Application of the Wind Erosion Prediction System in the AIRPACT regional air quality modeling framework

dc.citationSerena H. Chung, Farren L. Herron-Thorpe, Brian K. Lamb, Timothy M. VanReken, Joseph K. Vaughan, Jincheng Gao, Larry E. Wagner, and Fred Fox. “Application of the Wind Erosion Prediction System in the AIRPACT Regional Air Quality Modeling Framework.” Transactions of the ASABE 56, no. 2 (2013): 625–41. https://doi.org/10.13031/2013.42674.
dc.citation.doi10.13031/2013.42674
dc.citation.epage641en_US
dc.citation.issn2151-0040
dc.citation.issue2en_US
dc.citation.jtitleTransactions of the ASABEen_US
dc.citation.spage625en_US
dc.citation.volume56en_US
dc.contributor.authorChung, S. H.
dc.contributor.authorHerron-Thorpe, F. L.
dc.contributor.authorLamb, B. K.
dc.contributor.authorVanReken, T. M.
dc.contributor.authorVaughan, J. K.
dc.contributor.authorGao, Jincheng
dc.contributor.authorWagner, Larry E.
dc.contributor.authorFox, Fred
dc.contributor.authoreidjcgaoen_US
dc.contributor.authoreidwagneren_US
dc.date.accessioned2013-07-16T19:10:33Z
dc.date.available2013-07-16T19:10:33Z
dc.date.issued2013-07-16
dc.date.published2013en_US
dc.descriptionCitation: Serena H. Chung, Farren L. Herron-Thorpe, Brian K. Lamb, Timothy M. VanReken, Joseph K. Vaughan, Jincheng Gao, Larry E. Wagner, and Fred Fox. “Application of the Wind Erosion Prediction System in the AIRPACT Regional Air Quality Modeling Framework.” Transactions of the ASABE 56, no. 2 (2013): 625–41. https://doi.org/10.13031/2013.42674.
dc.description.abstractWind erosion of soil is a major concern of the agricultural community, as it removes the most fertile part of the soil and thus degrades soil productivity. Furthermore, dust emissions due to wind erosion degrade air quality, reduce visibility, and cause perturbations to regional radiation budgets. PM[subscript 10] emitted from the soil surface can travel hundreds of kilometers downwind before being deposited back to the surface. Thus, it is necessary to address agricultural air pollutant sources within a regional air quality modeling system in order to forecast regional dust storms and to understand the impact of agricultural activities and land-management practices on air quality in a changing climate. The Wind Erosion Prediction System (WEPS) is a new tool in regional air quality modeling for simulating erosion from agricultural fields. WEPS represents a significant improvement, in comparison to existing empirical windblown dust modeling algorithms used for air quality simulations, by using a more process-based modeling approach. This is in contrast with the empirical approaches used in previous models, which could only be used reliably when soil, surface, and ambient conditions are similar to those from which the parameterizations were derived. WEPS was originally intended for soil conservation applications and designed to simulate conditions of a single field over multiple years. In this work, we used the EROSION submodel from WEPS as a PM[subscript 10] emission module for regional modeling by extending it to cover a large region divided into Euclidean grid cells. The new PM[subscript 10] emission module was then employed within a regional weather and chemical transport modeling framework commonly used for comprehensive simulations of a wide range of pollutants to evaluate overall air quality conditions. This framework employs the Weather Research and Forecasting (WRF) weather model along with the Community Multi-scale Air Quality (CMAQ) model to treat ozone, particulate matter, and other air pollutants. To demonstrate the capabilities of the WRF/EROSION/CMAQ dust modeling framework, we present here results from simulations of dust storms that occurred in central and eastern Washington during 4 October 2009 and 26 August 2010. Comparison of model results with observations indicates that the modeling framework performs well in predicting the onset and timing of the dust storms and the spatial extent of their dust plumes. The regional dust modeling framework is able to predict elevated PM[subscript 10] concentrations hundreds of kilometers downwind of erosion source regions associated with the windblown dust, although the magnitude of the PM[subscript 10] concentrations are extremely sensitive to the assumption of surface soil moisture and model wind speeds. Future work will include incorporating the full WEPS model into the regional modeling framework and targeting field measurements to evaluate the modeling framework more extensively.en_US
dc.description.versionArticle: Version of Record
dc.identifier.urihttp://hdl.handle.net/2097/15982
dc.language.isoen_USen_US
dc.relation.urihttps://doi.org/10.13031/2013.42674en_US
dc.rights© 2013 American Society of Agricultural and Biological Engineersen_US
dc.rightsThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttps://rightsstatements.org/page/InC/1.0/?language=en
dc.subjectAir qualityen_US
dc.subjectGISen_US
dc.subjectPM[subscript 10]en_US
dc.subjectPM10en_US
dc.subjectRegional modelingen_US
dc.subjectWind erosionen_US
dc.titleApplication of the Wind Erosion Prediction System in the AIRPACT regional air quality modeling frameworken_US
dc.typeArticle (publisher version)en_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GaoTransASABE2013.pdf
Size:
6.64 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: