1

πjϕ(yi;x
T
i βj, σ

2
j )

]
. (1.3)

Note that the maximizer of (1.3) does not have an explicit solution and is usually esti-

mated by the EM algorithm (Dempster et al., 1977).

It is well known that the log-likelihood function (1.3) is unbounded and goes to

infinity if one or more observations lie exactly on one component hyperplane and the

corresponding component variance goes to zero. When running the EM algorithm, some

initial values might converge to the boundary point with small variance and very large

log-likelihood. In such situations, our objective is to find a local maximum of (1.3) in

the interior of parameter space (Kiefer, 1978; Peters and Walker, 1978). However, the

challenge is to find this interior local maximum. Hathaway (1985, 1986) proposed putting

some constraints on the parameter space such that the component variance has some low

limit. Yao (2010) proposed using the profile likelihood and a graphical method to locate

the interior local maximum. Practically, the interior local maximum can usually be found

by starting from some “good” initial values such as the K-means (MacQueen, 1967) and

the moment method estimator (Lindsay and Basak, 1993). Chen et al. (2008) also

proposed using a penalized likelihood method to avoid the unboundedness of mixture

likelihood. In this article, for simplicity of computation and comparison, we assume

equal variance for all components.

The MLE θ̂ in (1.3) works well when the error distribution is normal. However, the

normality based MLE is sensitive to outliers or heavy-tailed error distributions. There

is little research about how to estimate the mixture regression parameters robustly.
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Markatou (2000) and Shen et al. (2004) proposed using a weight factor for each data

point to robustify the estimation procedure for mixture regression models. Neykov et

al. (2007) proposed robust fitting of mixtures using the trimmed likelihood estimator

(TLE). Bai et al. (2012) proposed a modified EM algorithm to robustly estimate the

mixture regression parameters by replacing the least squares criterion in M step with

a robust criterion. Bashir and Carter (2012) extended the idea of the S-estimator to

mixture of linear regression. There are also some related robust methods for linear

clustering (Hennig, 2002, 2003; Mueller and Garlipp, 2005; Garćıa-Escudero et al., 2009;

Garćıa-Escudero et al., 2010).

In this article, we propose a new robust mixture regression model by extending the

mixture of t−distributions proposed by Peel and McLachlan (2000) to the regression

setting. Similar to the traditional M-estimate for linear regression (Maronna et al.,

2006), the proposed estimate is expected to be sensitive to high leverage outliers. To

overcome this problem, we also propose a modified version of the new method by fitting

the new model to the data after adaptively trimming high leverage points. Compared

to the TLE, the proportion of trimming of our new method is data adaptive instead

of a fixed value. In addition, we propose to use the profile likelihood to adaptively

choose the degrees of freedom for the t−distribution. The proposed estimate has high

efficiency, i.e., comparable performance to the traditional MLE when the error is normal,

due to the adaptive choice of degrees of freedom. Using a simulation study and real data

application, we compare the new method to some existing methods, and demonstrate

the effectiveness of the proposed method.

The rest of this article is organized as follows. In Section 2, we introduce our new

robust mixture linear regression models based on the t−distribution. In Section 3, we

propose to further improve the robustness of the proposed method against high leverage

outliers by adaptively trimming high leverage points. In Section 4, we introduce how
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to adaptively choose the degrees of freedom for the t−distribution. In Section 5, we

compare the proposed method to the traditional MLE and some other robust methods

by using a simulation study and real data application. Section 6 contains a discussion

of possible future work.

2 Robust Mixture Regression Using the t−distribution

In order to more robustly estimate the mixture regression parameters in (1.2), we assume

that the error density fj(ϵ) is a t−distribution with degrees of freedom νj and scale

parameter σ:

f(ϵ; σ, ν) =
Γ(ν+1

2
)σ−1

(πν)
1
2Γ(ν

2
)
{
1 + ϵ2

σ2ν

} 1
2
(ν+1)

. (2.1)

We first assume that νjs are known. We will discuss about how to adaptively choose νjs

in Section 4. The unknown parameter θ in (1.2) can be estimated by maximizing the

log-likelihood

ℓ(θ) =
n∑

i=1

log

{
m∑
j=1

πjf(yi − xT
i βj;σ, νj)

}
. (2.2)

Note, however, the above log-likelihood does not have an explicit maximizer. Here,

we also propose to use an EM algorithm to simplify the computation. Let

zij =

 1, if the ith observation is from the jth component;

0, otherwise.
,

where i = 1, · · · , n, j = 1, · · · ,m. Then the complete likelihood for (y, z) given X is

ℓc(θ;y, z) =
n∑

i=1

m∑
j=1

zij log{πjf(yi − xT
i βj;σ, νj)},

where X = (x1, . . . ,xn)
T ,y = (y1, . . . , yn), and z = (z11, . . . , znm). Based on the theory
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of the EM algorithm, in E step, given the current estimate θ(k) at the kth step, we

calculate E(ℓc(θ;y, z) | X,y,θ(k)) which simplifies to the calculation of E(zij | X,y,θ(k)).

Then in M step, we find the maximizer of

E(ℓc(θ;y, z) | X,y,θ(k)) =
n∑

i=1

m∑
j=1

E(zij | X,y,θ(k)) log{πjf(yi − xT
i βj;σ, νj)}.

Note that the above maximizer does not have explicit solutions for βj and σ.

The computation can be further simplified based on the fact that the t−distribution

can be considered a scale mixture of normal distributions. Let u be the latent variable

such that

ϵ|u ∼ N(0, σ2/u), u ∼ gamma(
1

2
ν,

1

2
ν), (2.3)

where gamma(α, γ) has density

f(u;α, γ) =
1

Γ(α)
γαuα−1e−γu, u > 0.

Then, marginally ϵ has a t−distribution with degrees of freedom ν and scale parameter

σ. Therefore, we can simplify the computation of M step of the proposed EM algorithm

by introducing another latent variable u.

Note that the complete likelihood for (y,u, z) given X is

ℓc(θ;y,u, z) =
n∑

i=1

m∑
j=1

zij log{πjϕ(yi;xT
i βj, σ

2/ui)f(ui;
1

2
νj,

1

2
νj)},

=
n∑

i=1

m∑
j=1

zij log(πj) +
n∑

i=1

m∑
j=1

zij log{f(ui;
1

2
νj,

1

2
νj)},

+
n∑

i=1

m∑
j=1

zij

{
−1

2
log(2πσ2) +

1

2
log(ui)−

ui
2σ2

(yi − xT
i βj)

2

}
, (2.4)
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where u = (u1, . . . , un) is independent of z. Since the above second term does not

involve unknown parameters, based on the theory of the EM algorithm, in E step, given

the current estimate θ(k) at the kth step, the calculation of E(ℓc(θ;y,u, z) | X,y,θ(k))

simplifies to the calculation of E(zij | X,y,θ(k)) and E(ui | X,y,θ(k), zij = 1). Then in

M step, we find the maximizer of

E(ℓc(θ;y,u, z) | X,y,θ(k))

∝
n∑

i=1

m∑
j=1

E(zij | X,y,θ(k))

[
log(πj)−

1

2
log(2πσ2)− E(ui | X,y,θ(k), zij = 1)

2σ2
(yi − xT

i βj)
2

]
(2.5)

which has an explicit solution for θ.

Based on the above, we propose the following EM algorithm to maximize (2.2).

Algorithm 2.1. Given the initial parameter estimate θ(0), at the (k+1)th iteration, we

calculate the following two steps:

E step: Calculate

p
(k+1)
ij = E(zij | X,y,θ(k)) =

π
(k)
j f(yi − xT

i β
(k)
j ;σ(k), νj)∑m

l=1 π
(k)
l f(yi − xT

i β
(k)
l ;σ(k), νl)

(2.6)

and

u
(k+1)
ij = E(ui | X,y,θ(k), zij = 1) =

ν + 1

ν +
{
(yi − xT

i β
(k)
j )/σ(k)

}2 , (2.7)

where f(ϵ;σ, ν) is defined in (2.1).
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M step: Update parameter estimates:

π
(k+1)
j =

n∑
i=1

p
(k+1)
ij /n, (2.8)

β
(k+1)
j =

(
n∑

i=1

xix
T
j p

(k+1)
ij u

(k+1)
ij

)−1( n∑
i=1

xiyip
(k+1)
ij u

(k+1)
ij

)
, (2.9)

and

σ(k+1) =

{∑n
i=1

∑m
j=1 p

(k+1)
ij u

(k+1)
ij (yi − xT

i β
(k+1)
j )2

n

}1/2

. (2.10)

Theorem 2.1. Each iteration of the E step and M step of Algorithm 2.1 monotonically

non-decreases the objective function (2.2), i.e., ℓ(θ(k+1)) ≥ ℓ(θ(k)), for all k ≥ 0.

The proof of the above theorem is simple and omitted here. Based on (2.9) in M

step, the regression parameters can be considered a weighted least squares estimate with

the weights depending on u
(k+1)
ij . Based on (2.7) in E step, the weights u

(k+1)
ij decrease

if the standardized residuals increase. Therefore, the weights u
(k+1)
ij reduce the effects

of the outliers and provide a robust estimate for the mixture regression parameters. In

addition, based on (2.10) in M step, the larger residuals also have smaller effects on

σ
(k+1)
j due to the weights u

(k+1)
ij .

Hennig (2004) showed that the mixture of t−distributions proposed by Peel and

McLachlan (2000) has a low breakdown point. We expect similar results from the

proposed mixture regression models based on the t−distribution. However, Hennig

(2004) mentioned that only very extreme outliers can lead to the breakdown of mixture

of t−distributions. Our real data application in Section 5 further confirms this finding.

Therefore, we believe that the t−distribution can still be used as an alternative tool to

provide a robust estimation for the mixture model against modest outliers.
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3 Adaptively Trimmed Version

Similar to the traditional M-estimate for linear regression (Maronna et al., 2006), the

proposed mixture regression model based on the t−distribution is sensitive to high lever-

age outliers. To overcome this problem, we then propose a trimmed version of the new

method by fitting the new model to the data after adaptively trimming high leverage

points. In addition, unlike TLE (Neykov et al., 2007), the proportion of trimming of the

new method is data adaptive instead of a fixed value.

Let X = (x1, . . . ,xn)
T and hii be the ith diagonal of H, where H = X(XTX)−1XT .

Then, hii is called the leverage for the ith predictor xi and xi is considered a high

leverage point if hii is large.

Note however

hii = n−1 + (n− 1)−1MDi, (3.1)

where

MDi = (xi − x̄)TS−1(xi − x̄)

is the Mahalanobis distance, x̄ is the sample mean of xis , and S is the sample covariance

of xis (without the intercept 1). It is well known that x̄ and S are not resistant to outliers

and might create the masking effect (Rousseeuw and van Zomeren, 1990), i.e., some high

leverage points might not be identified due to the influence of other high-leverage points.

In order to overcome this, a modified Mahalanobis distance is proposed

MDi = (xi −m(X))TC(X)−1(xi −m(X)),

wherem(X) andC(X) are robust estimates of location and scatter forX (after removing

the first column 1s).

We propose to use the minimum covariance determinant (MCD, Rosseeuw, 1984) es-
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timators form(X) andC(X) and implement it by the Fast MCD algorithm of Rousseeuw

and Van Driessen (1999). Note that the resulting robust estimate MDi is the same as

the robust distance proposed by Rousseeuw and Leroy (1987). After getting the robust

estimate MDi, we propose to trim the data based on the cut point χ2
p−1,0.975, which

is proposed by Pison et al. (2002) to improve the finite-sample efficiency for the raw

MCD estimator using a one-step weighted estimate. Therefore, to make the proposed

method also robust against high leverage outliers, we propose to implement the proposed

mixture of regression based on the t−distribution after trimming the observations with

MDi > χ2
p−1,0.975.

We might also utilize some other robust estimates for m(X) and C(X). There have

been many robust estimators proposed for multivariate location and scatter, such as

the Stahel-Donoho estimator (Stahel, 1981; Donoho, 1982), minimum volume ellipsoid

(MVE) estimator (Rousseeuw, 1984), S-estimator (Rousseeuw and Leroy, 1987; Davies,

1987), and the depth based estimator (Donoho and Gasko, 1992; Liu et al., 1999; Zuo

and Serfling, 2000; Zuo et al., 2004).

4 Adaptive Choice of the Degrees of Freedom for

the t−distribution

In previous sections, we assume that the degrees of freedom νjs for the t−distribution

are known. In this section, we discuss how to adaptively choose ν. We first consider

the case where ν1 = ν2 = · · · = νm = ν. We will further discuss the case where νjs are

different later.

When ν is unknown, we typically estimate ν and the mixture regression parameter

θ by maximizing the log-likelihood (2.2) over both ν and θ. In order to maximize the
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log-likelihood (2.2), we define the profile likelihood for ν:

L(ν) = max
θ

n∑
i=1

log

{
m∑
j=1

πjf(yi − xT
i βj;σ, ν)

}
. (4.1)

For each fixed ν, we can easily find L(ν) based on Algorithm 2.1. Then we propose

to estimate ν by

ν̂ = argmax
ν

L(ν).

In practice, we can calculate L(ν) in a set of grid points of ν, say ν = 1, . . . , νmax.

Note that the above proposed profile method can be also applied to the case where

νjs are different, however, the computation will be intensive when m is large, since we

need to compute L(ν) for νmmax times.

Similar to Peel and McLachlan (2000), we can also incorporate the estimation of

νjs in the EM Algorithm 2.1. Based on the complete likelihood (2.4), at the (k + 1)th

iteration of M step given the current estimate θ(k), we can update νj by

ν
(k+1)
j = argmax

νj
E

[
n∑

i=1

zij log{f(ui;
1

2
νj,

1

2
νj)} | X,y,θ(k)

]
. (4.2)

Note that

E
[
log(ui) | X,y,θ(k), zij = 1

]
= ψ

(
ν
(k)
j + 1

2

)
−log

ν(k)j +
{
(yi − xT

i β
(k)
j )/σ(k)

}2

2

 , v
(k+1)
ij ,

where ψ(t) = ∂ log(Γ(t))/∂t is the Digamma function. Therefore, (4.2) is equivalent to

ν
(k+1)
j = argmax

νj

n∑
i=1

p
(k+1)
ij

[
− log Γ(0.5νj) + 0.5νj log(0.5νj) + 0.5νj

{
v
(k+1)
ij − u

(k+1)
ij

}
− v

(k+1)
ij

]
.

(4.3)

Note that (4.3) does not have an explicit formula. We might use some numerical algo-
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rithms to solve it or simply use grid search for νj = 1 . . . , νmax.

5 Examples

5.1 Simulation studies

In this section, we use a simulation study to demonstrate the effectiveness of the proposed

method and compare the following five methods:

1. traditional MLE assuming the error has a normal density (MLE),

2. trimmed likelihood estimator (TLE) proposed by Neykov et al. (2007) with the

percentage of trimmed data α set to 0.1, (The choice of α plays an important

role for the TLE. If α is too large, the TLE will lose much efficiency. If α is too

small and the percentage of outliers is more than α, then the TLE will fail. In our

simulation study, the proportion of outliers is never greater than 0.1.)

3. the robust modified EM algorithm based on bisquare (MEM-bisquare) proposed

by Bai et al. (2012),

4. the proposed robust mixture regression model based on the t−distribution (Mixregt),

5. the proposed trimmed version of Mixregt (Mixregt-trim).

To compare the different methods, we report the mean squared errors (MSE) and the

bias of the parameter estimates for each estimation method. However, under mixture

models, there are well known label switching issues (Celeux, et al., 2000; Stephens,

2000; Yao and Lindsay, 2009; Yao, 2012) when performing comparisons using simulation

studies. There are no generally accepted labeling methods. In our simulation study, we

choose the labels by minimizing the distance to the true parameter values. However,

more research comparing different labeling methods is needed.
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Example 1. Suppose the independently and identically distributed samples {(x1i, x2i, yi), i =

1, . . . , n} are sampled from the model

Y =

 0 +X1 +X2 + ϵ1, if Z = 1;

0−X1 −X2 + ϵ2, if Z = 2.
,

where Z is a component indicator of Y with P (Z = 1) = 0.25, X1 ∼ N(0, 1), X2 ∼

N(0, 1), and ϵ1 and ϵ2 have the same distribution as ϵ. We consider the following five

cases for the error density of ϵ:

Case I: ϵ ∼ N(0, 1) – standard normal distribution,

Case II: ϵ ∼ t3 – the t−distribution with degrees of freedom 3,

Case III: ϵ ∼ t1 – the t−distribution with degree of freedom 1 (Cauchy distribution),

Case IV: ϵ ∼ 0.95N(0, 1) + 0.05N(0, 52) – contaminated normal mixture,

Case V: ϵ ∼ N(0, 1) with 5% of high leverage outliers being X1 = 20, X2 = 20, and

Y = 100.

Case I is used to test the efficiency of different estimation methods compared to the

traditional MLE when the error is exactly normally distributed and there are no outliers.

Case II is a heavy-tailed distribution. The t-distributions with degrees of freedom from

3 to 5 are often used to represent the heavy-tailed distributions. Case III is a Cauchy

distribution which has extreme heavy tails. The contaminated normal mixture model in

Case IV is often used to mimic the situation with outliers. The 5% data from N(0, 52)

are likely to be low leverage outliers. In Case V, 95% of the observations have the error

distribution N(0, 1), but 5% of the observations are identical high leverage outliers with

X1 = 20, X2 = 20, and Y = 100.
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In this example, we check the performance of the proposed profile likelihood method

assuming all νjs are equal. Note that when ν is large enough, the t−distribution is close

to a normal distribution. Therefore, in practice, νmax does not need to be large. In

this example, we set νmax = 15. However, one might choose a larger νmax for real data

application.

Tables 1 and 2 report the mean squared errors (MSE) and the absolute bias (Bias) of

the parameter estimates for each estimation method for sample size n = 200 and n = 400,

respectively. The number of replicates is 200. As shown in Table 1 and 2, in Case I

through IV, Mixregt and Mixregt-trim performed at a level that is better or equal to

the other three methods. In case V where there are high leverage outliers, Mixregt-trim

also outperformed the other four methods. Specifically, we have the following findings:

1. MLE worked best in Case I (ϵ ∼ N(0, 1)), but failed to provide reasonable estimates

in Case II to V.

2. Mixregt and Mixregt-trim performed better than MEM-bisquare in Case I, II, and

IV when n = 200, but performed comparably to MEM-bisquare when n = 400. In

addition, Mixregt and Mixregt-trim also performed better than MEM-bisquare in

Case III when n = 400.

3. Mixregt, Mixregt-trim, and MEM-bisquare performed better than TLE in Case I

to IV.

4. In Case V, where there are high leverage outliers, Mixregt-trim worded best. In

addition, TLE and MEM-bisquare also worked better than Mixregt and MLE.

In order to check the performance of the proposed profile likelihood for the selection

of degrees of freedom for t−distribution, in Table 4, we report the mean and median

of estimated degrees of freedom for Mixregt and Mixregt-trim. The degrees of freedom

were chosen based on the grid points from [1, vmax], where vmax = 15 was used in our
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simulation study. Therefore, for Case I−normal distribution, the “optimal” solution is

vmax = 15. Based on the results of Case I, II, and III in Table 4, the proposed profile

likelihood adaptively estimated the degrees of freedom for t−distribution. In Case IV,

although the true error density is not a t−distribution, both Mixregt and Mixregt-trim

were able to use a heavy-tailed t−distribution to approximate the contaminated normal

mixture to produce a robust estimate for mixture regression parameters. In Case V,

the estimated degrees of freedom for Mixregt-trim are close to vmax = 15. Therefore,

Mixregt-trim successfully trimmed the high leverage outliers and recovered the original

normal error density.

Example 2. In this example, we consider a case where the number of components

is larger than two and the components are close. We generate the independent and

identically distributed (i.i.d.) data {(xi, yi), i = 1, . . . , n} from the model

Y =


1 +X + ϵ1, if Z = 1;

2 + 2X + ϵ2, if Z = 2;

3 + 5X + ϵ3, if Z = 3;

,

where Z is a component indicator of Y with P (Z = 1) = P (Z = 2) = 0.3, P (Z = 3) =

0.4, and X ∼ N(0, 1). Note that in this case all three components have the same sign of

the slopes and the first two components are very close. We consider the following four

cases for component error densities:

Case I: ϵ1, ϵ2, and ϵ3 have the same distribution from N(0, 1),

Case II: ϵ1 ∼ t9, ϵ2 ∼ t6 and ϵ3 ∼ t3,

Case III: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ t3,

Case VI: ϵ1, ϵ2, and ϵ3 have the same distribution from N(0, 1) with 5% of high leverage

outliers being X = 20 and Y = 200.
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In this example, we compare the performance of the proposed method, when all νjs

are assumed to be unequal, to the other methods. Tables 4 and 5 report the mean

squared errors (MSE) and the absolute bias (Bias) of the parameter estimates for each

estimation method for sample size n = 200 and n = 400, respectively. In Case I where

the error is normal, all five methods worked well and MLE, MEM-bisquare, Mixregt, and

Mixregt-trim worked better than TLE. In Case II and III where the errors have heavy

tails, all four robust methods performed well but MLE failed. In Case IV where there

are high leverage outliers, TLE, MEM-bisquare, and Mixregt-trim still worked well, but

MLE and Mixregt failed.

5.2 Real data application

We further apply the proposed robust procedure to tone perception data (Cohen, 1984).

In the tone perception experiment of Cohen (1984), a pure fundamental tone with elec-

tronically generated overtones added was played to a trained musician. The experiment

recorded 150 trials from the same musician. The overtones were determined by a stretch-

ing ratio, which is the ratio between adjusted tone and the fundamental tone. The pur-

pose of this experiment was to see how this tuning ratio affects the perception of the

tone and to determine whether either of two musical perception theories was reasonable.

To better illustrate the robustness of the proposed estimation procedure, we added

ten identical outliers (1.5, 5) to the original data set, and fit the data with both MLE

and Mixregt. Figure 1 shows the scatter plot of the data with the estimated regres-

sion lines generated by the traditional MLE (dashed lines) and the proposed Mixregt

(solid line) for the data augmented by the outliers (stars). As shown in Figure 1, the

MLE for one of the components fit the line through the outliers and the MLE for the

other component fit the line using the rest of data. In this example, the ten outliers

had a significant impact on the fitted regression lines by MLE. In addition, note that
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the proposed Mixregt well recovered the two regression lines and thus was robust to

the added outliers. Additionally, TLE, MEM-Bisquare, and Mixregt-trim all provided

similar results to Mixregt.

Similar to Hennig (2004), in order to see how large the outliers can lead to the

breakdown of at least one component estimate, we further applied Mixregt by adding

ten identical outliers (1.5, a) to the original data set using different a values. We found

that Mixregt still worked well when a = 4700 but failed when a = 4800. However, such

extreme outliers can usually easily be deleted.

6 Discussion

In this article, we proposed a new robust estimation method for mixture of regression

based on the t−distribution. In order to make the new method work against high

leverage outliers, we further proposed a trimmed version of the proposed method by

fitting the new model to the data after adaptively trimming high leverage points. The

simulation study demonstrated the effectiveness of the proposed new method.

In the trimmed version of the new method, we use the same weights as Pison et al.

(2002), i.e, delete the high leverage points based on the cut point χ2
p−1,0.975. However,

some high leverage points might have small residuals and thus can also provide valuable

information to regression parameters. More research is needed on how to incorporate

information from data with high leverage points and small residuals. One possible way

is to borrow the ideas from GM-estimators (Krasker and Welsch, 1982; Maronna and

Yohai, 1981) and one-step GM-estimators (Coakley and Hettmansperger, 1993; Simpson

and Yohai, 1998).

It is also interesting to investigate the sample breakdown points for the proposed

method and some of the other robust mixture regression models. However, we should
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Figure 1: The scatter plot of the tone perception data and the fitted mixture regression
lines with ten added identical outliers (1.5, 5) (denoted by stars at the upper left corner).
The predictor is the actual tone ratio and the response is the perceived tone ratio by
a trained musician. The solid lines represent the fit by the proposed Mixregt and the
dashed lines represent the fit by the traditional MLE.

note that the analysis of breakdown point for traditional linear regression cannot be

directly applied to mixture regression. For example, the breakdown point of TLE for

traditional linear regression does not apply to the mixture regression. Garćıa-Escudero

et al. (2010) also stated that the traditional definition of breakdown point is not the right

one to quantify the robustness of clustering regression procedures to outliers, since the

robustness of these procedures is not only data dependent but also cluster dependent.
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Hennig (2004) provided a new definition of breakdown points for mixture model

based on the breakdown of at least one of the mixture components. Based on this new

definition, the mixture of t−distributions has a very small breakdown point (Hennig,

2004). However, Hennig (2004) mentioned that only very extreme outliers could lead to

the breakdown of mixture of t−distributions, especially when the degrees of freedom were

small. Therefore, we believe the t−distribution can still be used as a robust estimation

method for mixture models with the exception of extreme outliers.

Note that model (1.2) assumes that component proportions πjs are constant and

do not depend on x. This might be unrealistic in some situations. The ideas that

allow the proportions to depend on the covariates in a mixture model can be found in

literature, e.g., the hierarchical mixtures of experts model (Jordan and Jacobs, 1994) in

machine learning. Young and Hunter (2010) used kernel regression to model covariate-

dependent proportions for mixture of linear regression models. Huang and Yao (2012)

proposed a semiparametric mixture regression model by allowing πj to depend on x

nonparametrically. It will be interesting to understand how to apply the proposed

robust method based on the t−distribution to the above models when the proportions

also depend on x. This will be the topic of our future research.
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Table 1: MSE (Bias) of point estimates for n = 200 in Example 1
TRUE MLE TLE MEM-bisquare Mixregt Mixregt-trim

Case I: ϵ ∼ N(0, 1)
β10 : 0 0.046 (0.001) 0.305 (0.033) 0.066 (0.008) 0.046 (0.003) 0.048 (0.008)
β20 : 0 0.010 (0.014) 0.069 (0.015) 0.010 (0.012) 0.010 (0.014) 0.010 (0.015)
β11 : 1 0.032 (0.013) 0.938 (0.618) 0.052 (0.006) 0.032 (0.011) 0.040 (0.001)
β21 : −1 0.009 (0.001) 0.018 (0.013) 0.010 (0.001) 0.009 (0.001) 0.011 (0.002)
β12 : 1 0.042 (0.007) 0.910 (0.648) 0.087 (0.030) 0.041 (0.006) 0.050 (0.012)
β22 : −1 0.009 (0.000) 0.015 (0.005) 0.010 (0.000) 0.009 (0.000) 0.011 (0.002)
π1 : 0.25 0.002 (0.004) 0.009 (0.049) 0.002 (0.007) 0.002 (0.004) 0.002 (0.006)

Case II: ϵ ∼ t3
β10 : 0 38.42 (0.205) 0.253 (0.021) 0.205 (0.033) 0.141 (0.014) 0.153 (0.020)
β20 : 0 16.73 (0.117) 0.029 (0.010) 0.148 (0.020) 0.015 (0.002) 0.106 (0.008)
β11 : 1 12.59 (0.148) 0.380 (0.331) 0.217 (0.095) 0.151 (0.064) 0.169 (0.081)
β21 : −1 5.235 (0.365) 0.022 (0.015) 0.032 (0.029) 0.014 (0.012) 0.052 (0.035)
β12 : 1 19.57 (0.576) 0.350 (0.282) 0.200 (0.048) 0.143 (0.035) 0.189 (0.071)
β22 : −1 5.236 (0.278) 0.023 (0.017) 0.149 (0.054) 0.015 (0.008) 0.020 (0.010)
π1 : 0.25 0.098 (0.076) 0.007 (0.041) 0.012 (0.042) 0.003 (0.008) 0.008 (0.017)

Case III: ϵ ∼ t1
β10 : 0 4.7e+4 (8.158) 3.242 (0.082) 0.985 (0.006) 0.305 (0.025) 0.429 (0.016)
β20 : 0 4.2e+6 (147.0) 4.871 (0.070) 0.083 (0.017) 0.061 (0.013) 0.072 (0.012)
β11 : 1 2.2e+4 (38.27) 3.850 (0.018) 0.764 (0.125) 0.691 (0.343) 1.025 (0.402)
β21 : −1 3.6e+6 (241.3) 1.770 (0.182) 0.085 (0.001) 0.053 (0.069) 0.059 (0.012)
β12 : 1 2.7e+4 (35.81) 2.301 (0.448) 0.669 (0.207) 0.634 (0.353) 0.837 (0.398)
β22 : −1 1.7e+5 (44.15) 1.429 (0.189) 0.193 (0.076) 0.056 (0.095) 0.154 (0.038)
π1 : 0.25 0.305 (0.272) 0.084 (0.106) 0.025 (0.103) 0.019 (0.068) 0.022 (0.080)

Case IV: ϵ ∼ 0.95N(0, 1) + 0.05N(0, 52)
β10 : 0 5.372(0.020) 0.183(0.024) 0.056(0.008) 0.057(0.013) 0.065(0.015)
β20 : 0 7.378(0.235) 0.039(0.000) 0.014(0.010) 0.011(0.010) 0.011(0.008)
β11 : 1 3.979(0.096) 0.470(0.382) 0.126(0.036) 0.057(0.002) 0.078(0.009)
β21 : −1 1.763(0.131) 0.016(0.007) 0.013(0.016) 0.013(0.013) 0.014(0.010)
β12 : 1 4.217(0.138) 0.568(0.415) 0.117(0.044) 0.063(0.008) 0.081(0.018)
β22 : −1 2.300(0.244) 0.017(0.003) 0.013(0.012) 0.013(0.001) 0.015(0.007)
π1 : 0.25 0.088(0.067) 0.006(0.032) 0.006(0.028) 0.003(0.006) 0.003(0.008)

Case V: ϵ ∼ N(0, 1) with 5% of high leverage outliers
β10 : 0 2.099 (0.059) 0.163 (0.054) 0.508 (0.092) 1.508 (0.240) 0.016 (0.015)
β20 : 0 0.014 (0.000) 0.022 (0.007) 0.010 (0.001) 0.034 (0.013) 0.010 (0.001)
β11 : 1 3.443 (1.534) 0.487 (0.129) 1.152 (0.532) 3.055 (1.561) 0.054 (0.008)
β21 : −1 0.076 (0.235) 0.063 (0.020) 0.011 (0.023) 0.089 (0.138) 0.010 (0.003)
β12 : 1 3.233 (1.459) 0.426 (0.139) 0.747 (0.364) 2.663 (1.425) 0.042 (0.004)
β22 : −1 0.070 (0.227) 0.086 (0.021) 0.012 (0.018) 0.082 (0.132) 0.011 (0.015)
π1 : 0.25 0.009 (0.092) 0.004 (0.010) 0.004 (0.015) 0.007 (0.080) 0.003 (0.005)
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Table 2: MSE (Bias) of point estimates for n = 400 in Example 1
TRUE MLE TLE MEM-bisquare Mixregt Mixregt-trim

Case I: ϵ ∼ N(0, 1)
β10 : 0 0.020 (0.003) 0.144 (0.037) 0.021 (0.003) 0.020 (0.003) 0.023 (0.008)
β20 : 0 0.004 (0.000) 0.037 (0.027) 0.004 (0.001) 0.004 (0.001) 0.004 (0.004)
β11 : 1 0.021 (0.006) 0.579 (0.455) 0.023 (0.009) 0.021 (0.005) 0.019 (0.003)
β21 : −1 0.004 (0.003) 0.012 (0.014) 0.004 (0.003) 0.004 (0.003) 0.005 (0.003)
β12 : 1 0.017 (0.002) 0.625 (0.471) 0.019 (0.000) 0.017 (0.002) 0.025 (0.001)
β22 : −1 0.004 (0.005) 0.011 (0.003) 0.004 (0.008) 0.004 (0.005) 0.005 (0.002)
π1 : 0.25 0.001 (0.004) 0.009 (0.028) 0.001 (0.006) 0.001 (0.004) 0.001 (0.000)

Case II: ϵ ∼ t3
β10 : 0 22.41 (0.078) 0.092 (0.030) 0.044 (0.008) 0.040 (0.007) 0.042 (0.006)
β20 : 0 12.13 (0.012) 0.011 (0.003) 0.008 (0.000) 0.006 (0.001) 0.006 (0.000)
β11 : 1 16.13 (0.482) 0.107 (0.162) 0.039 (0.024) 0.035 (0.005) 0.037 (0.003)
β21 : −1 21.65 (0.638) 0.007 (0.008) 0.007 (0.026) 0.006 (0.006) 0.007 (0.004)
β12 : 1 23.00 (0.245) 0.094 (0.181) 0.040 (0.022) 0.038 (0.007) 0.039 (0.005)
β22 : −1 11.33 (0.467) 0.007 (0.004) 0.008 (0.028) 0.006 (0.007) 0.007 (0.008)
π1 : 0.25 0.087 (0.059) 0.002 (0.021) 0.002 (0.021) 0.001 (0.001) 0.002 (0.001)

Case III: ϵ ∼ t1
β10 : 0 5.2e+6 (210) 2.515 (0.079) 0.205 (0.002) 0.017 (0.012) 0.124 (0.030)
β20 : 0 9.1e+5 (71.5) 1.919 (0.131) 0.063 (0.013) 0.010 (0.002) 0.025 (0.006)
β11 : 1 1.2e+7 (330) 0.951 (0.157) 0.417 (0.202) 0.255 (0.013) 0.313 (0.171)
β21 : −1 9.4e+5 (184) 0.634 (0.047) 0.118 (0.068) 0.009 (0.016) 0.037 (0.017)
β12 : 1 1.8e+6 (109) 1.318 (0.083) 0.418 (0.134) 0.198 (0.032) 0.233 (0.171)
β22 : −1 2.11e+5 (74) 0.667 (0.064) 0.085 (0.059) 0.008 (0.004) 0.025 (0.010)
π1 : 0.25 0.303 (0.253) 0.049 (0.054) 0.025 (0.107) 0.008 (0.014) 0.010 (0.033)

Case IV: ϵ ∼ 0.95N(0, 1) + 0.05N(0, 52)
β10 : 0 3.509(0.178) 0.117(0.058) 0.023(0.016) 0.025(0.012) 0.030(0.004)
β20 : 0 4.298(0.194) 0.021(0.013) 0.005(0.000) 0.005(0.001) 0.005(0.006)
β11 : 1 2.057(0.137) 0.340(0.307) 0.025(0.026) 0.027(0.020) 0.033(0.008)
β21 : −1 2.889(0.341) 0.007(0.011) 0.004(0.002) 0.005(0.011) 0.007(0.012)
β12 : 1 2.436(0.122) 0.303(0.301) 0.019(0.013) 0.021(0.011) 0.032(0.012)
β22 : −1 2.422(0.134) 0.007(0.011) 0.005(0.004) 0.005(0.007) 0.005(0.002)
π1 : 0.25 0.059(0.030) 0.004(0.011) 0.001(0.009) 0.001(0.007) 0.001(0.004)

Case V: ϵ ∼ N(0, 1) with 5% of high leverage outliers
β10 : 0 1.708 (0.129) 0.116 (0.029) 0.264 (0.040) 1.141 (0.203) 0.020 (0.007)
β20 : 0 0.008 (0.013) 0.035 (0.015) 0.005 (0.007) 0.005 (0.011) 0.005 (0.005)
β11 : 1 2.814 (1.473) 0.195 (0.016) 0.600 (0.333) 2.714 (1.498) 0.020 (0.008)
β21 : −1 0.074 (0.252) 0.078 (0.033) 0.007 (0.028) 0.024 (0.135) 0.005 (0.002)
β12 : 1 2.940 (1.516) 0.276 (0.005) 0.672 (0.341) 2.691 (1.490) 0.024 (0.015)
β22 : −1 0.073 (0.251) 0.052 (0.018) 0.006 (0.021) 0.021 (0.128) 0.004 (0.003)
π1 : 0.25 0.009 (0.095) 0.002 (0.003) 0.002 (0.016) 0.008 (0.087) 0.001 (0.001)
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Table 3: The mean (median) of estimated degrees of freedom by Mixregt and Mixregt-
trim based on the grid points from [1, 15] for Example 1

Case n Mixregt Mixregt-trim

I: ϵ ∼ N(0, 1) 200 14.5 (15) 14.4 (15)

400 14.7 (15) 14.8 (15)

II: ϵ ∼ t3 200 3.33 (3) 3.39 (3)

400 3.18 (3) 3.18 (3)

III: ϵ ∼ t1 200 1 (1) 1 (1)

400 1 (1) 1 (1)

IV: ϵ ∼ 0.95N(0, 1) + 0.05N(0, 52) 200 3.52(3) 3.45 (3)

400 3.91(3) 3.92 (3)

V: ϵ ∼ N(0, 1) with 5% high leverage outliers 200 4.62 (4) 13.8 (15)

400 4.26 (4) 14.7 (15)
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Table 4: MSE (Bias) of point estimates for n = 200 in Example 2
TRUE MLE TLE MEM-bisquare Mixregt Mixregt-trim

Case I: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ N(0, 1)
β10 : 1 0.075(0.025) 0.113(0.068) 0.063(0.036) 0.068(0.043) 0.071(0.044)
β20 : 2 0.189(0.089) 0.211(0.222) 0.145(0.073) 0.149(0.071) 0.200(0.113)
β30 : 3 0.021(0.006) 0.057(0.006) 0.022(0.004) 0.021(0.005) 0.027(0.012)
β11 : 1 0.086(0.034) 0.205(0.306) 0.062(0.010) 0.060(0.029) 0.073(0.046)
β21 : 2 0.186(0.078) 0.511(0.013) 0.171(0.065) 0.150(0.036) 0.191(0.066)
β31 : 5 0.020(0.032) 0.047(0.030) 0.018(0.028) 0.020(0.029) 0.023(0.027)
π1 : 0.3 0.009(0.015) 0.006(0.037) 0.008(0.011) 0.008(0.011) 0.009(0.017)
π2 : 0.3 0.008(0.002) 0.004(0.008) 0.007(0.001) 0.006(0.003) 0.008(0.002)

Case II: ϵ1 ∼ t9, ϵ2 ∼ t6, and ϵ3 ∼ t3
β10 : 1 25.31(0.589) 0.155(0.126) 0.175(0.072) 0.123(0.023) 0.143(0.016)
β20 : 2 7.065(0.832) 0.290(0.273) 0.276(0.060) 0.201(0.020) 0.238(0.007)
β30 : 3 13.88(0.835) 0.066(0.032) 0.034(0.042) 0.033(0.044) 0.034(0.047)
β11 : 1 15.09(0.164) 0.183(0.256) 0.086(0.032) 0.075(0.035) 0.108(0.035)
β21 : 2 5.927(0.869) 0.456(0.103) 0.299(0.136) 0.311(0.161) 0.310(0.172)
β31 : 5 12.82(1.469) 0.051(0.021) 0.029(0.042) 0.029(0.046) 0.039(0.065)
π1 : 0.3 0.056(0.106) 0.009(0.043) 0.010(0.020) 0.012(0.016) 0.014(0.017)
π2 : 0.3 0.029(0.042) 0.006(0.015) 0.010(0.002) 0.012(0.006) 0.014(0.007)

Case III: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ t3
β10 : 1 5.111(0.045) 0.127(0.112) 0.094(0.008) 0.091(0.061) 0.095(0.057)
β20 : 2 8.283(0.928) 0.219(0.241) 0.253(0.069) 0.205(0.037) 0.221(0.068)
β30 : 3 9.160(0.442) 0.044(0.012) 0.083(0.037) 0.081(0.037) 0.081(0.044)
β11 : 1 3.508(0.165) 0.172(0.257) 0.065(0.035) 0.062(0.058) 0.070(0.070)
β21 : 2 5.687(1.084) 0.202(0.053) 0.347(0.167) 0.330(0.193) 0.405(0.236)
β31 : 5 11.32(1.492) 0.046(0.028) 0.050(0.062) 0.053(0.072) 0.065(0.085)
π1 : 0.3 0.064(0.146) 0.007(0.043) 0.011(0.029) 0.012(0.037) 0.014(0.045)
π2 : 0.3 0.029(0.020) 0.005(0.022) 0.008(0.003) 0.010(0.001) 0.009(0.004)

Case IV: ϵ1, ϵ2, ϵ3,∼ N(0, 1) with 5% of high leverage outliers
β10 : 1 0.240(0.467) 0.117(0.111) 0.088(0.005) 0.128(0.125) 0.143(0.094)
β20 : 2 0.917(0.936) 0.224(0.216) 0.180(0.027) 0.380(0.351) 0.218(0.132)
β30 : 3 16.39(2.228) 0.039(0.020) 0.022(0.017) 3.231(0.562) 0.025(0.014)
β11 : 1 0.242(0.495) 0.126(0.188) 0.069(0.032) 0.121(0.180) 0.113(0.097)
β21 : 2 8.576(2.907) 0.261(0.007) 0.245(0.080) 3.005(1.037) 0.217(0.017)
β31 : 5 24.41(4.913) 0.030(0.012) 0.022(0.001) 8.058(1.643) 0.026(0.009)
π1 : 0.3 0.060(0.236) 0.006(0.018) 0.010(0.006) 0.023(0.079) 0.017(0.013)
π2 : 0.3 0.008(0.078) 0.006(0.004) 0.010(0.001) 0.009(0.039) 0.018(0.008)
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Table 5: MSE (Bias) of point estimates for n = 400 in Example 2
TRUE MLE TLE MEM-bisquare Mixregt Mixregt-trim

Case I: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ N(0, 1)
β10 : 1 0.042(0.030) 0.077(0.117) 0.045(0.019) 0.039(0.009) 0.049(0.027)
β20 : 2 0.066(0.051) 0.108(0.214) 0.088(0.087) 0.078(0.075) 0.098(0.077)
β30 : 3 0.129(0.042) 0.032(0.006) 0.014(0.007) 0.013(0.008) 0.012(0.005)
β11 : 1 0.053(0.002) 0.136(0.267) 0.040(0.022) 0.039(0.023) 0.048(0.021)
β21 : 2 0.123(0.001) 0.443(0.057) 0.261(0.074) 0.244(0.072) 0.102(0.014)
β31 : 5 0.061(0.034) 0.021(0.043) 0.015(0.020) 0.011(0.016) 0.011(0.013)
π1 : 0.3 0.006(0.005) 0.004(0.021) 0.005(0.015) 0.005(0.014) 0.005(0.011)
π2 : 0.3 0.004(0.007) 0.003(0.007) 0.004(0.010) 0.003(0.011) 0.005(0.013)

Case II: ϵ1 ∼ t9, ϵ2 ∼ t6, and ϵ3 ∼ t3
β10 : 1 7.735(0.157) 0.094(0.116) 0.108(0.110) 0.082(0.045) 0.063(0.028)
β20 : 2 3.897(0.431) 0.163(0.234) 0.150(0.117) 0.093(0.027) 0.111(0.016)
β30 : 3 3.772(0.270) 0.024(0.022) 0.020(0.014) 0.019(0.009) 0.021(0.008)
β11 : 1 6.219(0.031) 0.124(0.233) 0.060(0.043) 0.050(0.018) 0.056(0.006)
β21 : 2 2.077(0.251) 0.077(0.091) 0.146(0.015) 0.140(0.037) 0.141(0.049)
β31 : 5 3.055(0.460) 0.020(0.020) 0.015(0.027) 0.016(0.027) 0.017(0.028)
π1 : 0.3 0.032(0.022) 0.004(0.026) 0.006(0.016) 0.006(0.001) 0.008(0.003)
π2 : 0.3 0.025(0.056) 0.004(0.018) 0.006(0.001) 0.007(0.017) 0.008(0.016)

Case III: ϵ1 ∼ N(0, 1), ϵ2 ∼ N(0, 1), and ϵ3 ∼ t3
β10 : 1 25.00(0.632) 0.062(0.071) 0.047(0.016) 0.049(0.015) 0.056(0.007)
β20 : 2 3.977(0.495) 0.125(0.214) 0.064(0.041) 0.048(0.009) 0.070(0.033)
β30 : 3 56.16(0.722) 0.022(0.014) 0.015(0.020) 0.015(0.022) 0.014(0.022)
β11 : 1 5.088(0.034) 0.123(0.232) 0.030(0.032) 0.029(0.039) 0.044(0.046)
β21 : 2 2.322(0.315) 0.077(0.107) 0.063(0.032) 0.063(0.047) 0.081(0.047)
β31 : 5 57.05(1.247) 0.017(0.026) 0.014(0.024) 0.015(0.028) 0.020(0.035)
π1 : 0.3 0.031(0.062) 0.004(0.030) 0.005(0.014) 0.006(0.010) 0.007(0.013)
π2 : 0.3 0.019(0.016) 0.003(0.023) 0.005(0.003) 0.006(0.013) 0.007(0.013)

Case IV: ϵ1, ϵ2, ϵ3,∼ N(0, 1) with 5% of high leverage outliers
β10 : 1 0.224(0.459) 0.071(0.097) 0.044(0.040) 0.096(0.114) 0.146(0.096)
β20 : 2 0.928(0.989) 0.137(0.207) 0.058(0.049) 0.342(0.320) 0.129(0.052)
β30 : 3 12.57(2.632) 0.015(0.012) 0.008(0.009) 1.828(0.461) 0.009(0.004)
β11 : 1 0.226(0.467) 0.101(0.212) 0.025(0.014) 0.097(0.208) 0.108(0.088)
β21 : 2 8.583(2.928) 0.059(0.068) 0.042(0.026) 2.404(0.807) 0.092(0.015)
β31 : 5 24.83(4.981) 0.015(0.023) 0.008(0.015) 6.451(1.414) 0.011(0.011)
π1 : 0.3 0.058(0.247) 0.003(0.025) 0.006(0.001) 0.018(0.070) 0.018(0.002)
π2 : 0.3 0.006(0.071) 0.003(0.008) 0.006(0.003) 0.005(0.020) 0.018(0.004)
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