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Abstract 

 Power plants are significant water users, accounting for 15% of water withdrawals 

worldwide. To reduce water usage, compact condensers are required to enable air-cooled 

condensers and reduce infrastructure costs. Steam flow condensation was studied in 0.952-mm 

and 1.82-mm hydraulic diameter mini-gaps in an open loop experimental apparatus.  The apparatus 

was validated with single-phase flow. Flow condensation experiments were conducted for a wide 

range of steam mass fluxes (i.e., 35–100 kg/m2s) and qualities (i.e., 0.2–0.9) in hydrophilic copper 

and hydrophobic Teflon-coated channels. Water contact angles were 70o and 110o on copper and 

Teflon, respectively, and in general, filmwise condensation was the primary condensation mode 

in the hydrophilic channel and dropwise condensation was the primary mode observed in the 

hydrophobic channel. Pressure drops were reduced by 50–80% in the hydrophobic channels. 

Condensation heat transfer was enhanced by 200–350% in hydrophobic mini-gaps over 

hydrophilic mini-gap due to dropwise condensation. Droplet dynamics (e.g., nucleation, 

coalescence and departure) were quantified during dropwise condensation. A model was created 

which includes droplet adhesion and drag forces for droplet departure diameters which were then 

correlated to heat transfer coefficients. An overall mean absolute error of 9.6% was achieved 

without curve fitting. Noncondensable gases can reduce heat transfer in industrial systems, such 

as power plants due to the additional layer of thermal resistance from the gas. Condensing steam-

nitrogen experiments were conducted for nitrogen mass fractions of 0–30%; the addition of 

nitrogen reduced heat transfer coefficients by up to 59% and 30% in hydrophilic and hydrophobic 

mini-gaps, respectively. It was found that during dropwise condensation, the noncondensable layer 

was perturbed by cyclical droplet motion, and therefore heat transfer coefficients were increased 

by 2–5 times compared with filmwise condensation of the same mass fraction of nitrogen. 
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Abstract 

Power plants are significant water users, accounting for 15% of water withdrawals 

worldwide. To reduce water usage, compact condensers are required to enable air-cooled 

condensers and reduce infrastructure costs. Steam flow condensation was studied in 0.952-mm 

and 1.82-mm hydraulic diameter mini-gaps in an open loop experimental apparatus.  The apparatus 

was validated with single-phase flow. Flow condensation experiments were conducted for a wide 

range of steam mass fluxes (i.e., 35–100 kg/m2s) and qualities (i.e., 0.2–0.9) in hydrophilic copper 

and hydrophobic Teflon-coated channels. Water contact angles were 70o and 110o on copper and 

Teflon, respectively, and in general, filmwise condensation was the primary condensation mode 

in the hydrophilic channel and dropwise condensation was the primary mode observed in the 

hydrophobic channel. Pressure drops were reduced by 50–80% in the hydrophobic channels. 

Condensation heat transfer was enhanced by 200–350% in hydrophobic mini-gaps over 

hydrophilic mini-gap due to dropwise condensation. Droplet dynamics (e.g., nucleation, 

coalescence and departure) were quantified during dropwise condensation. A model was created 

which includes droplet adhesion and drag forces for droplet departure diameters which were then 

correlated to heat transfer coefficients. An overall mean absolute error of 9.6% was achieved 

without curve fitting. Noncondensable gases can reduce heat transfer in industrial systems, such 

as power plants due to the additional layer of thermal resistance from the gas. Condensing steam-

nitrogen experiments were conducted for nitrogen mass fractions of 0–30%; the addition of 

nitrogen reduced heat transfer coefficients by up to 59% and 30% in hydrophilic and hydrophobic 

mini-gaps, respectively. It was found that during dropwise condensation, the noncondensable layer 

was perturbed by cyclical droplet motion, and therefore heat transfer coefficients were increased 

by 2–5 times compared with filmwise condensation of the same mass fraction of nitrogen.
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Chapter 1 Introduction 

Steam condensation, due to large latent heat of water [1], is an important process in 

industries such as thermal power plants [2, 3], desalination [4], fuel cells [5], air conditioning 

systems [6], water harvesting [7], and electronic device cooling [8]. In the Food-Energy-Water 

nexus, access to water is essential for the rising population, economic growth, and changes in diets. 

The energy sector is one of the largest consumers of fresh water which is a finite resource. In 2010, 

electricity generation sectors accounted for 15% of worldwide water withdrawals (i.e., 583 billion 

m3) [9], and in the U.S., thermal power plants were responsible for more than 40% of industrial 

fresh water withdrawals [10]. According to EPA, more than 1,000 facilities in the U.S., including 

approximately 500 power plants, withdrew at least 2 million gallons of water each day [11], and 

approximately 90% of the water intake in the power plants went to condensers to condense steam 

turbine exhaust into liquid water [9].  

Power plant water usage depends on the type of condenser. The traditional water-steam 

once-through condensers have the lowest infrastructure cost, yet demand the most water intake 

(i.e. 75-150 m3/MWh) and create thermal pollution to aqueous organisms [12]. Cooling towers 

greatly reduce water intake (i.e., 2–28 m3/MWh) and eliminate thermal pollution to the watersheds. 

However, cooling towers increase water consumption (i.e., the amount of water not returning to 

the source) through evaporation increases from 0.8 m3/MWh in once-through condensers to 2.3 

m3/MWh in cooling towers [2]. Currently, once-through systems and cooling towers constitute 

42% and 43% of the power plant condensers, respectively [10, 13]. Air-cooled systems in which 

heat is rejected from hot steam to air flow nearly eliminates water usage in condensers [14]; 

however, the performance of air-cooled systems depends on the air dry-bulb temperature, which 

is higher and fluctuates more than wet-bulb temperatures for cooling towers. Air-cooled systems 
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typically cost 3.5 to 5 times more than cooling towers and cause the levelized costs of electricity 

to be about 15% higher [15]. An improved fundamental understanding of steam-side condensation 

and  air-side heat transfer can improve heat transfer performance and reduce infrastructure cost of 

air-cooled condensers to benefit power generation in the water-constrained future [16]. 
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Chapter 2 Literature review 

Condensate forms when vapor contacts a subcooled surface. In flow condensation, 

convective forces increase heat transfer between the fluid and channel walls, as well as transport 

fresh fluids to the walls [17]. Flow condensation of steam, steam-air mixtures, organic fluids, and 

refrigerants have been studied, including flow patterns [18, 19], void fraction [20-25], pressure 

drops [26-50], and heat transfer performance [51-57]. The heat transfer rate is proportional to 

surface area and thus channel diameter while the mass flow rate of the fluid is proportional to the 

cross sectional area and thus the second order of channel diameter. This prompted recent interest 

in mini-channel condensation (e.g., D < 3 mm) compared conventional-sized channels. Reducing 

channel size potentially decreases the refrigerant charge, reduces overall heat exchanger size, and 

improves system efficiency. As channel size decreases, the relative influence of gravity, shear, 

viscous and surface tension differs from conventional channels, thereby affecting flow patterns, 

pressure gradients, and heat transfer coefficients [58, 59]. Condensation in mini/micro-channels 

for compact heat exchanger design has been of interest to the HVAC and automobile industries 

since the late 1990s, yet limited research have explored steam flow condensation in mini/micro- 

channels. 

2.1  Mini- and micro-channel definitions 

There is no single size definition for macro-, mini-, and micro-channels. Kandalikar and 

Grande [60] considered the significance of liquid-solid interface, applicability of no-slip boundary 

condition, fabrication capability, and experimental errors. Channels with hydraulic diameter 

greater than 3 mm were considered conventional-sized channels, between 200 µm and 3 mm were 

mini-channels and between 10 and 200 µm were termed micro-channels. In conventional and mini-
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channels, continuum theory is applicable with a no-slip boundary condition, while in micro 

channels, rarefaction effects take place and the continuum theory needs modification to account 

for wall slip. These diameters were determined using air at a temperature of 300 K.  

Serizawa et al. [61] suggested the Laplace constant 𝐿" =
$

%('()'*)
> 𝐷. as the criteria for 

small channels. The Laplace constant measures the stratifying effect of gravity and when 𝐿 > 𝐷., 

surface tension dominates over gravity as [62].  Therefore, rather than setting a uniform criterion 

for macro-, mini- and micro-channels for all fluids at various temperatures, these researchers 

suggested it is better to using the distinguishing features as identifications. In macro-channels, 

gravity dominates the flow regimes whereas in mini-channels, shear and viscous effects dominate 

over gravity in flow regimes, pressure drops, and heat transfer. In micro-channels, surface tension 

affects bubble and droplet dynamics. For most fluids (i.e. steam and refrigerants), the transition 

from macro- to mini- channel is between 1 to 10 mm depending on the fluid properties (e.g. 

density, surface tension, viscosity), which is also the size of many current and near-future 

engineering applications. In macro-channels (e.g. Dh > 10mm), stratified flow is common due to 

the influence of gravity whereas in mini/micro-channels (e.g. Dh < 10mm), shear-driven 

condensation prevails where annular and bubbly/slug flows exist more often.  

2.2  Filmwise mini/micro-channel condensation heat transfer 

On hydrophilic surfaces such as metal, liquid forms a film on the cooled surface and the 

film thickness increases along the axis due to the accumulation of condensate. Over decades, 

research utilizing Nusselt’s falling film analysis [63] investigated filmwise flow condensation heat 

transfer in conventional channels where gravity dominates the flow regime and heat transfer, 

employing analytical [64, 65], experimental [66] and numerical approaches [67, 68]. In the past 
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two decades, condensation in mini/micro-channels presented better heat transfer performance than 

conventional channels to meet the demand for more compact heat exchangers. Shear forces and 

surface tension thin the liquid film and reduce the thermal resistance. 

2.2.1.  Refrigerant condensation in mini/micro-channels 

In mini/micro-channels, heat transfer coefficients generally increase with decreasing 

channels sizes [69-71]. Most of the existing research of flow condensation in mini/micro-channels 

focused on the condensation of refrigerants such as R-134a, R-12, R-22 and R-410A for 

developing more compact and effective heat exchangers in air-conditioning and heat pump 

systems; few studies considered steam. Therefore, a brief review of the mini/micro-channel 

refrigerant literature follows. Table 2.1 tabulates condensation heat transfer of refrigerants and 

steam in horizontal channels with different cross section shapes and hydraulic diameters of 0.4 to 

5 mm at various mass fluxes. 

Table 2.1 Experiments of condensation heat transfer in horizontal small channels 

Authors Fluids Mass fluxes 
(kg/m2s) Channel characteristics 

Yan and Lin [45] R-134a 100, 200 C, 2mm 
Matkovic et al. [72] R-134a, R-32 100 – 1200 C, 0.96mm 
Yang and Webb [51] R-12 400 – 1400 R, 2.64mm MF, 1.56mm 
Yang and Webb [73] R-12, R-134a 400, 1400 C, 1.41mm; MF, 1.56mm 

Kim et al. [74] R-22, R-410A 200 – 600 R, 0.5, 0.7, and 1mm 
C, 0.5, 0.7, and 1mm 

Wang et al. 2002[75] R-134a 75 – 750 R, 1.46mm 
Shin and Kim [69] R-134a 100 – 600 C, R 0.5 – 1mm 

Garimella and Bandhauer [76] R-134a 150 – 750 C 0.4 – 4.9mm 
Derby et al. [77] R-134a 75 - 450 S, T, semi-C 1mm 
Derby et al. [16] Steam 50 – 200 R, 1mm 

Kim and Mudawar [78] FC-72 118 –367 R; 2mm 
Chen and Derby [79] Steam 50 – 100 R; 1mm 

C: Circular, R: Rectangular, S: Square, T: Triangular, MF: Microfined 

Yan and Lin [45] investigated the effects of heat fluxes, mass fluxes, vapor qualities, and 

saturation temperatures of R-134a on condensation heat transfer coefficients and pressure drops of 
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condensation in a 2-mm-diameter circular tube. Heat transfer coefficients increased with 

decreasing saturation temperature, increasing steam qualities for higher vapor-liquid interfacial 

convection, and increasing steam fluxes at high quality-region (i.e. x > 0.5). Heat transfer 

coefficients were not significantly changed by steam mass fluxes in the low-quality region (i.e. x 

< 0.3). Due to the huge difference (i.e. approximately three orders of magnitude) between vapor 

and liquid, the slip ratio (i.e. the relative velocity between vapor and liquid) greatly decreased and 

thus the interfacial shear forces decreased, which mitigated effects on heat transfer coefficient by 

increasing quality at low-quality region. Heat transfer coefficients in 2-mm-diameter circular tubes 

were 10% higher than in 8-mm circular tubes due to an increased surface to volume ratio and 

surface tension surface tension effects, which decreased the liquid film thickness and the thermal 

resistance within it. 

Kim et al. [74] studied condensation of R-22 and R-410 in flat aluminum channels with 

and without micro-fins. The Weber number (𝑊𝑒 = '123
$

) of R-22 is smaller than R-407c due to 

the higher surface tension value of R-22. This resulted in higher heat transfer coefficients of R-22 

due to surface tension drainage. Therefore, condensation heat transfer that heat transfer 

coefficients was independent of steam mass flux. It was hypothesized that the corners thin liquid 

films in non-circular channels, which reduced thermal resistance of liquid film and increased 

filmwise heat transfer. Wang and Rose [80-82] analytically studied filmwise condensation of 

R134a, R22, and R410A in 0.5-mm to 5-mm channels, considering surface tension, interfacial 

shear stress and gravity. Heat transfer coefficients in non-circular tubes were not necessarily higher 

than circular tubes depending on flow parameters. Derby et al. [77] reported no significant 

difference of R-134a condensation heat transfer coefficients in square, triangular and semi-circular 

mini-channels with hydraulic diameters of approximately 1 mm.  
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Matkovic et al. [72] studied condensation heat transfer coefficients of R134a and R32 in 

0.96-mm diameter circular tube at a wide mass flux range (e.g., 100–1200 kg/m2s). Experimental 

heat transfer coefficients  were compared against four macro-channel correlations: Moser et al. 

[53] as modified by Zhang and Webb [46], Koyama et al. [83], Cavallini et al. [84], and Cavallini 

et al. [85]. The Zhang and Webb [46] correlation generally underestimated heat transfer 

coefficients by 8–25%. The discrepancy increased as quality decreased because the correlation 

was developed for annular flow. Koyama et al. [83] correlation did not capture the trend of heat 

transfer coefficients with respect to mass flux and a number of predictions underestimated the data  

by more than 30%. The Cavallini et al. correlation [84] was developed for mini-channels where 

shear dominates flow regimes, based on theoretical analysis of Kosky and Staub [86]. The 

correlation slight overpredicted heat transfer coefficients of R32 and underestimated R134a. The 

Cavallini et al. [85] correlation is a flow regime-based model developed using condensation data 

in 3–8 mm tubes. Most of the predictions were within the range of ±15% except those with the 

lowest mass velocities and qualities, where the association of flow regimes to flow velocity is 

different compared to macro-channels. 

2.2.2.  Steam condensation in mini/micro-channels 

The surface tension of water is much higher (e.g., approximately 10 times) than most 

refrigerants (e.g. R-134a, R-22, R-410A), and therefore the effects of surface tension in 

mini/micro-channels are more significant, which provides great potential for heat transfer 

enhancements. Reducing channel size may thin liquid water films and therefore increase steam 

condensation heat transfer. Derby et al. [16] studied steam condensation heat transfer in 

rectangular copper channels with hydraulic diameters of 1.06 mm and demonstrated the significant 

shearing effects in mini-gaps. The heat transfer coefficients scaled with respect to mass flux at 
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higher qualities (i.e. x > 0.7). At lower qualities, heat transfer coefficients were independent of 

steam mass fluxes but greatly dependent on qualities. Zhao and Liao [87] analytically studied 

filmwise condensation heat transfer in vertical equilateral-triangular microchannel with hydraulic 

diameters of 1.16, 0.87, and 0.58 mm. This study considered capillary forces caused by special 

deviation of free liquid film curvature and interfacial shear stress. Liquid on the condensation 

surface were divided into two zones: on the plain side and in the corners. Compared with circular 

tubes, triangular channels provided up to three times higher heat transfer coefficients, which were 

attributed to the greatly thinned liquid film on the side wall and was amplified as the channels size 

inlet steam velocity and inlet subcooling decreased. Kim and Mudawar [78] amassed 4045 

condensation data points of 17 different working fluids, including steam, and developed a 

condensation heat transfer correlation. The correlation is applicable for annular and slug/bubbly 

flows which are distinguished by modified Weber number and Martinelli parameter. The overall 

MAE of the correlation was 16%; 87% of the data were predicted within ± 30% and 98% of the 

data were predicted within ± 50%. 

2.3  Filmwise condensation heat transfer pressure drops 

Decreasing channel sizes increases vapor core velocity and vapor-liquid interfacial shear 

stress, thereby sustaining annular flow. However, higher pressure drops usually accompany these 

phenomena potentially reducing the overall efficiency [88]. 

2.3.1.  Pressure drop modeling 

The Homogeneous Equilibrium Model (HEM) and Separated Flow Model (SFM) are two 

approaches to predict two-phase pressure drops in conventional tubes. The HEM treats two-phase 

flow as a uniform single-phase and applies single-phase models for two-phase pressure drops. In 
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order for the model to work, the two phases are assumed to have same velocity and mixture 

viscosity and density of mixture is usually averaged on mass basis. It is most applicable for high 

mass flux cases (e.g., 𝐺 > 2000	kg/m=s) where the two phases are well mixed and the same 

velocity assumption is more reasonable. Several researchers [89-95] modified the HEM to build 

the best viscosity correlation for the two-phase mixture Reynolds number. The SFM considers two 

homogeneous streams in two-phase flow. The resultant pressure drops depend on the individual 

streams and the interactions between two streams. Lockhart-Martinelli [26] developed a 

correlation using the separated flow model. It is an empirical correlation expressed in terms of 

two-phase multipliers to the corresponding single-phase liquid or gas-phase pressure drop 

(Equation 2.1),  

?@
?A BC

= 𝜙E=
?@
?A E

		 2.1 

where ?@
?A FG

 is the two-phase pressure gradient, ?@
?A H

 is the liquid-only pressure gradient and ϕH= 

is two-phase multiplier. A widely used correlation for the two-phase frictional multiplier was 

developed by Chisholm and Laird [96] 

𝜙E= = 1 + L
M
+ N

M2
		 2.2 

𝑋 =
PQ
PR (
PQ
PR *

 	 2.3 

where 𝐶 is Chisholm parameter ranging from 5 to 20 and 𝑋 is Martinelli parameter; both 

parameters depend on whether the liquid and gas flows are laminar or turbulent. 

2.3.2.  Experimental and analytical pressure drops 

As tabulated in Table 2.2, research studied two-phase refrigerant, air-water, air-nitrogen 

and steam pressure drops in mini/micro-channels. Two-phase pressure drops in mini/micro-
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channels generally do not agree with the extrapolation of predictions for macro-channels, possibly 

because of poor extrapolation of flow regime predictions or incorrect analyses of pressure drops 

in small channels [97]. 

Table 2.2 Experiments of condensation pressure drops in horizontal small channels 

Authors Fluids Mass fluxes 
[kg/m2s] Channel properties 

Hinde et al. [98] R-134a, 
R-12 149 – 298 C, 4.6 mm 

Coleman [99] R-134a 150 – 750 C, R, 0.4–1.5 mm 
Shin [100] R-134a 100 – 600 C, R, 0.5 – 1 mm 
Mitra [101] R-410a 400 – 800 C, 6.22mm 

Andresen [102] R-410a 200 – 800 C, 0.76, 1.5, 3.05 mm 
Quan et al. [103] Steam 90 – 288 Tr, 0.11, 0.142, 0.151 mm 

Marak [104] Methane 162 – 701 C, 1mm 
Huang et al. [105] R-410a 200 – 600 C, 1.6, 4.18 mm 

C: Circular, R: Rectangular, Tr: Trapezoidal 

Much research has been devoted to develop new groups of dimensionless number for the 

Chisholm parameter in order to better represent the flow regime and pressure drops in mini/micro- 

channels [88]. Dutkowski [106] measured pressure drops of air-water mixture in 1.05 – 2.30 mm 

tubes. Experimental data showed poor agreement with conventional Lockhart-Martinelli [26] and 

Friedel [28] correlations. Modification and adjustments for mini-channels were appealed. Choi 

and Kim [107] investigated adiabatic water-nitrogen flow in rectangular channels with hydraulic 

diameters of 0.5, 0.32 and 0.15 mm. Reducing aspect ratio reduces film thickness, increases 

confinement number, and decreases the Chisholm parameter in the Lockhart-Matinelli correlation. 

Kim and Mudawar [88] amassed 7115 adiabatic and condensing two-phase pressure drop data 

points of 17 working fluids in mini/micro-channels with hydraulic diameter of 0.0695 to 6.22 mm. 

They developed a new correlation by modifying the Chisholm parameter using a combination of 

Reynolds, Weber, Capillary, and Suratman numbers and the density ratio. The new correlation has 

fairly uniform accuracy for all working fluids and the overall mean absolute error for condensation 

pressure drops was 17.5% 
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The discussion above is for frictional pressure drops and there are other pressure drops in 

flow condensation: deceleration pressure drops (Δ𝑃BC,V) and gravitational pressure drops (Δ𝑃BC,W). 

Compared with frictional pressure drops, the other pressure drops vary much less and the 

recommended correlations are respectively [88]: 

𝛥𝑃BC,W = − 𝛼𝜌\ + 1 − 𝛼 𝜌E 𝑔	𝑠𝑖𝑛𝜙
a
b 𝑑𝑧		 2.4 

𝛥𝑃BC,V = − 𝐺=𝐷[f*g
2

h
+ f( N)g 2

N)h
]a

b  	 2.5 

where L is the length of the channel, α is void fraction, G is the flow mass flux, x is steam quality, 

D is the channel hydraulic diameter, v is the specific volume, ρ is the density, and g and f denote 

saturated vapor and liquid respectively.   

Dropwise condensation heat transfer 

As reported by Rose [108], Schmidt et al. [109] first recognized 5 –7 times higher heat 

transfer coefficients in dropwise condensation rather than filmwise condensation. Le Fevre and 

Rose [110] measured time-averaged heat transfer coefficients at different heights (i.e. 25.4 mm, 

28.4 mm, and 101.6 mm from the top) on a 22 mm wide and 127 mm tall vertical plate at ambient 

pressure, observing an independence of heat transfer coefficients on the location despite different 

droplet motion. Later research investigated many aspects of dropwise condensation including 

nucleation site density [111-113], subcooling degree [114], droplet size [115], steam velocity 

[116], heat flux [116],  saturation pressure [117], although these factors are not independent. Lee 

et al. [113] numerically studied dropwise condensation on a nano-pin-structured surface on which 

nucleation density was tunable through different nano-pin dimensions and spaces. Higher heat 

fluxes were achieved as nucleation sites increased. Tanasawa and Ochiai [115] obtained time-

averaged steady-state dropwise condensation by wiping the surface periodically. Various 



 12 

sweeping periods generated different maximum droplet sizes, where higher time-averaged heat 

transfer coefficients were associated with smaller maximum droplet sizes and higher wiping rates. 

Extremely high transient heat transfer (greater than 1MW/m2k) happened immediately after 

surface wiping. Tanner et al. [116] promoted dropwise condensation using montan wax on copper 

surfaces. Heat transfer coefficients increased with increasing heat flux and steam velocity. 

Hatamiya and Hiroaki [117] experimentally studied dropwise condensation of steam on a gold-

plated copper block, ultra-finished gold disk, gold-vapor deposited silicon disk, and chromium 

plated copper blocks at different saturation pressures. Under same conditions, smaller droplets 

seemed to be densely populated on the gold-plated surface and provided higher heat transfer 

coefficients. With similar droplets sizes, similar heat transfer coefficients were observed on two 

surfaces. Heat transfer coefficients at atmospheric pressure were as much as six times higher than 

at 1 kPa. 

In dropwise condensation, a periodic motion of droplet nucleation, coalescence and 

departure can be driven by gravity or shear flow. This cyclical process promotes nucleation and 

reduces the liquid film thermal resistance, which provides significantly higher heat transfer 

coefficients than filmwise condensation. Heat transfer coefficients were found to decrease with 

increasing droplet contact angle hysteresis which generally corresponds to higher contact angle 

and easier droplet rolling [118]. Ma et al. [119] proposed that dropwise condensation heat transfer 

coefficients were related to the surface free energy difference between the condensate and the solid 

surface. Lower surface energy, associated with higher contact angle, tended to promote dropwise 

condensation. Surface modifications such as organic polymer coating [120-126], self-assembled 

monolayer (SAM) [113, 127-132], ion implantation [133-136], electroplating [137], 

mini/micro/nano-structures [138-140] and biphilic patterns [16, 114, 141-143] decreased surface 
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energy and eased droplet roll-off to promote dropwise condensation and increase heat transfer 

coefficients.  

Zhang et al. [126] promoted dropwise condensation on copper substrates with different 

treatments of organic promoters: polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE) 

and self-assembled micro/nano silver (SAM). For the largest number of nucleation sties, the SAM 

surface provided 1.95, 3.08, and 1.54 times higher heat transfer coefficients over PPS, PTFE and 

plain copper. Rausch et al. [133, 134] performed steam condensation on N+ implanted aluminum 

and titanium surfaces. Alloy inhomogeneity of aluminum reduced dropwise condensation on the 

implanted aluminum surface and dropwise condensation resulted in a heat transfer enhancement 

factor of two. The implanted titanium surfaces provided five times higher heat transfer coefficients 

than the unimplanted surfaces, and stable dropwise condensation was observed over the whole 

plate despite decreased static contact angle on the surface (75o) compared to the unimplanted 

surface (94o), which was attributed to the nano-scale roughness and surface chemistry effects 

caused by precipitates. Surface wettability can be improved or suppressed through roughness and 

physical textures on the surface [144].  

Wenzel [145] and Cassie [146] proposed different wetting behavior of surfaces with 

different textures. Dietz et al. [147] applied cupric hydroxide nanostructures and obtained a 

superhydrophobic surface (contact angle of 150o). Compared to Rain-X coated hydrophobic 

surfaces, the superhydrophobic surface facilitated droplet departure and altered the droplet size 

distribution. The predicted heat transfer coefficients based on Le Fevre and Rose correlation [148] 

were 2 times higher on the superhydrophobic surfaces.  Peng et al. [114] performed steam 

condensation on surfaces with hydrophilic strips of PFA/Cr2O3 or SAMs of different width and 

spaces on copper disks of 13.25-mm radius. Liquid water was presumed to travel spontaneously 
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for the surface energy differences between hydrophilic and hydrophobic parts. Maximum droplet 

size was altered by the width and space of the strips and up to 1.18 times heat transfer coefficients 

over pure hydrophobic surface was observed on patterned surfaces. 

2.4  Dropwise condensation modeling 

In dropwise condensation, saturated vapor deposits on condensation surfaces and forms 

small droplets, which grow until external forces (i.e. gravity or shear forces) sweep them away 

[148]. Le Fevre and Rose [148] analyzed condensation heat transfer through a single droplet using 

an electrical resistor analogy. They also proposed the idea of integrating heat transfer rates through 

single droplets over the range of droplet size distribution to obtain the average heat transfer rate 

on condensation surfaces. Le Fevre and Rose [148] visualized dropwise condensation and 

correlated a power-law function for droplet size distribution with heat transfer coefficient obtained 

in their previous work [110], through which they developed the first dropwise condensation heat 

transfer coefficient correlation with four experimentally determined coefficients. Graham and 

Griffith [149] derived the minimum stable droplet size through mechanics and thermodynamics 

analysis, 

𝑟klm =
=no$
.(*'(

N
pn
		 2.6 

where 𝑇r is saturation temperature, 𝜎 is surface tension of liquid, ℎu% is evaporative enthalpy, 𝜌E 

is the density of liquid, and Δ𝑇 is the difference in saturation and surface temperatures. 

Tanaka [150] observed that the power-law function works well for droplets growing 

through coalescence but not for smaller one growing through direct condensation. Population 

theory [111, 118, 150-152] considers conservation of droplet numbers in certain ranges of droplet 

sizes as well as sweeping effects. In the following decades, single droplet heat transfer models 
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improved to include the effect of thermal resistance of surface promoter, contact angle, and 

subcooling degree; droplet size distribution models evolved to consider nucleation site density. 

This research develops the first model for internal dropwise condensation where shear forces drive 

droplet incipient motion. Detailed derivations and cited works are in section 4.3. 

2.5  Condensation heat transfer with noncondensable gases 

In thermal power stations and seawater desalination systems, degradation of condensation 

due to the presence of noncondensable gases is a common problem. Two sources of 

noncondensables are the penetration of gas through small leaks of pipe and tube fittings if the 

system operates at vacuum, and the outgassing of oxygen, nitrogen and CO2 in the evaporator 

[153]. Since Othmer [154] identified a great decrease of condensation heat transfer performance 

in the presence of NCG, the degradation effects of various gases (e.g. air, oxygen, nitrogen, 

hydrogen, CO2, helium) have been investigated experimentally.  

Table 2.3 lists the experimental work on condensation heat transfer in presence of 

noncondensable gases. 

Table 2.3  Experiments of flow condensation in presence of noncondensable gases 

Authors Fluids Gases Gas mass  
fraction % Orientation Steam Velocity 

Lee and Rose [155] R-113 air/hydrogen 0.02 – 32 Horizontal 0.3 – 26 m/s 
Wu and Vierow [156] steam air 0–20 Horizontal 8.2 – 38 m/s 

Chantana and Kumar [157] steam air 3–12 Horizontal 1.8–5.5 m/s 
Siddique et al. [158] steam air/helium 10 – 35 Vertical 7.9 – 31.9 kg/h 

Kuhn [159] steam air/helium 0 – 4 Vertical N/A 
Akaki et al. [160] steam air/helium 0 – 24 Vertical 9.0–58.0 kg/h 
Park and No [161] steam air 10–40 Vertical 7.6 – 40 kg/h 

Kim [162] steam air 0–30 Vertical N/A 
Al-Shammari et al. [163] steam air 47–97 Vertical 5.24–11.3 kg/h 
Oh and Revankar [164] steam air 0–10 Vertical 9.0–19.8 kg/h 

Zhu et al. [165] steam air 34–81 Vertical 1.08–10.8 m/s 
Park et al. [166] steam nitrogen N/A Vertical 0–0.22 kg/s 

Lee and Kim [59] steam nitrogen 0–40 Vertical 6.5–28.2 kg/h 
Su et al. [167] steam air/helium <80 Vertical N/A 

Caruso and Vitale [168] steam air 0–26 Vertical 0.828–8.28 kg/h 
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Wu and Vierow [156] measured local heat transfer coefficients of steam/air mixtures in a 

horizontal 27.5-mm tube. Heat transfer coefficients dropped by an order of magnitude from the 

inlet to the outlet. The liquid resistance was dominant at the inlet where the heat transfer 

coefficients were higher on the top and lower at the bottom. As air accumulated between vapor 

and liquid, the air thermal resistance dominated over the liquid thermal resistance. Lee and Kim 

[59] studied experimentally heat transfer coefficients of steam/nitrogen condensation in a 13-mm-

diameter vertical tube. Unlike in larger tubes, 3% of nitrogen by mass in steam did not affect heat 

transfer. Different gases impose different inhibiting effects. With the same mole fraction, air 

mitigates heat transfer coefficients more than helium while at the same mass fraction it is the 

opposite [158]. As discussed previously, liquid condensate on hydrophobic surfaces bead up to 

form dropwise condensation and enhancement condensation heat transfer. Ma et al. [169] 

experimentally, numerically, and visually investigated the flow velocity field in filmwise and 

dropwise condensation of steam with 0 – 5% air by mass on vertical plate in confined chamber. 

Cyclic nucleation, coalescence and departure of droplets perturbed accumulation of air near the 

condensation and created eddy flow and perpendicular motion of vapor-air mixture through which 

heat transfer enhancement was expected. 

To understand and predict condensation heat transfer performance in presence of 

noncondensables, two theoretical frameworks have been developed; the boundary layer model and 

diffusion layer model are mainly for gravity-driven natural condensation on vertical plate, using 

mass, momentum and energy transportation equations provided physical and mathematical insight 

in to the phenomena. In the boundary layer model, vapor-gas mixtures are considered static and 

have no slip at the contact of the liquid condensate film. In gravity-driven condensation on vertical 

plate, the film travels down and condensate accumulates in which an air boundary layer forms in 
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the vapor-gas mixture near the condensate film [170-176]. The diffusion layer model considers the 

diffusion process through the noncondensable layer formed by the accumulation of 

noncondensable gas near liquid condensate during vapor condensation. The diffusion process 

hinders condensation and reduces the heat transfer performance [177, 178].  

Due to the complexity of accurately modeling condensation heat transfer performance in 

the presence of noncondensables, researchers developed empirical correlations for engineering 

purposes. Vierow and Schrock [179] and Kuhn et al. [180] developed correlations using a 

degradation factor by comparing condensation heat transfer coefficients with and without 

noncondensable gases. Lee and Kim [59] modified the correlation by taking shear stress into 

consideration.  

Table 2.4 Degradation factor models for condensation in presence of noncondensbale gases 

Authors Model 

Vierow and Schrock [179] 𝐹 = (1 + 𝑎𝑅𝑒%y)(1 − 𝑐𝑌|?) 

Kuhn et al. [180] 𝐹 =
𝛿~gC
𝛿��

(1 + 𝑎𝑅𝑒E)(1 − 𝑏𝑌|") 

Lee and Kim [59] 𝐹 = 𝜏%∗
b.�N=�(1 − 0.964𝑌|b.�b=) 

where a, b, c, and d are coefficients, and Ya depends on the flow conditions and mass fractions and 

properties of noncondensalge gas. 

Caruso et al. [168] observed a dependence of heat transfer coefficients on mixture 

Reynolds number, liquid Reynolds number, and nitrogen content during steam-air condensation 

experimental in near-horizontal tubes of 12.6, 20 and 26.8-mm diameters at atmospheric pressure. 

They developed the following heat transfer coefficient correlation by fitting the experimental data, 

𝑁𝑢\ = 18.8𝑅𝑒kb.��=𝑅𝑒E)b.N�
��

N)��

)b.���
		 2.7 
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where 𝑁𝑢\ is vapor Nusselt number (𝑁𝑢\ =
.3
�*

), 𝑅𝑒k	is mixture Reynolds number (𝑅𝑒k =

W(����*)3
��

), 𝑅𝑒E is liquid Reynolds number (𝑅𝑒E =
W(N)g)(N)��)3

�(
), 𝜇k is the mass averaged gas 

mixture viscosity (𝜇k = 𝜇\
�*

����*
+ 𝜇%

��
����*

) and 𝜔\ and 𝜔� are the mass fraction of vapor and 

noncondensable gas in the flow, respectively. 

2.6  Conclusions from literature 

Analytical, numerical, and experimental studies have revealed heat transfer coefficients 

and pressure drops of filmwise condensation in conventional and mini/micro-channels. Dropwise 

condensation on hydrophobic surfaces reduced the liquid film thermal resistance through 

facilitating droplet departure while the lower surface energy of hydrophobic material provided the 

potential of reduced pressure drops in internal dropwise condensation. Droplet formation and 

motion perturbs the noncondensbale layer of thermal resistance and improves condensation heat 

transfer. The following conclusions can be drawn from the literature: 

• In mini/micro-channels, a higher surface to volume ratio increased the effects of shear 

forces and surface tension so that annular flow prevails, and liquid film thickness were 

reduced compared with conventional channels. 

• Hydrophobic surfaces have lower surface energy for which droplets form; therefore, in 

dropwise condensation, the liquid thermal resistance was reduced and heat transfer 

coefficients was enhanced. 

• Heat transfer coefficients in dropwise condensation were highly connected to the droplet 

size distribution, which correlated to droplet departure size. Surfaces facilitated droplet 

departure improved heat transfer coefficients. 
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• Noncondensable gas forms a static layer between vapor and liquid in condensing flows. In 

shear drivens flow in mini/micro-channels, the gas layer was thinned and therefore impacts 

on heat transfer were slightly reduced. It was also presumed that the gas layer would be 

perturbed in droplet condensation for the periodic formation and motion of droplets. 

2.7  Research objectives 

However, few research have investigated quantitatively and visually dropwise 

condensation in mini-channels with and with presence noncondensable gases. The objectives of 

this research are: 

• Condense steam in hydrophilic and hydrophobic mini-gaps while measuring heat transfer 

coefficients, pressure drops, and visualizing flow regimes. 

• Observe droplet formation, growth, and departure in dropwise condensation in the 

hydrophobic mini-gap 

• Model the relationship between droplet dynamics and heat transfer in the hydrophobic 

mini-gap 

• Study the effects of noncondensable nitrogen on hydrophilic and hydrophobic 

condensation. 
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Chapter 3 Experimental design 

3.1  Experimental apparatus 

Simultaneous heat transfer, pressure drop, and flow visualization were obtained in an open 

loop system for a wide range of steam mass fluxes and qualities (Figure 3.1). Steam was provided 

by the campus facility; a regulator reduced steam pressure from at 550 kPa to approximately 250 

kPa. A separation tank removed excess liquid condensate and subsequently small particles, rust, 

and contaminants were removed in three parallel 60-µm pore filters. High-quality steam entered 

the pre-heater with a 500W cartridge heater and was heated to 20–30oC above saturation 

temperature in order to determine enthalpy through measured temperature and absolute pressure. 

The superheated steam then entered the tube-in-tube counterflow pre-condenser where a constant 

temperature chiller (Neslab RTE-221) provided cooling water to partially condense the steam. 

Cooling water flow rates were measured using Coriolis flow meter (Micro MotionTM F-series 

sensor and 2700 transmitter) and the inlet and exit pre-condenser temperatures were measured 

using T-type thermocouples. The change of steam enthalpy in pre-condenser was calculated suing 

energy balance in cooling water. Steam entered the test section in a superheated or two-phase state. 

In the test section, inlet and exit temperatures, inlet pressure, and differential pressure were directly 

measured and the flow was visualized through a glass window using a Leica Z16 APO macroscope 

and a FASTEC IL3 high-speed camera (maximum space resolution of 1280 x 1024 at 500 fps and 

reduced resolution for up to 20,000 fps rate). In the post-condenser, steam was fully condensed 

and passed through a rotameter for visual confirmation of flow stability. The condensate mass flow 

rate was measured using an electronic scale and timer.  
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Figure 3.1 Diagram of the open-loop system for steam condensation experiments 

3.2  Test section 

The test section consisted of a cover plate, glass viewing window, interchangeable coupon 

with mini-gap, oxygen-free copper block for heat flux measurements, a PEEK block with flow 

inlet and exit, and an aluminum cooling pad (Figure 3.2). The mini-gap was milled into an oxygen-

free copper coupon. Two mini-gaps were used in experiments. Both had a width of 10 mm, an 

inlet-outlet length of 40 mm with depths of 0.5 and 1 mm, creating hydraulic diameters of 0.952 

and 1.818 mm, respectively. 

	
Figure 3.2 Test section for heat transfer, pressure drop measurement and visualization 
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Figure 3.3 Steam flow condensation mini-gap of two hydraulic diameters 

Steam flowed through the PEEK block after leaving the pre-condenser. The entering and 

exiting channels connected to mini-gap were at an angle of 20o from the horizontal plane. The 

coupon inlet and outlet were sealed to the PEEK block with O-ring seals in the horizontal plane. 

Indium thermal interface material connected the coupon to the oxygen free copper block for 

accurate heat flux measurement due to well-documented and uniform thermal conductivity. The 

20 x 40 x 40 mm copper block had five holes with diameters of 1.59 mm, spaced 8 mm apart 

vertically, for temperature measurements. The ends of the holes were on the virtual vertical 

centerline of the coupon. To measure the temperature gradient, T-type thermocouples with 

diameters of 1.59 mm were inserted into each hole, and a thermocouple was installed in the coupon 

0.5 mm from the bottom of the mini-gap to determine wall temperature. To ensure good contact 

between thermocouple and the copper material, thermocouples were dipped in thermo paste 

(Omega Thermo 201) before installation. Heat flux was determined using Fourier’s law for the 

heat transfer coefficient and steam quality change in the test section. Thermal paste was used to 

maintain contact between the copper heat flux block and the aluminum cooling pad. Cooling water 

from the water bath flowed through serpentine channels in cooling pads with a total temperature 

change of less than 2 oC, ensuring a constant temperature boundary condition.  
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Flow visualization was accomplished from the top of the test section with the microscope 

(LeicaTM Z16 APO) through a 3.175-mm-thick tempered glass viewing window. The window was 

sealed to the coupon via an O-ring seal, and a cover plate on the top glass window provided 

pressure for sealing. The entire test section was clamped with five bolts from the cover plate to the 

cooling pads; bolts were torqued to 0.7 N·m in a diamond pattern to reduce contact resistance and 

improve O-ring sealing. 

3.3  Surface preparation 

Flow condensation experiments were conducted on a bare copper, hydrophilic coupon and 

a Teflon AFTM-coated hydrophobic coupon. On the bare copper surface, a goniometer measured 

the contact angle of a water droplet to be 70 ± 3o (Figure 3.4). A copper mini-gap was dip-coated 

to become hydrophobic [16].	The coupon was initially put into a UV cleaner (ProCleanerTM 110) 

for 30 minutes to remove contaminants and then soaked in isopropanol for 10 mins to remove 

small particles and the oxide layer. The coupon was then dipped twice in a solution of DuPont 

Teflon AFTM Grade 400s2-100-1 and FC-40 solvent at a volumetric ratio of 1:20. Subsequently, 

the coupon was baked at 105 oC for 1 hr to remove the solvent and then 165 oC (the glass transition 

temperature) for 72 hours to create a uniform coating. An additional copper sample was dip-coated 

using the same procedure as the mini-gap. After the dip-coating process, the contact angle was 

measured to be 110 ± 3o on the Teflon-coated copper sample (Figure 3.4). 
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Figure 3.4 Contact angles on bare copper (70o, left) and Teflon coated surfaces (110o, right)  

3.4  Data reduction and uncertainty analysis 

The least squares approach (Equation 3.1) calculated the temperature gradient in the copper 

block using evenly spaced (8mm) temperature measurements in vertical centerline, 

?n
?�
= � n���) n� ��

��
2) �� 2

		 3.1 

where Ti is the temperature measure from individual thermocouples with index i increasing from 

top to the bottom hole, yi is the distance of ith thermocouple tip to the condensation surface making 

positive direction of y axis vertically downward. 

Due to the importance of temperature measurements, all thermocouples were calibrated to 

reduce uncertainties. Seven temperature points in water bath (NESLAB™ RTE-111) plus ice point 

and boiling point calibrated the T-type thermocouples against a thermometer (Omega™ HH41) 

with an accuracy of ±0.05 oC. Calibration provided a resultant temperature measurement 

uncertainty of ±0.2 oC. The Kedzierski and Worthington [181] equation was used to calculate the 

temperature gradient uncertainty,  

𝑤% = 𝑤nl= +
�"3
��� 

= N
��)� 2�

�¡¢
			 3.2 

where wTi is the calibrated thermocouple uncertainty, yi is the distance of the ith thermocouple 

from the condensation surface, and y̅ is the average distance of the thermocouple from the 
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condensation surface. Due to the high conductivity (i.e. 390 W/mK) of oxygen-free copper, large 

spacing (i.e. 8 mm) between holes, and the small diameter of the holes (i.e. 1.59 mm), the 

maximum temperature gradient uncertainty was ± 2%. 

Fourier’s law calculated the heat flux in the copper block:  

𝑞"yE = −𝑘"�
?n¥(
?�
		 3.3 

where 𝑞"yE is the heat flux in the copper block and 𝑘"� is the thermal conductivity of oxygen free 

copper. 

As seen from conservation of energy, the heat transfer rate in the copper block equals the 

condensation heat transfer rate. Equation 3.4 was used to calculate heat flux through condensation 

surface that is composed of the bottom surface and sidewalls of the racetrack shape mini-gap 

(Equation 3.5). The copper block cross sectional area (perpendicular to heat transfer direction) was 

800 mm2 (20 mm × 40 mm rectangle). The condensation areas of the 0.5 and 1.0 mm deep mini-

gap were 214.25 and 269.96 mm2, respectively, 

𝑞""¦m?𝐴"¦m? = 𝑞"yE𝐴yE	 3.4 

𝐴"¦m? = 𝐴rl?~ + 𝐴y¦BB¦k		 3.5 

where 𝑞""¦m? is condensation heat flux, 𝐴"¦m? is condensation surface area, AyE is copper block 

cross sectional area. 

Newton’s law of cooling was used to evaluate heat transfer coefficients in Equation 3.6 

using condensation heat flux (𝑞""¦m?) and the difference between fluid temperature (𝑇u) and 

condensation surface temperature (𝑇r). 

ℎ = �"�©ªP
n«)no

		 3.6 
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The uncertainty in heat transfer coefficients comes from the uncertainty of condensation 

heat flux (q”cond), fluid temperature (Tf), and temperature (Ts). Condensation heat flux was 

calculated in Equation 3.1. Fluid temperature was obtained using two-phase pressure drop 

correlation. In test section, inlet pressure and differential pressure between inlet and outlet were 

both measured. Kim and Mudawar [78] frictional pressure drop correlation (Equation 2.1, 2.2, and 

2.3) was utilized to calculate the pressure drop from the inlet to the center point of the mini-gap 

and thus find the saturation pressure and therefore saturation temperature. The pressure drop 

correlation was developed based on the Lockhart-Martinelli method with modifications to 

Chisholm constant C using liquid- and gas-phase flow regimes (i.e. laminar or turbulent). Pressure 

drops across the test section were also predicted using the correlation and compared with the 

experimental data. Measurements of block and channel dimensions showed that the uncertainty in 

these areas were less than 2%. Therefore the propagation of uncertainty in heat transfer coefficients 

is: 
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	 3.7 

Superheated steam entered precondenser at known temperature, pressure and thus the 

specific enthalpy. Equation 3.8 evaluated cooling rate (𝑄C®~). A Coriolis flowmeter measured the 

cooling water mass flow rate (𝑚"¦¦Elm%) with ± 0.1% uncertainty. The specific heat of water (𝐶C) 

within the temperature range of 20 – 70 oC varies negligibly from 4.18 kJ/kgK and is considered 

constant. The temperature of water entering (𝑇lm) and exiting (𝑇¦�B) precondenser were measured 

with calibrated Type-T thermocouple, 

𝑄C®~ = 𝑚"¦¦Elm%𝐶C(𝑇¦�B − 𝑇lm)		 3.8 
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With steam mass flow rate (𝑚rB) measured at the end of the open-loop system, Equation 

3.9 calculated the change of steam specific heat in precondenser from which the specific enthalpy 

at test section inlet (𝑖Br,l) was obtained using Equation 3.10. 

𝛥𝑖C®~ =
°Q±²
ko³

		 3.9 

𝑖Br,l = 𝑖C®~,l − 𝛥𝑖C®~		 3.10 

where 𝑖C®~,l is the specific enthalpy of superheated vapor entering test section and Δ𝑖C®~ is the 

change of steam specific enthalpy in precondenser. 

The specific enthalpy of superheated vapor was obtained through measured temperature 

and pressure; the pressure transducer provided a ± 0.25% of full scale uncertainty (i.e. ±0.86 kPa). 

During the experiments, the fluctuations of superheated vapor temperature and pressure were 

within ± 0.3oC and 1 kPa. Therefore, the uncertainty in the enthalpy of the superheated vapor was 

negligible. The Kline and McClintock [182] approach was used to calculate the uncertainty in the 

change of specific enthalpy in pre-condenser, 

𝑤p.Q±²
= = 𝜔n�ª

= 𝑚"¦¦Elm%𝐶C
𝑚rB

=

+ 𝜔n© ³
= 𝑚"𝐶C

𝑚rB

=

	 3.11 

where 𝜔n�ªand 𝜔n© ³ are the both the uncertainty of Type-T thermocouple (i.e. ±0.2¦𝐶). The heat 

transfer rate and steam mass flow rate determined the enthalpy change of steam in the tests section: 

𝑄Br = 𝑞""¦m?𝐴"¦m?		 3.12 

𝛥𝑖Br =
°³o
ko³
		 3.13 

𝑖Br,¦ = 𝑖C®~,l − 𝛥𝑖Br		 3.14 

Steam quality is the mass fraction of vapor divided by the total mass and thus affects heat 

transfer coefficients significantly. Steam qualities at the test section inlet and outlet were 
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determined from two-phase enthalpies and pressures. The steam quality at the center of the mini-

gap is assumed the average of steam qualities at the inlet and outlet of test section: 

𝑥 = g³o,��g³o,©
=

		 3.15 

where 𝑥Br,l and 𝑥Br,¦ are respectively the inlet and outlet steam quality of test section. The inlet 

steam quality was obtained through an energy balance on the pre-condenser. 
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Chapter 4 Results and discussion 

4.1  Single-phase validation tests 

Single-phase tests validated heat transfer rate measurements in the cooper block, heat 

losses from the glass window, and heat transfer coefficient measurements. In the first single-phase 

test, the pre-condenser fully condensed the two-phase steam into liquid water and the single-phase 

energy balance in the condensate side was compared to the heat flux in the copper block obtained 

via Fourier’s law. The test section heat transfer rate ranged from 40 to 80 W (Figure 4.1) 

corresponding to water inlet temperatures ranging from 75 to 110 oC. Cooling side temperature 

was maintained constant (35oC) and therefore the higher inlet temperature corresponds to higher 

heat flux and larger temperature drop in the test section. The agreement was very good at most 

heat fluxes (Figure 4.1) but was reduced when single-phase condensate temperature drops across 

the mini-gap approached 40 oC at the highest condensate inlet temperature and highest heat transfer 

rate. At a fluid temperature drop of 40oC, it is possible that axial conduction affected heat transfer 

measurements in the copper block. However, temperature drops during two-phase steam 

condensation experiments were less than 5oC.  

	
Figure 4.1 Comparison of steam-side and cooling-side heat removal rate measurements 
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Insulation on the top surface was removed for imaging and tests were conducted to 

determine heat losses through the top viewing window. The heat transfer rate in the copper block 

with and without an insulation cover was compared for single-phase water at various inlet water 

temperatures (e.g., 70–110 oC). Heat losses were always less than 2W and 5% of the single-phase 

heat transfer rate (Figure 4.2). In the condensation tests, steam temperatures were in the range of 

120 to 130 oC. Heat losses through the visualization window decreased steam quality by less than 

0.001 and were therefore considered negligible. Glass fiber insulation insulated the window during 

heat transfer data recording periods and was removed for visualization. Negligible heat losses 

through the glass window resulted in a minimal steam quality change from removing the insulation 

cover for visualization. 

	
Figure 4.2 Absolute and relative energy loss through visualization window 

For further validation of heat transfer measurements in the test section with 0.5-mm deep 

mini-gap, single-phase Nusselt numbers were evaluated experimentally for laminar flows (Figure 

4.3). Due to the high aspect ratio of the channel (20:1), the experimental data were compared 

against the theoretical case for flat plates with one plate insulated (i.e. Nu=4.86) and the resulting 

agreement was very good. 
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Figure 4.3 Nusselt numbers of single-phase cooling at various steam flow rate in test section 

4.2  Steam condensation in hydrophilic mini-channels 

After the validation of the experimental apparatus, condensation heat transfer and flow 

visualization experiments were conducted in the bare copper hydrophilic mini-gaps at mass fluxes 

of 50, 75, and 100 kg/m2s and at 35, 50, and 75 kg/m2s in the 0.5-mm and 1-mm deep mini-gaps, 

respectively. Except for the different depth, two mini-gaps had the same dimensions and the 

hydraulic diameters were 0.952 and 1.818 mm, respectively. Due to small condensation areas (i.e. 

534.35 and 589.95 mm2), quality changes were low (≤ 0.2) through the mini-gap, although quality 

changes were slightly higher at the lowest mass flux of 50 kg/m2s in 0.5-mm deep mini-gap. For 

all cases, filmwise condensation was observed in the hydrophilic mini-gap. 

Figure 4.4 plots the heat transfer coefficients at various mass fluxes and steam qualities in 

both hydrophilic mini-gaps. The heat transfer coefficient increased with increased steam qualities 

and mass fluxes, corresponding thinner condensate films. At steam mass fluxes of 50 and 75 

kg/m2s, in 0.5-mm deep mini-gap, the differences in heat transfer coefficients decrease with 

Nu=4.86	for	forced	convective	single-phase	
heat	transfer	between	parallel	plates
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increasing steam quality, indicating that the benefit of reducing thermal resistance through 

increasing steam mass flux was mitigated by increasing steam quality associated with decreasing 

amount of liquid. In the 1-mm deep mini-gap, similar trends were observed. Yet the enhancements 

of heat transfer coefficients from increasing mass flux were consistent for the whole steam quality 

span. As the hydraulic diameter increases, the surface tension effects decrease and therefore the 

effects of increasing interfacial shear stress from increasing mass fluxes were sustained at higher 

steam qualities. 

	 	
Figure 4.4 Heat transfer coefficients in 0.5mm (left) and 1mm (right) deep hydrophilic 
mini-gaps with respect to mass flux and steam quality 

Pressure drops were recorded simultaneously with heat transfer coefficients. Pressure drop 

increased with increased steam qualities or mass fluxes, corresponding to increased superficial or 

average velocities (Figure 4.5). Pressure drops increased faster with steam quality at higher mass 

fluxes in the 0.5-mm deep mini-gap while the slope of pressure drops over steam quality were 

similar for three mass fluxes in 1mm deep mini-gap. Generally, at the same steam mass flux and 

quality, pressure drops in 0.5-mm deep mini-gap were about 2–4 times higher than those in the 1-

mm deep mini-gap. 
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Figure 4.5 Steam condensation pressure drops in 0.5mm (left) and 1mm (right) deep 
hydrophilic mini-gap at various steam mass fluxes and steam qualities. 

For tests in the hydrophilic mini-gap, condensation heat transfer data were compared to the 

Kim and Mudawar [183] correlation for filmwise condensation in mini/micro-channels. The 

correlation was developed for many working fluids, primarily refrigerants, for diameters ranging 

from 0.424 to 6.22 mm. The correlation was assessed using Mean Absolute Error (MAE), defined 

as: 

𝑀𝐴𝐸 =
1
𝑛

ℎC®~? − ℎ~gC
ℎ~gC

m

l¸N

	 4.1 

where hpred is the heat transfer coefficient obtained from the Kim and Mudawar [183] correlation, 

hexp is the experimentally measured heat transfer coefficient, and n is the total number of data 

points. The MAEs of experimental results from the Kim and Mudawar model [183] were 20.19%  

for 0.5-mm deep mini-gap (Figure 4.6, left) and 15.6% (Figure 4.6, right) for 1-mm deep mini-

gap, demonstrating good predictions of the experimental data for the hydrophilic mini-gaps. The 

experimental results were higher than the model, particularly at lower qualities, with several 

possible contributing factors.  
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Figure 4.6 Comparison of experimental predicted heat transfer coefficients in 0.5mm (left) 
and 1mm (right) deep mini-gaps 

	 	
	

Figure 4.7 Comparison of experimental and predicted pressure drops in 0.5mm (left) and 
1mm (right) deep mini-gaps 

First, the correlation was developed primarily for refrigerants, but water has a higher 

surface tension value. Surface tension may cause condensate to gather in sharp mini-channel 

corners, thereby thinning the liquid film around the perimeter and increasing heat transfer, 

although this liquid film thinning is dependent on the fluid and geometry [184-187]. With the 

reduction of aspect ratio from 20:1 to 10:1 and increase of hydraulic diameter from 0.952 mm to 

1.818 mm, the surface tension effects may decrease and the disagreement between experimental 

and prediction results dropped from 20.19% to 15.6%. Overall, the prediction obtained from Kim 
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and Mudawar [183] correlation agreed with the heat transfer coefficients measured in the 

hydrophilic mini-gap. 

4.3  Steam condensation in hydrophobic mini-channels 

Steam condensation was performed at mass fluxes of 50–100 kg/m2s and 35–75 kg/m2s in 

0.5-mm and 1-mm deep hydrophobic mini-gaps, respectively. Unlike filmwise condensation 

observed in hydrophilic mini-gaps (Figure 4.8 a), dropwise condensation was observed in the 

hydrophobic mini-gap at all steam mass fluxes and qualities (Figure 4.8). 

 

Figure 4.8 Filmwise flow condensation in hydrophilic mini-gap and dropwise flow 
condensation in hydrophobic mini-gap 

In dropwise condensation, periodic droplet nucleation, coalescence, and departure were 

observed in hydrophobic mini-gaps (Figure 4.9). Tiny droplets nucleated on the bare surface and 

then grew continuously through direct condensation. Coalescence with neighboring droplets 

followed the droplet growth phase, creating larger droplets. Droplets of the departure size were 

swept by vapor flow; droplet departure sizes depended on the steam mass flux and steam quality. 

Additionally, droplets were shed by sweeping droplets from upstream. Water condensate in the 

hydrophobic mini-gap completely covered the surface with small droplets or formed larger 

droplets and rivulets depending on the quality and interfacial shear force associated with steam 

mass fluxes. Heat transfer in dropwise condensation is correlated with droplet sizes, which 

determines the thermal resistance of condensate; small droplets account for the largest portion of 



 36 

heat transfer [188-190]. Steam mass flux and quality determined the velocity of vapor relative to 

the droplet and thus affected the droplet departure sizes. The largest droplets (i.e. ~500 µm in 

diameter) were observed for the lowest flow rate (i.e., 50 kg/m2s), lowest steam quality (i.e., x = 

0.2) in the 0.5-mm deep mini-gap, and droplet departure size decreased as mass flux and shear 

forces increased. 

	
Figure 4.9 Stages of droplet nucleation, coalescence, and departure in dropwise flow 
condensation 

Videos were analyzed at the center point for conditions of identical average quality (x̅ = 

0.42) and differing mass fluxes. Videos were taken at 250 –500 fps depending on sweeping periods 

and associated lighting conditions and droplet analyses were conducted frame by frame using 

ImageJTM and PFVTM (Photron FASTCAM Viewer) software. The cycle began with nucleation, 

followed by coalescence, and ended at the frame at which the droplets departed. Table 4.1 tabulates 

the droplet departure size, sweeping periods, and heat transfer coefficients at steam mass flux of 

50 kg/m2s and various steam qualities of 0.35 s, 0.42 s, and 0.55 s. 

Table 4.1 Droplet departure size and sweeping periods in dropwise flow condensation at 
various steam qualities of 0.35, 0.42 and 0.55 and steam mass flux of 50 kg/m2s 

Steam quality Droplet departure size (µm) Sweeping periods (s) h (kW/m2K) 
0.35 32 ± 16 32 84,420 
0.42 13.7 ± 4.5 28 87,908 
0.55 10.6 ± 1.0 16 98,884	
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Table 4.2 Droplet departure size and sweeping periods in dropwise flow condensation at 
various steam qualities of 0.42 and steam mass fluxes of 50, 75 and 100 kg/m2s 

Steam mass flux (kg/m2s) Droplet departure size (µm) Sweeping periods (ms) h (kW/m2K) 
50 13.7 ± 4.5 28 84,420 
75 12.9 ± 4.0 24 95,673 

100 10.3 ± 1.0 17 105,409 
Dropwise condensation increased condensation heat transfer coefficients compared to 

filmwise condensation in the hydrophilic mini-gap. Condensation heat transfer coefficients are 

presented in Figure 4.10. Uncertainties in the condensation heat transfer coefficient were ± 4.5%–

± 10.1%. Based on flow visualization, droplet departure diameters were smaller for high mass 

fluxes at the same quality due to higher vapor shearing velocities. Droplet size distribution had 

been found correlated to droplet departure sizes [110], which determines the thermal resistance of 

liquids in the mini-gap. The reduction in droplet departure size and, therefore, liquid film resistance 

was likely responsible for the increase in heat transfer coefficients with respect to mass flux. 

Increasing mass flux and steam quality both increased interfacial shear forces between vapor and 

droplets. Therefore, heat transfer enhancement from increasing steam quality was reduced at 

higher steam mass fluxes. Likewise, the enhancement from increasing steam mass flux was 

reduced at higher steam qualities. 
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Figure 4.10 Heat transfer coefficients in 0.5mm and 1mm deep hydrophobic mini-gap 

Flow condensation heat transfer coefficients in the hydrophobic gap were compared to the 

measured filmwise condensation heat transfer coefficients in the hydrophilic gap (Fig. 16). Heat 

transfer coefficient enhancement is defined as 

𝜖 = .Qº©¥��
.Qº�(��

		 4.2 

	
where 𝜖 is the ratio of experimental data over predicted data, hphobic is the experimentally measured 

heat transfer coefficient in the hydrophobic gap, and hphilic is the corresponding heat transfer 

coefficient in a hydrophilic gap for a specific mass flux, G, and steam quality, x. The hydrophobic 

mini-gaps showed 200%–350% enhancement over the hydrophilic mini-gaps. The highest 

enhancements were observed at the lowest qualities, in which the liquid film created the highest 

liquid film resistance. 



 39 

	 	
Figure 4.11 Heat transfer coefficient enhancements in 0.5-mm (left) and 1-mm (right) deep 
hydrophobic mini-gaps 

As expected, higher pressure drops in dropwise flow condensation occurred at higher steam 

mass fluxes and steam qualities, corresponding to higher interfacial velocities. At higher mass 

fluxes, pressure drops increased with steam quality at a steeper slope. Pressure drops in 

hydrophobic mini-gap were reduced by 50–80%, compared to the hydrophilic mini-gaps. In the 1-

mm deep mini-gap, the slope of pressure drop to steam quality was less affected than the 0.5-mm 

deep mini-gap. 

	 	
Figure 4.12 Pressure drops of Heat transfer coefficient enhancements in 0.5mm (left) and 
1mm (right) hydrophobic mini-gap 
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4.4  Dropwise flow condensation heat transfer modeling 

4.4.1.  Modeling approach 

The previous sections have shown the advantages of dropwise condensation over filmwise 

condensation for heat transfer enhancement and pressure drop reduction. In dropwise 

condensation, a liquid-vapor mixture enters the condensation channel and thus the liquid streams 

or rivulets (vapor-liquid interface has infinite curvature) cover part of the condensation area. A 

predictive heat transfer correlation will be developed for dropwise condensation. To predict heat 

transfer coefficient of dropwise flow condensation, stream/rivulet-covered area is considered to 

undergo filmwise condensation (Figure 4.13), and the rest of the area undergoes dropwise 

condensation. 

 

Figure 4.13 Filmwise condensation region and dropwise condensation region during steam 
condensation on hydrophobic surfaces 

The filmwise  and dropwise condensation areas (𝐴»¼L) are estimated using void fraction 

(i.e. 𝐴»¼L = (1 − 𝛼)𝐴"¦m? and 𝐴»¼L = 𝛼𝐴"¦m?) where 𝐴"¦m? is the total condensation area and 

𝛼 is the void fraction obtained using Lockhart-Martinelli correlation (Equation 4.3) assuming 
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turbulent liquid and turbulent vapor [57, 191]. Figure 4.14 depicts void fractions of vapor changes 

with steam quality at steam temperature of 130 oC. 

N)h
h
= 0.28 N)g

g

b.�� '*
'(

b.�� �(
�*

b.b�
		 4.3 

 

Figure 4.14 Void fraction in flow condensation using Lockhart-Martinelli correlation [191] 

The average condensation heat transfer coefficient is a weighted average of filmwise and 

dropwise heat transfer coefficients,  

ℎ = V½¾¿.½¾¿�VÀ¾¿.À¾¿
V�©ªP

= 1 − 𝛼 ℎ»¼L + 𝛼ℎ3¼L		 4.4 

where ℎ3¼L  is the dropwise condensation heat transfer coefficient and ℎ»¼L  is the filmwise 

condensation heat transfer coefficient obtained from Kim and Mudawar [78] correlation. In 

mini/micro-channels, Kim and Mudawar [78] proposed annular flow for 𝑊𝑒∗ > 7ΧBBb.= and slug-

bubbly flow for 𝑊𝑒∗ < 7ΧBBb.= where 𝑊𝑒∗ is modified Weber number defined by Soliman [192] 

and ΧBB is turbulent-turbulent Lockhart-Martinelli parameter. Kim and Mudawar [78] proposed 

Equation 4.5 for annular flow and Equation 4.6 for slug/bubbly flow, 

ℎ»¼L =
�(
3º

0.048𝑅𝑒Eb.��𝑃𝑟Eb.��
Ä*
Å³³

= b.�
		 4.5 
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ℎ»¼L =
�(
3º

0.048𝑅𝑒Eb.��𝑃𝑟Eb.��
Ä*
Å³³

=
+ 3.2×10)�𝑅𝑒E)b.�È𝑆𝑢\¦N.�� =

b.�
		 4.6 

where 𝑅𝑒E =
Wo³ N)g 3º

�(
 is the liquid Reynolds number, 𝐺rB =

ko³
V

 is the steam only mass flux, 

PrH =
LQ�(
�(

 is liquid Prandtl number, 𝛸BB is turbulent-turbulent Martinelli parameter, 

𝜙% = 1 + 𝐶𝑋 + 𝑋=	 4.7 

where Χ is the Lockhart-Martinelli parameter, and 𝐶 is Chisholm constant. Both depend on the 

flow regime (i.e. laminar or turbulent) of liquid phase and vapor phase.  

In dropwise condensation, the droplet departure sizes and sweeping periods associated with 

flow conditions (i.e. steam mass flux and steam quality) affect the thermal resistance of liquid and 

therefore regulate dropwise condensation heat transfer. In horizontal channels, vapor-droplet 

interfacial shear stresses induce droplet shedding, while gravity dominates drop departure in 

quiescent flows. Le Fevre and Rose [148] first developed a model for heat transfer coefficients of 

gravity-driven, quiescent dropwise condensation on vertical plate. Heat transfer was first solved 

for single droplets for the droplet size distribution on the surface. Integrating heat transfer through 

the range of condensing droplets generates the total heat flux. In this work, a similar methodology 

is applied to create a dropwise condensation model which includes nucleation size, nucleation 

density, heat transfer through single droplet, droplet size distribution, and droplet departure size, 

𝑞"3¼L = 𝑞"?®¦C(𝑟)𝐴(𝑟)𝑑𝑟
®�ÍÎ
®��ª

		 4.8 

ℎ3¼L =
�"½¾¿
u)no

		 4.9 

where 𝑞"?®¦C(𝑟) is the heat flux through the base (droplet-solid contact area) of one droplet with 

radius r, 𝐴(𝑟)𝑑𝑟 is the differential area fraction occupy by droplets with radius of 𝑟 to 𝑟 + 𝑑𝑟, 

𝑟k|g and 𝑟klm are respectively the largest and the smallest droplet radius on the condensation 
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surface, 𝑇\ is the vapor saturation temperature and 𝑇r is condensation surface temperature. The 

droplet departure radius is considered to be the largest droplet radius. 

4.4.2.  Heat transfer through single droplet 

Across a single droplet, thermal resistances are between the constant vapor flow 

temperature (𝑇u) and constant surface temperature (𝑇r), interfacial thermal resistance from the 

droplet curvature (𝑅E\) conduction thermal resistance in the droplet (𝑅?®¦C) and conduction 

thermal resistance of the TeflonTM
 coating (𝑅"¦|B). Since these resistances are in series, the general 

equation for heat flux through a droplet of radius r is: 

𝑞"?®¦C(𝑟) =
n*)no

Ï(*�ÏP±©Q�Ï�©Í³
		 4.10 

	
Figure 4.15 Resistor analogy for condensation heat transfer through a droplet 

Le Fevre and Rose [148] first developed heat flux through the base of a hemispherical cap 

using the resistance analysis (Figure 4.15) and neglected the thermal resistance in the surface 

promoter, 

𝑞"?®¦C(𝑟) =
n*)no)

2ÐÑ*
±Ò(�(*

ÑoÍ³
Ò*º(*

2
ÓÔ¢
ÓÕ¢

Ö�ÑoÍ³
2×

¢
2� ±

Ø(

		 4.11 
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𝑃= − 𝑃N =
2𝜎
𝑟 		

4.12 

𝑃= − 𝑃N =
𝑃N𝜈N
𝜈=

𝑙𝑛	(
𝑃N

𝑃r|B𝑇N=
)		 4.13 

where =$n*
®'(l(*

 is the subcooling of the droplet surface for condensation of vapor on a curved surface 

derived from Equation 4.12 for the mechanical equilibrium at the drop interface and Equation 4.13 

for the thermodynamic equilibrium, noÍ³
'*l(*

2
Û�N
Û)N

Ï�noÍ³
=Ü

¢
2 is the vapor-liquid interfacial thermal 

resistance derived using normal stress difference between the inner and outer faces of surface of 

drop, ®
�(	

 is the thermal resistance of conduction in the droplet. 

where the subscript 1 and 2 respectively denote inner and outer surfaces of the curved interface, ν 

is specific volume. The required subcooling degree increases for smaller droplets because it 

requires a larger pressure difference across a stable droplet surface. Bonner [193] modified the Le 

Fevre and Rose model by adding contact angle effects to conduction in the droplet as	®(N)"¦rÝ)
��©Í³rlmÝ

, 

where	𝑟(1 − 𝑐𝑜𝑠𝜃) is the height of the droplet with contact angle of θ and sinθ in the denominator 

accounts for the change of the base area. Abu-Orabi [111] investigated and added the resistance of 

surface promoter layer as à�©Í³
��©Í³

 for hemispherical droplets condensing on hydrophobic surface. Kim 

and Kim [112] considered thermal resistance and used N
= N)"¦rÝ .�

 for liquid-vapor interfacial 

thermal resistance, where ℎl liquid-vapor interfacial thermal resistance for hemispherical droplet 

[194] and N
=(N)"¦rÝ)

 accounts for the shape effect. 
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ℎl =
=h
=)h

N
=ÜÏánoÍ³

l(*
2

f*noÍ³
		 4.14 

where α is the accommodation coefficient (0 < 𝛼 ≤ 1). It is very similar to the term used in Le 

Fevre and Rose model except for the accommodation coefficient for different fluids. In the current 

model, the Bonner model is modified by adding à�©Í³rlmÝ
��©Í³

 as the thermal resistance in TeflonTM 

layer where 𝑠𝑖𝑛𝜃 accounts for the base area reduction. 

Table 4.3 Thermal resistance in curved surface, liquid-vapor interface, liquid droplet, 
and surface promoter using three models by Le Fevre and Rose [148], Bonner [193] and Kim 
and Kim [112] 

 Curvature Interfacial Droplet Surface promoter 

Le Fevre and Rose [148] 
2𝜎𝑇\
𝑟𝜌E𝑖E\

 𝑇r|B
𝜌\𝑖E\=

𝛾 + 1
𝛾 − 1

𝑅%𝑇r|B
2𝜋

N
=
 

𝑟
𝑘E

 N/A 

Modified Bonner [193] 
2𝜎𝑇\
𝑟𝜌E𝑖E\

 𝑇r|B
𝜌\𝑖E\=

𝛾 + 1
𝛾 − 1

𝑅%𝑇r|B
2𝜋

N
=
 
𝑟(1 − 𝑐𝑜𝑠𝜃)
𝑘E	𝑠𝑖𝑛𝜃

 
𝛿"¦|B𝑠𝑖𝑛𝜃
𝑘"¦|B

 

Kim and Kim [112] 
2𝜎𝑇\
𝑟𝜌E𝑖E\

 
1

2 1 − 𝑐𝑜𝑠𝜃 ℎl
 

𝑟(1 − 𝑐𝑜𝑠𝜃)
𝑘E	𝑠𝑖𝑛𝜃

 
𝛿"¦|B𝑠𝑖𝑛𝜃
𝑘"¦|B

 

Figure 4.16 compares the Le Fevre and Rose [148], Bonner [193], and Kim and Kim [112] 

models for heat fluxes through droplets of different radius at same thermal conditions. Results from 

the Rose model are significantly larger than the other two, perhaps because the thermal resistance 

in promoter layer was not included. As the droplet size decreases, the significance of promoter 

layer arises. Leach et al. [195] experimentally and numerically investigated growth rates of 

droplets with different sizes. Small droplets (e.g., radius < 25 µm) provides 15 times average higher 

heat fluxes than the larger droplets and therefore they contributed equivalent condensation rates 

although they occupied only 5% of the condensation surface. As a result, the Bonner model [193] 

with thermal resistance of surface promoter added, is adopted in this research. 
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Figure 4.16 Heat flux through droplet bases using three models developed by Rose [148], 
Kim and Kim [112] and Bonner [193] at saturation temperature of 130oC, subcooling of 3oC 
and surface promoter thickness of 200 nm 

Leach et al. [195] studied growth rate of condensing droplets at different radii and found 

that droplets (radius smaller than 25 µm) have the same growth rate (volumetric growth rate per 

unit area). Therefore, heat flux through the base of droplet with radius smaller than 25µm is the 

same. Bonner model is further modified to consider all the droplets with radius equal to or smaller 

than 25 µm having the same heat flux through the base. The model for heat flux through a droplet 

base depends on droplet size: 

𝑞"?®¦C 𝑟 =
n*)no)

2ÐÑ*
±Ò(�(*

ÑoÍ³
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2
ÓÔ¢
ÓÕ¢
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	𝑓𝑜𝑟		𝑟 > 25𝜇𝑚		 4.15 
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2
ÓÔ¢
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	for		𝑟 ≤ 25𝜇𝑚	
4.16 

where 𝑟b = 25	𝜇𝑚.Figure 4.17 depicts the heat flux through the droplet base of radius ranging 

from 0.1 to 200 µm at the vapor saturation temperature of 130 oC, surface subcooling degree of 3 

oC, and surface coating thickness of 200 nm. 
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Figure 4.17 Heat flux through the base of droplet with different sizes 

4.4.3.  Droplet size distribution 

From Figure 4.17, heat flux through the base of a droplet depends on the droplet size. To 

obtain the mean dropwise condensation heat flux, it is necessary to know the droplet size 

distribution, which describes the largest and smallest droplet sizes as well as the number of droplets 

of different sizes between them. Le Fevre and Rose [110] and Rose and Glicksman [196] 

conducted dropwise steam condensation experiments on vertical plates and identified the power-

law function (Equation 4.17) to describe the size distribution of visible droplets. 

𝑓 𝑟∗ = 1 − 𝑟∗
¢
ì	;	𝑟∗ = ®

®�ÍÎ
	 4.17 

where 𝑓(𝑟) is the area fraction occupied by droplets of radius larger than 𝑟 to 𝑟k|g. Figure 4.18 

demonstrates the power law distribution of droplet sizes. 
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Figure 4.18 Fractional area occupation by droplet with radius greater than r* 

However, this power law relationship generally only describes the size distribution of large 

droplets well; large droplets refer to the sizes obtained through coalescence and small droplets 

refer to those sizes mainly through direct condensation of vapor on the droplet surface [150]. Wu 

and Maa [151] defined the cutoff size (𝑟~) to distinguish small and large droplets as half the 

distance between neighboring nucleation sites. 

𝑟~ = 4𝑁r )N/=		 4.18 

where 𝑁r is the number of nucleation sites on a unit area of condensation surface. Rose [197] 

assumed a random distribution of nucleation sites on the condensing surface and developed a 

correlation for droplet nucleation density: 

𝑁r =
b.b��
®��ª
2 		 4.19 

where 𝑟klmis the nucleation size derived by Graham and Griffith [149] using heterogeneous droplet 

nucleation theory. 

𝑟klm =
=noÍ³$(*
'(l(*pno ¥

		 4.20 
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where Δ𝑇r�y is the subcooling degree of condensation surface. In this research, the steam saturation 

temperature is approximately 130 oC (403.15 K) and the subcooling degree is 3 oC. The nucleation 

density from Equation 4.19 is 1014 m-2 and the nucleation size is 10 nm. 

Wu and Maa [151] proposed a population balance method for the size distribution of small 

droplets. It described the size distribution of droplets with the minimum radius to cutoff radius.  

The population balance method assumed a stable dynamic droplet size distribution and the number 

of droplets is constant in the radius ranged from r to r+Δr. Therefore, the number of droplets 

entering the range of r to r+Δr through growth must equal the number of droplets leaving this 

range of r to r+Δr. Droplets leave this radius range by two mechanisms: being swept by upstream 

droplets or dislodged by drag forces. The left side of Equation 4.21 is the number of droplets grown 

from smaller than a radius of r to equal or larger than r. The right side is the number of droplets 

grow out of r+Δr	by condensation (𝐴𝑛=𝐺=𝑑𝑡) and being swept by upstream droplet (𝑆𝑛N)=Δ𝑟𝑑𝑡), 

𝐴𝑛N𝑀N𝑑𝑡 = 𝐴𝑛=𝑀=𝑑𝑡 + 𝑆𝑛(𝑟)𝛥𝑟𝑑𝑡		 4.21 

where M1 and M2 are the growth rate of droplets (i.e. heat transfer rate) with radius of 𝑟N and 𝑟=, 

𝑛(𝑟) is the number of droplet with radius r per unit area, 𝐴 is an arbitrary area, and 𝑆 is the 

sweeping period. Instead of an experimental evaluation, the sweeping periods were calculated by 

the continuity of droplet size distribution at the cutoff size (re). Let f(r) be the area fraction occupied 

by droplets of radius between r and 𝑟k|g and 𝑎(𝑟) be the differential area fractions occupied by 

droplets with radius from r to r+Δr, subscript l and s respectively denote large droplets and small 

droplets. 

𝑓 𝑟 − 𝑓 𝑟 + 𝑑𝑟 = 𝑎(𝑟)𝑑𝑟	 4.22 
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Therefore, 

𝑎 𝑟 = u ® )u(®�?®)
?®

= − ?u(®)
?®

		 4.23 

In addition, as n(r) is the number of droplets with radius of r in a unit area, the fraction area 

occupied by droplets with radius of r equal to the number of droplets in a unit area times the area 

occupied by each droplet. 

𝑎 𝑟 = 𝑛 𝑟 𝜋𝑟= 𝑠𝑖𝑛= 𝜃		 4.24 

For the large droplets (i.e. r>re), from Equation 4.17 and Equation 4.22, the fraction area 

occupied by droplet of radius 𝑟 is: 

𝑎E(𝑟) = 𝑛 N
®�ÍÎ

®
®�ÍÎ

)2ì	for	𝑟 > 𝑟~	 4.25 

Equation 4.21 and Equation 4.24 (i.e. equation group for droplet size distribution of small droplets) 

were solved for continuity at r=re (cutoff for small and large droplets) with Equation 4.17 ( i.e. 

droplet size distribution function for large droplets) so that the droplet size distribution function is 

continuous throughout the whole droplet size range from rmin to rdept. Therefore the area fraction 

occupied by droplets of r in the range of rmin to re is: 

𝑎r 𝑟 = N
�®²ì®�ÍÎ

®²
®�ÍÎ

)2ì ®ì(®²)®��ª)
®)®��ª

V2®�Vì
V2®²�Vì

𝑒𝑥𝑝	(𝐵N + 𝐵=)		 4.26 

where 𝐴N, 𝐴=, 𝐵N, and 𝐵= are coefficients: 

𝐴= =
𝜃(1 − 𝑐𝑜𝑠𝜃)
4𝑘"¦|B𝑠𝑖𝑛𝜃

	 4.27 

𝐴� =
1
2ℎl

+
𝛿"¦|B(1 − 𝑐𝑜𝑠𝜃)
𝑘"¦|B𝑠𝑖𝑛=𝜃

	 4.28 

𝐵N =
𝐴=
𝜏𝐴N

[
𝑟~= − 𝑟=

2 + 𝑟klm(𝑟~ − 𝑟) − 𝑟klm= 𝑙𝑛(
𝑟 − 𝑟klm
𝑟~ − 𝑟klm

)]	 4.29 
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𝐵= =
𝐴�
𝜏𝐴N

[𝑟~ − 𝑟 − 𝑟klm𝑙𝑛	(
𝑟 − 𝑟klm
𝑟~ − 𝑟klm

)]		 4.30 

𝜏 =
3𝑟~= 𝐴=𝑟~ + 𝐴� =

𝐴N(11𝐴=𝑟~= − 14𝐴=𝑟~𝑟klm + 8𝐴�𝑟~ 	− 11𝐴�𝑟klm)
	 4.31 

Combining the heat flux through small and large droplets provides the mean dropwise 

condensation heat flux through the surface 

𝑞"3¼L = 𝑞" 𝑟 𝑎r 𝑟 𝑑𝑟 + 𝑞" 𝑟 𝑎E 𝑟 𝑑𝑟
®�ÍÎ
®²

®²
®��ª

		 4.32 

Therefore, the dropwise condensation heat transfer coefficient is: 

ℎ3¼L =
𝑞"𝐷𝑊𝐶
pn

	= N
pn
( 𝑞" 𝑟 𝑎𝑠 𝑟 𝑑𝑟 + 𝑞" 𝑟 𝑎𝑙 𝑟 𝑑𝑟

𝑟𝑚𝑎𝑥
𝑟𝑒

𝑟𝑒
𝑟𝑚𝑖𝑛

)		 4.33 

Figure 4.19 presents heat transfer coefficients obtained using different droplet departure 

sizes; droplet departure size is also assumed to be the maximum droplet radius. Increasing droplet 

departure radius, decreases condensation heat transfer coefficient as it increases the thermal 

resistance in the droplet. Hence, it is important to predict droplet departure size for predicting heat 

transfer coefficient in flow condensation. 

	
Figure 4.19 Heat transfer coeffceints with respect to droplet departure size 
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4.4.4.  Droplet adhesion forces 

Unlike gravity-driven dropwise condensation on vertical plates, droplet departure in shear 

flow is primarily dominated by interfacial shear stress caused by the difference in vapor and liquid 

velocities. Evaluation of the integral for heat flux of dropwise condensation (Equation 4.32) 

requires droplet departure size. There are many challenge of multi-phase flow modeling: droplet-

solid adhesion forces involving van der Waals, electrostatic, solvation and polymer-mediated 

interactions [198]. Additionally, the incipient motion of contact line is not well understood [199]. 

Eral et al. [200] analyzed the physical phenomenon of contact angle hysteresis and found no 

promising numerical models predicted droplet dynamics well. Therefore, in this research, drag 

forces and adhesion forces are analyzed separately to predict droplet departure size.  

Droplets move when the drag force exceeds the adhesion force between the droplet and 

solid surface. Drag forces increase faster than adhesion forces with increasing droplet size to 

continuously deform droplets and increase contact angle hysteresis [201]. At critical droplet sizes, 

contact angle hysteresis reaches its maximum value and droplets move from the original sites 

[201]. Adhesion is the tendency of unlike particles or surfaces clinging to one another. Adhesion 

forces depend on liquid surface tension and dynamic and static contact angles. In the gas-liquid-

solid three-phase system, the Young-Dupre equation [202] describes solid-liquid interfacial 

tension on the contact line of droplets in static equilibrium: 

𝛾r\ = 𝛾Er + 𝛾E\𝑐𝑜𝑠𝜃		 4.34 

where 𝛾r\ is solid-vapor interfacial tension, 𝛾Er is liquid-solid interfacial tension, 𝛾E\ is the liquid-

vapor interfacial tension (liquid surface tension), and 𝜃 is the equilibrium contact angle. A droplet 

deforms when vapor flows over the droplet. Therefore, along the vapor-liquid-solid three-phase 

contact line, contact angle varies. The largest and smallest contact angles are respectively termed 



 53 

the advancing and receding contact angle (Figure 4.20) and the corresponding contact points are 

the advancing and receding points. Contact angle hysteresis is the difference between advancing 

and receding contact angles. 

 

Figure 4.20 Force balance of droplet deformed by shearing flow 

Contact angle hysteresis can correlate with the adhesion force between the droplet and 

surface. Researchers [203-207] investigated contact angle hysteresis and the resultant adhesion 

force between droplets and surfaces. Antonini et al. [207] modified the Brown et al. [208] 

prediction and obtain the following model for adhesion forces of droplets on solid surface: 

𝐹|?. = −𝛾 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙𝑟𝑑𝜙=Ü
b 		 4.35 

where 𝜙 is the azimuthal angle starting from receding point (𝜙®~" = 0, 𝜙|?\ = 𝜋) and r is the 

radius of the contact area (droplet base). The base area is not affected by the deformation of the 

droplet (static contact line). Therefore, 

𝑟 = 𝑅𝑠𝑖𝑛𝜃		 4.36 

where R is the radius of a spherical cap with equivalent volume of the droplet (𝑉) and static contact 

angle 𝜃. 
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𝑅 = �ò
=Ü(N)"¦rÝ)

)¢ì		 4.37 

 

Figure 4.21 Diagram (top view) advancing and receding point, and azimuthal angle 

4.4.5.  Droplet drag force 

At different flow conditions (i.e. steam mass flux and steam quality), the relatively 

velocities of vapor over droplets vary. Droplet sweeping occurs when the shear forces imposed on 

the droplets by the shearing vapor exceeds the maximum adhesion force. Shear forces are 

estimated using the drag force equation: 

𝐹? =
N
=
𝐶?𝜌\𝐴C𝑈\=		 4.38 

where 𝐶? is drag coefficient, 𝜌\ is vapor density, 𝐴C is area of droplet surface projected to flow 

direction, 𝑈\ is vapor velocity calculated with vapor void fraction (𝛼) taken into consideration 

using Equation 4.39. 

𝑈\ =
Wg
'*h
		 4.39 

The drag force is proportional to the projected area of the droplet to the flow direction. 

Droplets are deformed under shearing flow and cannot be assumed to be a perfect spherical cap. 

El Sherbini and Jacob [209] proposed a two-circle-fitting method for projected area. The model is 

a parabolic function of droplet radius. Comparison with experiments of droplets on inclined and 
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vertical plate validated the model and greatly reduced the error from assuming spherical cap for 

the projected area and droplet volume, 

𝐴C =
N
=
a¢2ÝÍP*
rlmô 2 +

N
=

a¢2

B|mô
+ N

=
a22Ý±²�
rlmÝ±²� 2 −

N
=

a22

B|mÝ±²�
		 4.40 

𝐿u =
rlmÝÍP*(N�"¦rÝ±²�)
rlmÝ±²�(N)"¦rÝÍP*)

		
4.41 

𝐿N =
=®	a«
N�a«

		
4.42 

𝐿= =
=®
N�a«

		
4.43 

where r is droplet radius, 𝛽N = 𝜋 − 𝜃|?\, and 𝐿N, 𝐿= and 𝐿u are coefficients determined using 

proceeding equations. 

CFD (Computation Fluid Dynamics) studies were conducted using FLUENTTM to evaluate 

the drag forces applied to solid spherical caps of same projected area as deformed ones. Studies 

investigated droplet radius of 12.5 to 50 µm and vapor velocities of 5 to 25 m/s, which are 

equivalent to flow conditions for steam mass fluxes of 35 – 100 kg/m2s and qualities of 0.2 – 0.8. 

Geometry modelling was completed in ANSYS design modeler, where the channel was divided 

into multiple zones for multi scale meshing (Figure 4.22 and Figure 4.23). The sweeping mesh 

method created the most structured elements from inlet and outlet approaching the small block cut 

with two diagonal lines. To obtain a smooth transition from cuboid elements to spherical elements, 

two cylindrical zones were created from the top of the droplet. The outer one had a radius of 0.5 

mm which is greater than the droplet radius and the inner one had a radius ri = rdropcos45o
. For the 

calculation of boundary layer, thirty and ten inflation layer were created for bottom and top 

surfaces respectively.  Ultimately, there were 1 – 3 million elements for different sizes of droplets. 
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Figure 4.22 Multi-zone model for droplet in mini-gap in FLUENT 

  

Figure 4.23 Mulit-scale meshing in FLUENT for determining drag force on droplet 

The κ-ω SST model low-Re correction was employed for the model as it solves the 

confined flow and near-wall field the best. Drag force simulations ran for droplet radiuses of 12.5, 

25 and 50 µm, at flow velocities of 5, 10, 15, 20, 25 and 30 m/s for each droplet size. FLUENT 

calculated the drag force exerted on the droplet surfaces and drag coefficients (𝐶?) were calculated 

using 𝐶? =
=»P

'áVQ1*2
. The average values of drag coefficients at six velocities were all approximately 

0.45 with average percentage variances of 8.7%, 7.4% and 5.1% for droplet radiuses of 12.5, 25 

and 50 µm respectively (Figure 4.24). 
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Figure 4.24 Drag coefficients of vapor flow on droplet at various velocity and droplet sizes 

Sommers et al. [201] studied critical velocities required to sweep droplets from vertical 

surfaces and determined the drag coefficient (𝐶?) using two-circle method (Equation 4.40) for 

projected area. Milne and Amirfazli [204] evaluated drag coefficients by investigating incipient 

motion of droplet on hydrophilic, hydrophobic and super hydrophobic surface under shearing air 

flow in wind tunnel. Both studies saw a consistent drag coefficient between 0.44 and 0.45. 

Volynskii [210], Lane [211] and Morsi [212] observed same similar drag coefficients (i.e., 0.44-

0.45) of deformable droplets and rigid spheres. Combined with the FLUENT simulations, a 

constant drag coefficient of 0.45 is assumed. Figure 4.25 compares the drag forces from simulation 

and drag force equation using a constant drag coefficient of 0.45. 
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Figure 4.25 Comparions of drag forces from prediciton and numerical computation 

4.4.6.  Droplet departure sizes 

Droplet forces are proportional to projected areas of droplets, which are second order of 

droplet radius. Adhesion forces are proportional to droplet radiuses according to Equation 4.35. 

Therefore, drag forces increase faster than adhesion forces with increasing droplet size. At the 

critical radius that satisfies	𝐹? = 𝐹|?., drag force initiates droplet motion. Figure 4.26 depicts 

predicted droplet departure sizes at steam mass fluxes of 35–200 kg/m2s and steam quality of 0.2–

0.9. Increasing steam mass fluxes and steam qualities increase vapor velocity and in turn decrease 

droplet departure size. 

	
Figure 4.26 Droplet departure size at various steam mass fluxes and steam qualites 
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Droplet departure sizes visualized in experiments at a mass flux of 50 kg/m2s and steam 

qualities of 0.35, 0.45, and 0.65, validate the predictions. To ensure shear-induced departure, size 

measurements were performed on droplets completing the series of nucleation, growth, 

coalescence and departure. The nominal departure sizes are the average of lengths in axial and 

lateral directions. The predicted departure size is averagely 6.5% smaller than the mean value of 

the two principal sizes. The uncertainty of the measurements was ± 4 pixel, which is equivalent to 

±11.2 µm with the magnification of 5.0 in the lens and camera pixel size of 14 µm. 
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a	

	

 
G = 50 kg/m2s and x = 0.65 
Predicted departure size: 364µm 
Nominal departure size: 370 ± 11.2 µm 
Measured principle sizes: 336 µm  and 404 µm 

b	

	

G = 50 kg/m2s and x = 0.65	
Predicted	departure	size:	225µm	
Nominal	departure	size:	231	±	11.2	µm	
Measured	principle	sizes:	235	µm	and	227	µm	

c	

	

G = 50 kg/m2s and x = 0.65 
Predicted departure size: 111µm 
Nominal departure size: 131 ± 11.2 µm 
Measured principle sizes:142 µm and 120 µm 

Figure 4.27 Comparison of dropelt departues sizes in experiments and predicitons 

4.4.7.  Dropwise condensation heat transfer coefficient correlation 

With droplet departure size is known from the balance of drag and adhesion forces, the 

dropwise condensation heat transfer coefficients are predictable using Equation 4.33. Thereby, 

estimates the average flow condensation heat transfer coefficients in hydrophobic mini-gap. Figure 

4.28 plots predicted heat transfer coefficients with steam qualities of 0.2–0.9 and steam mass fluxes 

of 35–200 kg/m2s in the 0.5-mm deep mini-gap. It should be noted that this model is not designed 
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for conditions of steam quality lower than 0.2, where the void fraction changes dramatically to 

change the flow pattern from annular to slug/bubbly. Increasing steam mass flux and steam quality 

always increases heat transfer coefficients since increasing interfacial shear decreases droplet 

departure size. Smaller departing droplets correspond to lower thermal resistance. As steam mass 

flux increases, heat transfer coefficients become less dependent on steam quality because most 

droplets are within the radius range of 25 µm where heat transfer coefficients are independent of 

droplet sizes. 

	
Figure 4.28 Predicted heat transfer coeffcients at different mass fluxes and qualities 

With no curve fitting made to the model, the comparison of heat transfer coefficients with 

experiments results in Figure 4.29 presents great agreement that all the predictions are all within -

30% to 30% range of relative errors (RE) and most of the data points are within ± 15%. The mean 

absolute errors (MAE) for the 0.5-mm and 1-mm deep mini-gaps are 9.6 % and 8.8%, respectively, 

𝑅𝐸 =
ℎC®~ − ℎ~gC

ℎ~gC
	×100% 4.44 

𝑀𝐴𝐸 =
𝑅𝐸lm

l¸N

𝑛 ×100% 4.45 
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Figure 4.29 Comparison of heat transfer coefffcient from correlation and experimental 
resutls 

4.5  Steam-nitrogen condensation in mini-gaps 

As mentioned in the literature review, the degradation of heat transfer performance by the 

presence of noncondensable gas has been observed since the 1930s [171, 174, 213]. Ma et al. [214] 

hypothesized that in dropwise condensation, the periodic sweeping of droplets can mitigate heat 

transfer degradation by perturbing the accumulated noncondensable layer between the vapor and 

liquid condensate. This part of the research studies quantitatively the degradation of heat transfer 

coefficients in internal filmwise condensation and the mitigation of noncondensable gas effects in 

dropwise condensation by condensing nitrogen-steam mixture in hydrophilic and hydrophobic 

mini-gap. Shown in the box branch of Figure 4.30, ultra-pure nitrogen (mass purity > 99.9%, 

Matheson) is injected to two-phase steam exiting the pre-condenser at a known steam quality. A 

pressure regulator provides nitrogen from the nitrogen cylinder to the steam pipe line at a stable 

pressure and flow rate and an acrylic volumetric flow meter (OmegaTM FL7211) enables flow 

stability visualization and measurements of volumetric flow rate. Since nitrogen goes through the 

flow meter at a known temperature and pressure (measured with a thermocouple and pressure 
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transducer, respectively), the conversion equation translates volumetric flow rate to mass flow rate. 

At the T-joint, a valve fully mixed nitrogen and steam. 

	
Figure 4.30 Experimental apparatus for steam condnesation in presence of nitrogen 

The coupon with 1-mm deep mini-gap was used in these experiments. Fluid temperatures 

in the condensing mini-gap are required for calculating heat transfer coefficients. However, due to 

the presence of nitrogen, models for two-phase pressure drops cannot estimate fluid pressure or 

temperature. Therefore, a type-T micro-thermocouple (TC DirectTM 206-494) was inserted at the 

center of the mini-gap to measure fluid temperature. The micro-thermocouple had a 0.508-mm 

radius with a rubber gasket near the tip. The glass cover compressed the rubber gasket on the 

bottom surface of the mini-gap to position the micro-thermocouple at the center of the mini-gap. 

Validation tests evaluate the effects of micro-thermocouple on heat transfer coefficients. For 

validation, condensation experiments at steam mass flux of 50 kg/m2s and steam qualities of 0.3 –

0.9 were performed and compared with previously validated results whose fluid temperatures were 

estimated using two-phase pressure drop model. Figure 4.31 compares the results of heat transfer 

coefficients obtained using different mechanisms for fluid temperature. The good agreement 

demonstrates the credibility of using micro-thermocouple for measuring fluid temperatures. 
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Figure 4.31 Validation of fluid temperature measurements using micro-thermocouple 

Three sets of steam condensation experiments at steam mass fluxes of 35, 50 and 75 kg/m2s 

were used to study effects of nitrogen mass fractions at steam qualities of 0.35 – 0.9. In each set 

of experiments, steam mass flux (𝐺rB =
ko³
VÎ

) remains the same. Increasing nitrogen mass fraction 

increased flow mass flux (𝐺u =
k«

VÎ
= ko³�k�

VÎ
). Nitrogen mass fraction in the three-component 

flow quantifies the amount of nitrogen: 

𝜔� =
k�
k«

= k�
k*�k(�k�

		 4.46 

where 𝑚� is the nitrogen mass flow rate, 𝑚u is the three-phase mixture mass flow rate, 𝑚\ is the 

vapor phase mass flow rate, and 𝑚E is the liquid mass flow rate. 

4.5.1.  Steam-nitrogen condensation in hydrophilic mini-gaps 

Condensing steam-nitrogen heat transfer coefficients in the hydrophilic copper mini-gap 

are graphed in Figure 4.32 at steam mass fluxes of 35, 50 and 75 kg/m2s. The experimental 

conditions covered steam mass fluxes of 35–75 kg/m2s, steam qualities of 0.35–0.9, and nitrogen 

mass fractions of 0–30%. The resultant heat transfer coefficients ranged from 10,000 to 80,000 
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W/m2K. Hence, steam mass flux, steam quality and nitrogen mass fraction are potentially strong 

factors affecting heat transfer coefficients of condensing steam-nitrogen mixture. 

For the same steam mass flux and quality, increasing the nitrogen mass fraction (𝜔�) 

consistently decreased heat transfer coefficients significantly. Adding nitrogen increased the 

relative velocity between liquid phase and gaseous mixture (i.e. vapor and nitrogen) to thin the 

liquid film and decrease the thermal resistance in the liquid film.  However, the presence of 

nitrogen introduced additional thermal resistance and suppressed steam condensation. 

At each of three steam mass fluxes, increasing steam quality with the same nitrogen mass 

fraction increases heat transfer coefficients, which is similar to the observations of steam 

condensation without presence of nitrogen. Increasing steam quality is essentially replacing liquid 

condensate partly with steam vapor, which increases void fraction and reduces liquid film 

thickness and thermal resistance within. Meanwhile, flow velocity greatly increases with 

increasing steam quality due to the huge density differences betweem liquid and vapor. Increased 

mass fraction of vapor in vapor-nitrogen mixture for increasing steam quality, enhance steam 

condensation from the perspective of kinetic theory. Comparison of a, b and c in Figure 4.32 shows 

that higher steam mass fluxes are associated with higher heat transfer coefficients with the same 

nitrogen mass fraction and steam quality for the increasing steam velocity and thus the flow 

Reynolds number. 
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a	 b	 c	

	 	 	
Figure 4.32 Heat transfer coeffceint in 0.5mm deep mini-gap at steam mass fluxes of (a) 35, 
(b) 50, and (c) 75 kg/m2s 

Heat transfer coefficient degradation factors (ε(),*F+,,) compare heat transfer coefficients 

of condensing steam-nitrogen mixture with nitrogen mass fraction to those of condensing steam 

without nitrogen. Smaller degradation factors means more degradation, 

𝜀?~,g =
ℎrB − ℎg
ℎrB

×100	 4.47 

where ε(),, is the heat transfer coefficient degradation factor ℎrB is the pure-steam condensation 

heat transfer coefficient and ℎg is the steam-nitrogen condensation heat transfer coefficient, 𝑥 

denotes nitrogen mass concentration percentage (𝑥%). Table 4.4 presents the degradation factors 

obtained from adding a certain percentage of nitrogen to the steam. Each data point averages 

degradation factors of different steam qualities with same steam mass flux and nitrogen mass 

fraction. 

Table 4.4 Degradation of heat transfer coefficients due to presence of nitrogen 

𝐺rB (kg/m2s) 35 50 75 
ε(),*F+,Nb 28% 38% 52% 
ε(),*F+,=b 28% 38% 51% 
ε(),*F+,�b 27% 38% 44% 

Boundary layer theory [170-173] and diffusion layer theory [177, 179, 215] agree that 

noncondensable gases play a significant role at the vapor-liquid interface by adding a layer of 
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thermal resistance and suppressing condensation on the liquid film by reducing vapor 

concentration near the condensation interface. The mass fraction of vapor is a combination of 

nitrogen mass fraction and steam quality, which are important parameters, 

𝜔\ =
𝑚\

𝑚u
= 𝑥(1 − 𝜔�)	 4.48 

As steam quality increases and nitrogen mass fraction decreases, vapor mass fraction 

increases, which follows the same trend of heat transfer coefficient. Figure 4.33 plots heat transfer 

coefficients against vapor mass fraction (𝜔\). As the thermal conductivity of nitrogen is an order 

of magnitude lower than the conductivity of liquid water, liquid condensate thickness is less 

significant in the system of steam-nitrogen mixture than that of steam only. Therefore, heat transfer 

coefficient is greatly strong function of vapor mass fraction. 

		
Figure 4.33 Heat transfer coefficient of steam-nitrogen mixture with respect to mass 
fraction of steam vapor at three mass fluxes 

4.5.2.  Comparisons of heat transfer coefficients with correlations 

Caruso et al. [216] studied condensation of steam-air mixture in near-horizontal (i.e., 7o 

inclination) copper tubes of 12.6, 20 and 26.8-mm diameters. The experimental conditions cover 

inlet noncondensable gas mass fractions (𝜔�) of 5%–60% and mixture Reynolds numbers (𝑅𝑒k) 
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of 500–20,000, which fully envelops the conditions of this research. Heat transfer coefficients in 

terms of vapor Nusselt number were curve fitted using vapor-nitrogen Reynolds number (𝑅𝑒%), 

liquid Reynolds number (𝑅𝑒E) and nitrogen mass fraction (𝜔�).  

𝑁𝑢\ = 18.8	𝑅𝑒%b.��=	𝑅𝑒E)b.N� 	
𝜔�

1 − 𝜔�

)b.���
	 4.49 

𝑅𝑒% =
𝐺%𝐷.
𝜇%

	 4.50 

𝑅𝑒E =
𝐺E𝐷.
𝜇E

	 4.51 

where 𝐷. is hydraulic diameter (𝐷. =
�V
@~
, 𝐴	𝑖𝑠	𝑤𝑒𝑡𝑡𝑒𝑑	𝑎𝑟𝑒𝑎	𝑎𝑛𝑑	𝑃𝑒	𝑖𝑠	𝑤𝑒𝑡𝑡𝑒𝑑	𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟), 𝜇% 

is vapor-nitrogen mixture viscosity, calculated using Gambill correlation [217]: 

𝜇% =
𝜆\,%
𝜇\

+
𝜆�,%
𝜇�

)N

	 4.52 

where 𝜆\,% and 𝜆�,% are respectively the mass fraction of vapor and nitrogen in the vapor-nitrogen 

mixture. 

a b 

	 	
Figure 4.34 Comparison of experimental and predicted steam-nitrogen condensation heat 
transfer coefficients (a) with scenarios of ωN = 0  (b) with scenarios of ωN > 0 only 
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Figure 4.34 (a) compares experimental results (including non-nitrogen cases) with Caruso 

et al. [216] correlation. The term ��
N)��

)b.���
 goes to infinity when 𝜔� approaches zero. 

Therefore, 𝜔� = 1% was used for the non-nitrogen cases. Overall, the estimates from the model 

and the experimental results agreed with an MAE of 27%, although there are some cases that 

correlation overestimate heat transfer coefficients for more than 30%. Figure 4.34 (b) eliminates 

non-nitrogen data points. The Caruso et al. [216] correlation tends to predicted steam-nitrogen 

mixture condensation better with an MAE of 18% with no preference on mass fluxes. The MAEs 

are 17%, 20% and 15% at mass fluxes of 35, 50 and 75 kg/m2s, respectively. 

Different experiments were conducted to evaluate the effects of nitrogen on pressure drops 

in the condensation mini-gap. Three sets of experiments at three flow mass fluxes 𝐺u  evaluated 

the effects of nitrogen on pressure drops. In Figure 4.35, 𝜔% denotes the mass fraction of gas 

mixture (i.e. vapor and nitrogen) in the vapor-liquid-nitrogen flow (Equation 4.53) 

𝜔% =
𝑚%

𝑚u
=

𝑚\ +𝑚�

𝑚\ +𝑚� +𝑚E
	 4.53 

These experiments tested the effects of replacing vapor partly with nitrogen on pressure 

drops in the mini-gap. At all three flow mass fluxes and gas mixture mass fractions, replacing 

vapor with nitrogen has minimal effect on pressure drops in the mini-gap. When 𝜔� = 0%, 𝜔\ =

𝜔% = 𝑥, where 𝜔\ stands for the mass fraction of vapor. Intuitively, increasing flow mass flux 

from 35 to 75 kg/m2s, pressure drops increases for each data point of gas mass fraction (𝜔%). 

𝜔\ =
𝑚\

𝑚u
=

𝑚\

𝑚\ +𝑚� +𝑚E
	 4.54 
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Figure 4.35 Pressure drops of steam-nitrogen condensation in 1mm deep mini-gap 

Mini/micro-channels enhance filmwise condensation by thinning the liquid film and 

reducing the thermal resistance in the film for the dominance of surface tension over [60]. Derby 

et al. [77] found similar condensation heat transfer performance of R134a in 1-mm square, 

triangular and semi-circular mini-channels. Therefore, to test the effects of aspect ratio on heat 

transfer and pressure drops in mini-gaps, experiments were conducted in another mini-gap with 

similar hydraulic diameter but different aspect ratio (AR) investigates the influence of channel 

shape on steam condensation in presence of nitrogen. This mini-gap had a 3-mm width and 1.5-

mm depth to obtain a hydraulic diameter of 2 mm and aspect ratio of 2, which is slightly larger 

than the hydraulic diameter with the 1-mm depth (i.e. 1.82 mm in hydraulic diameter and 10 in 

aspect ratio). Experiments at steam mass flux of 75 kg/m2s and nitrogen mass fractions of 0, 10 

and 30% test the effect of different aspect ratios. Figure 4.36 compares heat transfer coefficients 

in these two mini-gaps. Similar heat transfer coefficients were observed at each nitrogen mass 

fraction for steam qualities between 0.4 and 0.6. The higher aspect ratio provided slightly higher 

heat transfer coefficients. It is hypothesized that smaller height increases the vapor-liquid 

superficial velocity and therefore thins the liquid film to reduce thermal resistance in liquid film 

to enhance heat transfer. 
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Figure 4.36 Heat transfer coeffcient of steam-nitrogen mixture in mini-gaps of two aspect 
ratios at steam mass flux of 75 kg/m2s 

Figure 4.37 presents pressure drops of steam-nitrogen condensation in mini-gaps of two 

aspect ratios and similar hydraulic diameters at steam mass fraction of 75 kg/m2s, nitrogen mass 

fraction of 0, 10 and 30%. Decreasing mini-gap aspect ratio from 10:1 to 2:1 greatly reduces 

pressure drops in the mini-gap by an order of magnitude. Like the effects on heat transfer 

coefficients, higher aspect ratio increase the interfacial shear stress. Meanwhile, the high-aspect-

ratio mini-gap has larger cross sectional area and therefore higher mass flow rate, which impose 

more entering and exiting effects as well. 

	
Figure 4.37 Pressure drops in 1mm and 1.5mm deep channesl at steam mass flux of 75 
kg/m2s and steam quality range of 0.5 to 0.95. 
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4.5.3.  Steam-nitrogen condensation in hydrophobic mini-gaps 

In steam condensation, a hydrophobic mini-gap promoted dropwise condensation in which 

liquid condensate formed droplets. The periodic sequence of nucleation, growth, coalescence and 

departure keeps refresh and expose solid surface to vapor. The thermal resistance in liquid 

condensation was reduced and therefore heat transfer coefficients were enhanced. Steam-nitrogen 

condensation were performed in Teflon AF™ coated 1-mm deep hydrophobic mini-gap for heat 

transfer coefficients and pressure drops at the flow conditions tested in the 1-mm deep hydrophilic 

mini-gap. Figure 4.38 presented steam-nitrogen condensation heat transfer coefficients at three 

mass fluxes of 35, 50 and 75 kg/m2s. Like in hydrophilic min-gap, heat transfer coefficients 

increase with increasing steam mass fluxes and steam qualities. Increasing nitrogen mass fraction 

decreased heat transfer coefficients as well. 

	 	 	
Figure 4.38 Heat transfer coeffcients of steam-nitrogen condensation in hydrophobic mini-
gap 

As observed in Figure 4.38, steam-nitrogen condensation heat transfer coefficients were 

influenced by steam mass flux, steam quality, and nitrogen mass fraction. Vapor mass fraction in 

flow, as used in Figure 4.33, represented steam quality and nitrogen mass fraction. It increases 

with increasing steam quality and decreasing nitrogen mass fraction. Figure 4.39 presents heat 

transfer coefficients with respect to vapor mass fraction at three mass fluxes. Heat transfer 
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coefficients generally increase with increasing vapor mass fraction and increasing steam mass 

fluxes. In dropwise condensation, heat transfer coefficients are associated with droplet sizes. 

Increasing steam mass flux significantly increased vapor-liquid interfacial shear stress and thus 

increased heat transfer coefficient. Increasing nitrogen mass fraction suppressed nucleation as the 

presence of nitrogen reduces partial pressure of vapor near the condensation surface and decreased 

heat transfer coefficients.  

	
Figure 4.39 Heat transfer coeffcients with respect to vapor mass fraction of steam-nitrogen 
condensation hydrophobic mini-gaps 

Ma et al. [169] proposed that droplet formation and motion perturbates the noncondensable 

layer between vapor and the condensation surface to enhance condensation heat transfer in 

presence of noncondensable gases. Figure 4.40 compares steam-nitrogen condensation heat 

transfer enhancement in hydrophobic mini-gap and hydrophilic mini-gap at same flow conditions 

using ε, defined as: 

𝜀 =
ℎC.¦yl"
ℎC.lEl"

	 4.55 

where ℎC.¦yl" and ℎC.lEl" are respectively heat transfer coefficients in hydrophobic and 

hydrophilic mini-gaps at the same flow condition. The heat transfer coefficients in hydrophobic 
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mini-gap were 2–5 times higher in hydrophobic channels depending on the steam quality and 

nitrogen mass fraction. The enhancements decrease with increasing steam quality and nitrogen 

mass fraction. Increasing steam quality decrease the amount of liquid and the thermal resistance 

in liquid. Increasing nitrogen mass fraction increase thermal resistance in the nitrogen layer. 

Although hydrophobic mini-gap promotes dropwise condensation, the cyclic formation and 

motion of droplets reduces thermal resistance in liquids and perturbs the nitrogen layer, the 

advantages diminishes when depression of nucleation from nitrogen and convection in vapor 

dominate the thermal resistance. 

	 	 	
Figure 4.40 Heat transfer coefficient enhancement of steam-nitrogen condensation in 
hydrophobic mini-gap compared to hydrophilic mini-gap 

Experiments investigated the effects of nitrogen mass fraction on pressure drops. With each 

of three flow mass fluxes, experiments studied the effects of nitrogen mass fractions on pressure 

drops at various gas fractions (i.e. mass fraction of steam and nitrogen in the flow). There was no 

significant change in pressure drops with same steam-nitrogen mixture mass fraction and 

increasing nitrogen mass fraction (Figure 4.41). The main contributor to pressure drops was the 

interfacial shear stress and therefore replacing vapor with the same amount of nitrogen in mass did 

not change the pressure drop. Increasing mass fluxes and steam quality increases flow velocity, 
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interfacial shear stress, and therefore the pressure drops. The error bars in Figure 4.41 show the 

standard deviation of pressure drops during tests.  

	 	 	
Figure 4.41 Pressure drops of steam-nitrogen condensation in hydrophobic mini-gap 

Comparied to hydrophilic mini-gap at the same flow conditons, the pressure drops were 

decreased by about 80% in hydrophobic mini-gap for most cases (Figure 4.42) 

𝜂 =
𝛥𝑃C.¦yl"
𝛥𝑃C.lEl"

	 4.56 

where η is the ratio of pressure drop in hydrophobic mini-gap to that in hydrophilic mini-gap at 

the same flow conditons. 

	 	 	
Figure 4.42 Ratio of pressure drops in hydrophobic mini-gap to hydrophili mini-gap 
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Chapter 5 Conclusions and future work 

A research plan was designed and open-loop experimental apparatus was constructed with 

to measure heat transfer, pressure drops, and visualize steam condensation for a wide range of 

mass fluxes and qualities with or without the presence of nitrogen. Single-phase cooling 

experiments validated the systems for heat transfer and pressure drop measurements. Steam 

condensation were conducted in hydrophilic (contact angle of 70o) and hydrophobic (contact angle 

of 110o) rectangular mini-gaps of 0.952-mm and 1.818-mm hydraulic diameter. 

Filmwise condensation was observed in hydrophilic copper mini-gaps. Comparison of 

condensation heat transfer coefficients and pressure drops in hydrophilic mini-gap with the Kim 

and Mudawar [78] correlation presented good agreement. In Teflon-coated hydrophobic mini-

gaps, dropwise condensation was observed with periodic nucleation, growth, coalescence and 

departure of droplets. Droplet departure sizes depended on flow conditions (i.e. mass flux and 

quality) for the associated interfacial shear forces. Droplet sizes correlated to heat transfer 

coefficients for they determined the liquid phase thermal resistance. Due to the reduction of 

thermal resistance in the liquid, dropwise condensation provided 200–350% heat transfer 

enhancements while reducing pressure drops by 50–80% for less water-solid adhesion induced by 

the lower surface energy of Teflon.  

A correlation for dropwise condensation heat transfer coefficients on hydrophobic surfaces 

was built through investigation of heat transfer through single droplets and droplet size 

distributions. Droplet size distributions depended on the droplet departure sizes, which were 

predicted by analyzing adhesion and shear forces in analytical work and numerical calculations 
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using FLUENT. Without any curve fitting to the correlation, an overall MAE of 9.6% was 

obtained. 

Filmwise and dropwise condensation of steam-nitrogen flows were observed in hydrophilic 

and hydrophobic mini-gaps, respectively. Heat transfer coefficients decreased with increasing 

nitrogen mass fraction. Vapor mass fraction in the liquid-vapor-nitrogen mixture highly correlated 

to heat transfer coefficients. Periodic formation and motion of droplets perturbed the nitrogen layer 

between vapor and solid surface. Compared with filmwise condensation in hydrophilic mini-gaps, 

dropwise condensation increased heat transfer coefficients by 200–500% while pressure drops 

were reduced by about 80%. 

There are some opportunities for future work emerging from this research. For example, 

experimental data of filmwise and dropwise condensation heat transfer coefficients with four-side-

cooling would be beneficial. For four-sided cooling, correlations for the dropwise condensation 

could incorporate the droplet dynamics on the top surface, which could change the flow regime. 

More investigation of contact angle hysteresis and droplet-solid adhesion forces during 

condensation experiments are desired. 
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Nomenclature 

 a(r) fractional area occupied by droplet of radius r 

 A area, m2 

 C Chisholm constant, dimensionless 

 Cd drag coefficient 

 Cp specific heat, kJ/(kgK) 

 D  diameter, m 

 Dh hydraulic diameter, m 

 F force, N 

 Fd drag forece, N 

 G mass flux, kg/(m2s) 

 h heat transfer coefficient, W/(m2K) 

 i specific enthalpy, kJ/kg 

 ilv specific evaporation enthalpy, kJ/kg 

 k thermal conductivity, W/(mK) 

 L length, m 

 Lc Laplace number 

 ṁ mass flow rate, kg/s 

 M droplet growth rate, kg/s 

 Ns Nucleation density, /m2 

 Nu Nusselt number 

 P pressure, kPa 

 Pr Prandtl number 
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 Q̇ heat transfer rate, W 

 q” heat flux, W/m2 

 R thermal resistance, m2k/W 

 re cutoff size between small and large droplets, m 

 Re Reynolds number 

 S sweeping period, s 

 T temperature, oC 

 t sweeping period, s 

 W width, m 

 w uncertainty 

 We Webber number 

 x quality 

 y vertical location, m  

 z characteristic length, m 

Greek: 

 α  void fraction 

 γ interfacial tension, N/m 

 δ thickness, m 

 ϵ heat transfer coefficient enhancement ratio 

 η pressure drop reducing factor 

 θ contact angle, rad 

 λ mass fraction of individual phase in vapor-nitrogen flow 

 µ dynamic viscosity, PaS 
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 ν specific volume, m3/kg 

 ρ density, kg/m3 

 σ surface tension, N/m 

 Φ two-phase pressure drop multiplier 

 ϕ azimuthal angle, rad 

 χ Lockhart-Martinelli parameter 

 ω mass fraction of individual phase in steam-nitrogen flow 

Subscripts: 

 adh adhesion 

 adv advancing 

 rec receding 

 bl block 

 cond condensation 

 cooling cooling water of precondenser 

 cu copper 

 DWC dropwise condensation 

 exp experimental result 

 f fluid 

 FWC filmwise condensation 

 g temperature gradient 

 i inlet 

 l liquid 

 m steam-nitrogen mixture 
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 o outlet 

 philic hydrophilic 

 phobic hydrophobic 

 pre precondenser 

 pred predicted result 

 s surface 

 sat saturation 

 st steam 

 sub subcooling 

 ts test section 

 TP two phase 

 w,ins with insulation 

 wo,ins without insulation 
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