Droplet dynamics in mini-channel steam flow condensation

dc.contributor.authorChen, Xi
dc.date.accessioned2017-08-03T15:50:10Z
dc.date.available2017-08-03T15:50:10Z
dc.date.graduationmonthAugust
dc.date.issued2017-08-01
dc.description.abstractPower plants are significant water users, accounting for 15% of water withdrawals worldwide. To reduce water usage, compact condensers are required to enable air-cooled condensers and reduce infrastructure costs. Steam flow condensation was studied in 0.952-mm and 1.82-mm hydraulic diameter mini-gaps in an open loop experimental apparatus. The apparatus was validated with single-phase flow. Flow condensation experiments were conducted for a wide range of steam mass fluxes (i.e., 35–100 kg/m²s) and qualities (i.e., 0.2–0.9) in hydrophilic copper and hydrophobic Teflon-coated channels. Water contact angles were 70° and 110° on copper and Teflon, respectively, and in general, filmwise condensation was the primary condensation mode in the hydrophilic channel and dropwise condensation was the primary mode observed in the hydrophobic channel. Pressure drops were reduced by 50–80% in the hydrophobic channels. Condensation heat transfer was enhanced by 200–350% in hydrophobic mini-gaps over hydrophilic mini-gap due to dropwise condensation. Droplet dynamics (e.g., nucleation, coalescence and departure) were quantified during dropwise condensation. A model was created which includes droplet adhesion and drag forces for droplet departure diameters which were then correlated to heat transfer coefficients. An overall mean absolute error of 9.6% was achieved without curve fitting. Noncondensable gases can reduce heat transfer in industrial systems, such as power plants due to the additional layer of thermal resistance from the gas. Condensing steam-nitrogen experiments were conducted for nitrogen mass fractions of 0–30%; the addition of nitrogen reduced heat transfer coefficients by up to 59% and 30% in hydrophilic and hydrophobic mini-gaps, respectively. It was found that during dropwise condensation, the noncondensable layer was perturbed by cyclical droplet motion, and therefore heat transfer coefficients were increased by 2–5 times compared with filmwise condensation of the same mass fraction of nitrogen.
dc.description.advisorMelanie M. Derby
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Mechanical and Nuclear Engineering
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/36201
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectDroplet dynamics
dc.subjectSteam condensation
dc.subjectHeat transfer
dc.titleDroplet dynamics in mini-channel steam flow condensation
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
XiChen2017.pdf
Size:
11.12 MB
Format:
Adobe Portable Document Format
Description:
Main article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: