Time series and spatial analysis of crop yield



Journal Title

Journal ISSN

Volume Title


Kansas State University


Space and time are often vital components of research data sets. Accounting for and utilizing the space and time information in statistical models become beneficial when the response variable in question is proved to have a space and time dependence. This work focuses on the modeling and analysis of crop yield over space and time. Specifically, two different yield data sets were used. The first yield and environmental data set was collected across selected counties in Kansas from yield performance tests conducted for multiple years. The second yield data set was a survey data set collected by USDA across the US from 1900-2009. The objectives of our study were to investigate crop yield trends in space and time, quantify the variability in yield explained by genetics and space-time (environment) factors, and study how spatio-temporal information could be incorporated and also utilized in modeling and forecasting yield. Based on the format of these data sets, trend of irrigated and dryland crops was analyzed by employing time series statistical techniques. Some traditional linear regressions and smoothing techniques are first used to obtain the yield function. These models were then improved by incorporating time and space information either as explanatory variables or as auto- or cross- correlations adjusted in the residual covariance structures. In addition, a multivariate time series modeling approach was conducted to demonstrate how the space and time correlation information can be utilized to model and forecast yield and related variables. The conclusion from this research clearly emphasizes the importance of space and time components of data sets in research analysis. That is partly because they can often adjust (make up) for those underlying variables and factor effects that are not measured or not well understood.



Time series analysis, Spatial statistics, Statistical crop model, Autocorrelation, Cross-correlation, Vector autoregressive model

Graduation Month



Master of Science


Department of Statistics

Major Professor

Juan Du