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Abstract 
 

 

Space and time are often vital components of research data sets. Accounting for and 

utilizing the space and time information in statistical models become beneficial when the 

response variable in question is proved to have a space and time dependence. This work 

focuses on the modeling and analysis of crop yield over space and time. Specifically, two 

different yield data sets were used. The first yield and environmental data set was 

collected across selected counties in Kansas from yield performance tests conducted for 

multiple years. The second yield data set was a survey data set collected by USDA across 

the US from 1900-2009.  The objectives of our study were to investigate crop yield trends 

in space and time, quantify the variability in yield explained by genetics and space-time 

(environment) factors, and study how spatio-temporal information could be incorporated 

and also utilized in modeling and forecasting yield.  Based on the format of these data 

sets, trend of irrigated and dryland crops was analyzed by employing time series 

statistical techniques. Some traditional linear regressions and smoothing techniques are 

first used to obtain the yield function. These models were then improved by incorporating 

time and space information either as explanatory variables or as auto- or cross- 

correlations adjusted in the residual covariance structures. In addition, a multivariate time 

series modeling approach was conducted to demonstrate how the space and time 

correlation information can be utilized to model and forecast yield and related variables. 

The conclusion from this research clearly emphasizes the importance of space and time 

components of data sets in research analysis. That is partly because they can often adjust 

(make up) for those underlying variables and factor effects that are not measured or not 

well understood.  
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Chapter I 

 

GENERAL INTRODUCTION AND BACKGROUND OF THE STUDY 

 
Data observed over time result in time series (temporal) data (Anderson, 1971; Shumway 

and Stoffer, 2010) and data observed across space result in a spatial data (Haining, 2003).  

In many aspects, time and space have similar characteristics and are closely related 

(Schlesinger, 1975; Peuquet, 2001). However, space and time are not the same in 

absolute sense, i.e., unlike time which is uni-directional, space is multi-directional and 

unlike space which is relatively static and given, time is dynamic and irreversible 

(Johnsons, 1913).  

 

Time series and spatial data analysis enables one to understand the behavior of data 

across time and space. The goal of both time series and spatial analysis procedures is to 

identify patterns, investigate possible causes of these patterns and often forecast for the 

unknown (space or time). The time and space information of a data plays an important 

role at pattern identification step. If temporal or spatial pattern is identified, the possible 

reasons  that cause the pattern that are behind space and time will be investigated.  Then 

the response variable can be modeled as function of time and space or as a function of the 

direct cause for forecasting. 

 

The importance of space and time in a data set is not restricted to cases where we intend 

to do time series and spatial analysis. Space and time are often vital components of 

research data set. That is partially because they can often adjust for those underlying 
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variables and factor effects that are not measured or not well understood. In the present 

paper, we will study whether and how those natural components adjust or make up for 

unmeasured variables or less understood relations. For example, in crop and soil science 

studies, yield is proved to be affected by genetics and multi-environmental factors 

(Lobell et al., 2009; Machado et al., 2002; Perez-Quezada et al., 2003). Due to the vast 

number of factors involved in determining crop yield, it is impossible to measure all 

possible factors in every experiment. In addition, it is possible that there are some factors 

that are not discovered. Moreover, how these many factors combined to influence yield 

was not adequately understood.  

 

In such cases, time and space information usually can make up for those unmeasured or 

less understood variables in the sense of explaining the variability of response. In 

experiments that involve measuring variable like crop yield, which are influenced by 

many factors, the selection of space and time of experiment should, therefore, be done as 

carefully as possible. The analysis of such a data set should also take into account the 

space and time information as importantly as targeted treatments. 

 

RESEARCH GAPS  

 
The research gaps that this report intends to address is as follows. Different forms of 

spatial and temporal data sets are available for crop yield. One of these data sets is annual 

hybrid performance test in which yield and management data are collected as part of 

yearly comparisons of different hybrids of crops.  The comparisons of hybrids have been 

done in different locations and for long time. However, more than the specific purpose of 



 3

comparing yields at a time and space; the story that might come out from time and spatial 

analysis of these data sets was less exploited.  

 

A number of things can be accomplished using a time series and spatial analysis of the 

hybrid yield trial data. First of all, the trend of yield over time and space can be 

determined. In the hybrid yield trial data sets we have multiple hybrids, i.e., we have a 

multiple yield data annually for a crop, at a time and at same space. Therefore, the 

variation in yield due to genetics and environment can be studied. Hybrid trials have 

separate components for different management factors such as irrigated and dryland that 

can go long years back than survey data. Using these data, the relationships between yield 

and a number of management factors can be investigated.  

 

The other spatial and temporal crop data set is a survey data set collected by USDA 

National Statistical Service. This data set is rich in its spatial and temporal dimension and 

it has been used by many for trend analysis. However, not many studies utilized the 

potential of the data set for auto-and cross correlation analysis between different crop 

parameters for modeling and forecasting purposes. The data provides the opportunity to 

look at relationships between past crop area, total production, and prices to forecast 

future.  

 

Moreover, the importance of time and space components of experimental design and 

research data analysis can be well illustrated by studying these data sets.  In crop and soil 

science studies, it is common to conduct a research in multiple years (time) and locations 
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(space). However, the following two points are observed on the selection and use of 

space and time components of a research data set. 

 

1. Selection of time and space at the design phase of an experiment is often 

considered secondary.  

Researchers usually initiate a research with an interest in studying the impact of certain 

independent variables (treatments) on a dependant variable, say yield. They often 

carefully design the study in regard to how treatments should be arranged and replicated. 

The selection of where and when this research should be conducted did not seem to be 

given enough attention, i.e., it is usually based on where there is enough space and 

personnel than demand of the actual research. Considering the factors that might affect 

the dependant variable (crop yield), however, the treatments (independent variables) in 

this experiments are usually one or up to three factors with all the spatio-temporal 

variability largely neglected.   

 

2. In the analysis step, the use of time and space information is inconsistent across 

research. 

In spite of an experiment being conducted across space and time, the use of the space and 

time information from a data varies from one research to another.  

a. In most cases, researchers tend to analyze the effect of treatments just location by 

location and year by year without checking whether effect is environment 

specific. 
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b. Some don’t use space and location information and just analyze effect of 

treatment 

c. In some cases, space and year information become random effects and in other 

cases space and time information (both or one) becomes fixed effect for 

unjustified reasons. 

 

We felt these inconsistencies can be addressed by showing how important the space and 

time information are in a data analysis and by providing a logical approach on how time 

and space information should be incorporated in a model.  

GENERAL OBJECTIVES OF THE RESEARCH 

 

Based on research gaps identified above, the present study was initiated with the 

following general objectives: 

1. to investigate and determine the magnitude of crop yield trends in space and time,  

2. to quantify the variability in yield explained by genetics and space-time 

(environment) factors, 

3. to build optimal crop models for early forecasting using the temporal and spatial 

characteristics of the data, and  

4. to study how spatio-temporal information could be incorporated and also utilized 

in modeling and forecasting yield. 

 

GENERAL OVERVIEW AND METHODOLOGIES  

 
In the next chapter of this thesis, analysis result from a data assembled from irrigated and 

dryland corn performance trials conducted in Kansas for the years 1939 through 2009 
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will be presented. The data contains only the average yield of hybrids tested for each trial 

site for these years. A simple regression analysis of data over the time period and a 

comparison of means of a data at different time and space intervals were conducted and 

the trend analysis result was presented. The detail of this chapter was published in 

Agronomy journal 104:473-482 (2012) in a title “Dryland and irrigated corn yields with 

climate, management, and hybrid changes from 1939 through 2009.  Therefore, we 

presented only part of the report with a little modification, on the software used for 

analysis. The units in this chapter are international (S.I) units.  

 

In the third chapter, a report based on a data assembled from Kansas Corn Performance 

Trials (KCPT) and Kansas Grain Sorghum Performance Trials (KGSPT) conducted at 11 

counties of Kansas within the years between 1992 and 2009 will be presented. Traditional 

regression and smoothing techniques were used to develop varieties of yield functions 

with and without assumption of independence. Possible improvement of these models 

with time and space information will be demonstrated.  The units in chapter three are 

U.S. units. 

 

In the fourth chapter, we will present a multivariate analysis result using the annual corn 

yield, harvest area, and price survey data available in USDA National Statistics Service 

website for the years 1900-2011. Auto-and cross correlation, spatial autocorrelation using 

Morons I, and semivariogram analysis were carried out. Based on the analysis, a vector 

autoregressive (VAR) models that can predict price, area, and total production was 

developed. Another vector autoregressive model that is capable of using past yield 
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information from state and its neighbors was also developed. This detail will be presented 

in fourth chapter. The units in this chapter are S.I units.  
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Chapter II 

 

Trend Analysis of Dryland and Irrigated Corn 

 

(The detail of this chapter is published in Agronomy journal 104:473-482 (2012) in a title 
“Dryland and irrigated corn yields with climate, management, and hybrid changes from 

1939 through 2009)  
 

ABSTRACT 

 
A non-seasonal long term pattern of a time series data is called a trend. A simple linear 

regression model was fitted for crop yield with an explanatory variable, time (year) to 

investigate trend in irrigated and dryland corn. The objective of the study was to 

determine the magnitude of yield changes in irrigated and dryland corn for the years 1939 

through 2009 at different districts of Kansas. The data for this analysis was assembled 

from irrigated and dryland corn performance trials conducted in Kansas for the years 

1939 through 2009. Results of our analysis suggested a significant trend for both dryland 

and irrigated corn yields over time and space but the interaction of the two factors was 

not significant. Spatially, average dryland yields in Kansas decreases significantly from 

east to west and slightly from north to south. Temporally, corn yields have increased at 

an average rate of 94 kg ha-1 yr-1 in dryland and 127 kg ha-1 yr-1 in irrigated trials. The 

rate of corn yield changes over time, however, was not regular for the seven decades 

considered. Both irrigated and dryland yields increased significantly at least every two 

decades until the last three, during which dryland yields stagnated.  
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INTRODUCTION 

A data that is observed sequentially in time is called a time series data. A time series data 

can be decomposed into trend, seasonality, cycle, and random fluctuation components. 

The trend component of a time series data is the long term pattern or change in the mean 

of the data. Existence of a trend in a time series data can be identified by simply 

comparing the means of a time series data at different intervals or by a simple regression 

analysis of data over the time period. In the present research, we used these simple 

techniques to identify trend in dryland and irrigated corn yields in Kansas.  

 

For the detail of the result in this chapter: 

https://www.agronomy.org/publications/aj/abstracts/104/2/473 

Title: Dryland and Irrigated Corn Yield with Climate, Management, and Hybrid Changes 

from 1939 through 2009 

Yared Assefa, Kraig L. Roozeboom, Scott A. Staggenborg, and Juan Du 
 

Corresponding author (yareda@ksu.edu ) 
 
Published in Agron J 104:473-482 (2012) 
DOI: 10.2134/agronj2011.0242 
© 2012 American Society of Agronomy 
5585 Guilford Rd., Madison, WI 53711 USA 
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Chapter III 

 

Space and Time Adjustment in Dryland Crop Yield Models  

 
 

ABSTRACT 

 
A number of statistical models have been developed to describe crop yield, yet, there is 

no one conclusive crop yield model that works everywhere. The objectives of the present 

study were to study the complex relationship between yield and factors responsible for its 

variability, to quantify the variability that is explained by genetics and time-space 

(environment) factors, to develop and compare statistical yield functions, and to study 

how time and spatial information could be incorporated and utilized in modeling yield. 

The data for the study was assembled from Kansas Corn Performance Trials (KCPT) and 

Kansas Grain Sorghum Performance Trials (KGSPT) conducted at 11 counties of Kansas 

within the years between 1992 and 2009. Climatic data was assembled from Kansas State 

Weather Data Library. First using space, time and genetics information and then with 

other environmental variables, varieties of yield functions were developed. Models with 

only environmental variables were then improved by incorporating time and space 

information as an explanatory variable. Consequently, spatial and temporal dependence 

remaining on the error was brought as a case. In this instance a method of generalized 

least square estimation with correlated error variance was suggested as opposed to 

ordinary least square regression.  
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INTRODUCTION 

A number of statistical models have been developed to describe crop yield in relation to 

environmental and technological factors.  The majority of statistical crop models 

developed before the late 1950s relate crop yield with climatic conditions alone 

(Compton, 1943; Mathews and Brown, 1938; Sanderson, 1954). Models released after 

the 1950s started to incorporated impact of technological factors on yield models (Shaw, 

1964; Oury, 1965; Kaylen et al., 1991; Nelson and Dale., 1978; Thompson, 1975; 

Sclenker et al., 2004; Lobell and Asner, 2003).  

 

Different statistical techniques have also been suggested and employed in modeling yield, 

i.e., simple regression models, multiple regression models, nonlinear models, time series 

models, spatial models, spatio-temporal models, and others (Stone, 2006; Sclenker and 

Roberts, 2006; Gumpertz and Rawlings,1992; Lobell, 2010; Ozaki et al., 2008). Not only 

different approaches are used but also mixed messages are forwarded about the impact of 

different variables on crop yield. For example, the impact of increasing temperature on 

crop yield is reported to be negative (Lobell and Asner, 2003; Deschenes and Greenstone, 

2007) and also reported positive (McCarl et al., 2008; crops. Lobell et al. 2008). Similar 

mixed conclusions were also forwarded for the relationship between yield and rainfall, 

tillage, fertilizer, and other variables. 

 

Considering the age of agricultural research, the statement that yield is one of the longest 

and most frequently studied variable in history of human kind research can not be an over 

statement. Yet, there is no one conclusive crop yield model that works everywhere. That 
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is perhaps due to number of factors involved in determining yield. Crop yield is a 

function of crops genetics and multi-environment factors. For the major cereal crops of 

the world like corn, rice, wheat, barley, and sorghum, the number of days that the crop is 

out in field (length of growing season) is often more than 120 days. Theoretically, what 

happens in terms of environmental conditions and what is available in terms of resources, 

every single day the crop is out in the field affects final yield.  However, one can imagine 

that a statistical model that accounts for the relationship between yield and every 

environmental factor for the length of the growing season are complex, if conceived.  

Mechanistic crop models attempt to capture this complex relationship between yield, 

genetics, and multi-environmental factors.  

 

Our objectives were to study the complex relationship between yield and factors 

responsible for its variability, to quantify the variability in yield that is explained by 

genetics and time-space (environment) factors, to develop and compare statistical yield 

functions, and to study how time and spatial information could be incorporated and adjust 

statistical crop models.   

 

The data for the present study was assembled from Kansas Corn Performance Trials 

(KCPT) and Kansas Grain Sorghum Performance Trials (KGSPT) conducted at 11 

counties of Kansas within the years between 1992 and 2009. Occasionally, a survey data 

of crop yield collected by USDA across Kansas was used to explain certain facts. The 

detail of how data is assembled and a brief on analysis steps will be presented in next 

section, and results and detail of analysis will follow. 
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DATA ASSEMBLY AND ANALTICAL STEPS 

The data for this research was assembled from Kansas Corn Performance Trials (KCPT) 

and Kansas Grain Sorghum Performance Trials (KGSPT) conducted in 11 counties of 

Kansas between 1992 and 2009 (Fig. 1). In these trials, different corn and sorghum 

hybrids were planted every year at each location and were evaluated for yield and other 

traits. In addition to yield data, information on the names of hybrids, the amount of 

nitrogen (N) fertilizer applied, planting and harvesting date, cropping system (irrigated or 

dryland), average daily maximum and minimum temperature, and average daily rainfall 

data were also assembled.  

 

 
Figure 1 Map of Kansas depicting counties and their district where the Kansas Corn Hybrid Performance 
Trials data for the years 1992-2009 was assembled from. 
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The data set which constitute name of each county (space), years the data was collected 

(time), name of hybrid, yield of each hybrid, amount of nitrogen fertilizer applied, length 

of growing season, cropping system (irrigated or dryland), rainfall, minimum and 

maximum temperature of months from April to September, were organized for corn and 

sorghum separately in long data format. With county and year, a column called 

environment was created.   

 

Analysis was performed in R (R 2.15 statistical program) and whenever necessary in 

SAS. First the distribution of irrigated and dryland yield of each crop was determined by 

plotting yield values in x-axis and their frequency in y-axis. The mean and standard 

deviation of yield for dryland and irrigated corn and sorghum was also analyzed.  

 

Second, the variability in yield that is explained by genetics and environment was 

partitioned using a mixed model with random environment and hybrid variables. By 

doing so, the variability that is explained by environment, genetics, and genetics by 

environment interaction was determined.  

 

Environment explained the largest variation in crop yield. In the next step of our analysis, 

we split environment into space and time, because it is first defined as a combination of 

these two factors. Within space and time, environmental and management factors that 

might directly affect crop yield were listed based on pure prior knowledge. Since we had 

a data on few of the important weather and management factors, yield was modeled 

against these variables using multiple linear regression and robust locally weighted 
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regression and smoothing techniques. The significance of incorporating time and space 

information as an explanatory variable to improve model fit was demonstrated.  

 

The dependence of yield over time and space was demonstrated on a survey data set that 

has wide spatial coverage and long time components. Semivarograms and autocorrelation 

functions were used to make this point. Literature is provided on the importance and how 

adjustments should be done on the residual covariance structure when models suffer with 

correlated spatial, temporal, and spatial temporal errors. 

 

RESULT 

Yield Distribution 

The distribution of crop yield and the variability associated with it was analyzed and 

plotted for irrigated and dryland corn and sorghum (Fig. 2). From the result, we can 

conclude that yields of irrigated and dryland corn and sorghum were approximately 

normally distributed with means 204,126,143, 104 bushel/acre, respectively.   

 

The mean, standard deviation, coefficients of variation, and a 95% confidence intervals 

for yield in Kansas are presented in Table 1. The deviations from the mean were higher 

for corn than for grain sorghum. The deviation from the mean in irrigated and dryland 

yields appear to be similar for both crops. However, the coefficients of variations were 

higher for dryland yields than they are for irrigated. 
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Figure 2. Distribution of dryland and irrigated sorghum yields from Kansas Hybrid 
Performance Trial Data. 
 

Table 1. The mean, the standard deviation, coefficient of variation, and 95% confidence 
intervals for irrigated and dryland corn yields in Kansas 

Upper Limit Lower Limit Crop Cropping 
System 

Mean Standard 
Deviation 

Coefficient 
of Variation 

95% Confidence Interval 

Irrigated 204.4 41.7 0.20 286 123 Corn 

Dryland 126.9 46.6 0.37 218 36 

Irrigated 143.5 33.5 0.23 210 78 Sorghum 

Dryland 104.5 35.8 0.34 175 34 

 

Yield (bushels per acre)

F
re

q
u

e
n

c
y

0 50 100 150 200 250

0
1
0

0
2

0
0

3
0

0
4
0

0
5

0
0

Dryland Corn 

YDC~N(µ=126.9, σ=46.6) 

Yield (bushels per acre)

F
re

q
u
e

n
c
y

100 150 200 250 300

0
1

0
0

2
0

0
3
0

0
4
0

0

Irrigated Corn 

YIC~N(µ=204.3, σ=41.7) 

Dryland Sorghum 

Yield (bushels per acre)

F
re

q
u

e
n

c
y

0 50 100 150 200

0
2

0
0

4
0

0
6

0
0

YDS~N(µ=104.5, σ=35.8) 

Irrigated Sorghum 

Yield (bushels per acre)

F
re

q
u

e
n

c
y

50 100 150 200

0
5

0
1

0
0

1
5

0

YIS~N(µ=143.8, σ=46.6) 



 33 

 

Partitioning the variability  

 
How much of the variability in yield of corn and sorghum can be explained by 

environment and genetics was another important question. Since our data for each of 

dryland and irrigated corn is from multiple hybrids from one location and a year, hybrid 

(genetics) is one source of variation. In a given year, we had multiple locations; it makes 

space another source of variation. We collected the data in multiple years; therefore, time 

is third source of variation. To make it simpler, space and time were combined and are 

called environment. Therefore, at this stage of the analysis, we have two sources of 

variation, i.e., environment (space and time) and hybrid (genetics). How much of the 

variability come from genetics and environment can be estimated in two different ways. 

One way is by fitting a random yield model, with both environment and hybrids as 

random effects, and estimating the percentage of variance explained by environment, 

hybrid, and residual (g x e). 

 

Table 2. The mean, the standard deviation, coefficient of variation, % of the variation 
explained by environment, genetics, and genetics by environment interaction for irrigated 
and dryland corn  and sorghum yields in Kansas 

Dryland Irrigated Statistics 

Corn Sorghum Corn Sorghum 

mean 126.9 104.5 204.4 143.5 

Stand Deviation 46.6 35.8 41.7 33.5 

Environment 92.0 87.3 86.2 77.5 

Genetics 1.5 3.3 3.1 10.5 

% of the deviation 
explained by 

GbyE 6.5 9.3 10.7 12.0 

Confidence interval upper limit 218.2 174.7 286.0 209.5 

Confidence interval lower limit 35.6 34.3 122.6 78.1 

σ
2 σe

2      environmental variance 
σg

2      genetic variance 
σeg

2     residual (g x e) 
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Table 2 show the variability explained by environment and genetics. The variability in 

yield that is explained by environment is much higher than that of the variability in yield 

that is explained by either genetics or genetics by environment interaction. The 

percentage of variation due to environment (sensitivity to environmental changes) is 

higher in corn than in sorghum.  

 

The second way to achieve the same result is by fitting yield as function of fixed 

environment and random hybrid effects. We can call this environment specific model. 

ijjiij HY εµ ++=        (1) 

Yij is the yield at environment i from hybrid j; µi mean for the ith environment ; Hj is differential random effect of jth 
hybrid; and εij is the residual or interaction effect of jth hybrid and ith environment 

 

Figure 3 shows the relationship between observed yield and fitted values of model (1). 

This environment specific model explained the variability in yield with coefficient of 

determination (R-square) value of 0.92 for dryland corn and R-square value of 0.87 for 

dryland sorghum. This is value is equivalent to the variability in yield explained by 

environment for dryland corn and dryland sorghum, respectively, presented in by fitting 

random environment and hybrid model (Table 2). In the next section of this paper, we 

will try to model dryland yield with few of the environmental factors that, perhaps, are 

underlying reasons for yield variation in space and time. This model, environment 

specific model (1), sets the maximum variability that we can explain with environmental 

factors if we were able to measure all of them and if we understood the way they interact 

to affect yield. But let us start by explaining the underlying factors in space and time that 

affect yield. 
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Figure 3. The relationship between observed dryland crop yield and fitted values of a 
model with fixed environment and random hybrid effects (environment specific model). 
 

Environment is a combination of space and time. Space and time can also be further 

divided into factors that are the direct reasons for variability in yield but are embedded in 

space and time. Figure 4 shows a space-time diagram with these major factors 

responsible to yield variability.  When we analyze both space and time, they come with 

variation in climate, resource, management, and genetics. The extent of how these 

variables change in time and space depends on how far or how long we travel in space 

and time, respectively. Some factors such as elevation, slope, soil type and depth might 

not change in time, at least in short period. Also, it should be noted that this is not a 

complete list of factors that vary in space and time and affect yield. It is an example and 

each factor by itself is broader than they look in the diagram.  In the following section of 

this paper we will model yield with one factor from few of the environmental factors. 

Finally we will try to combine all measured environmental factors to model yield and 

compare how much of the variability we can explain. 
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Figure 4. A conceptual diagram of environmental factors that vary in space and time and 
considered the underlining causes of yield variability. 
 
 

Yield as function of seasonal rainfall 

 
Crop yield, particularly dryland yield, is highly dependant on the amount of rainfall in the 

growing season. The relationship between dryland yields of corn and sorghum and total 

April to September rainfall is presented in figure 5. Here we have used a robust local 

weighted scatter smoothing regression technique to fit the data. Both dryland corn and 

sorghum yields seem to have a non linear relationship with total rainfall. Both crops yield 

increase with different slopes from approximately 5 to 27 inches of rainfall and no 

changes or decrease afterwards.   
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Figure 5. Dryland corn and dryland sorghum as a function of total seasonal (April to 
September) rainfall. 
 
Intuitively, it is correct to assume total rainfall is not the best variable to model yield. For 

example, if a crop stands without a rain for the first one month in the season and gets 

plenty of water after that, the damage in the rainless month might be not recoverable. 

Therefore, modeling yield using average monthly rainfall may better describe the 

relationship between rain and yield than the total rainfall of season (Figure 6).   

 

Figure 6. Observed dryland corn and sorghum yield against fitted values of a model that 
linearly predicts yield with daily average monthly rainfall and interaction of two 
consecutive months.  
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The regression equation in Figure 6 presented the coefficients for daily average monthly 

rainfall for the months April to September and interaction effect of two consecutive 

months. From the regression equation we can infer that the magnitude of impact of rain 

of each month on crop yield varies. However, we are still far from explaining the total 

variability in yield that is due to environment in either of the rainfall models above. 

Yield as function of seasonal temperature 

Seasonal temperature is also a very important factor in determining crop yield. In fact, 

crops are grouped into summer and winter crops based on their requirement of seasonal 

temperature. One of the reasons that corn is planted in early April and sorghum is planted 

late in May is due to requirement in minimum temperature for germination and growth. 

Figure 7 illustrates how a linear model that relates yield with the effect of average 

temperature of each month explains dryland corn and dryland sorghum yields. From the 

coefficients of the model we can infer that the impact of increasing average temperature 

on yield might be positive or negative depending on when it happens.  

 
Figure 7. Observed dryland corn and sorghum yields against fitted values of a model that 
linearly predicts yield from average temperature of the months April through September. 
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The relationship between yield and temperature can also be further improved by splitting 

temperature into its minimum and maximum temperature components. 

 
Figure 8. Observed dryland corn and sorghum yields against fitted values of a model that 
linearly predicts yield from average monthly maximum and minimum temperature of the 
months April through September. 
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As can be seen in Figure 9, dryland corn was more responsive to growing season length 

than dryland sorghum.  

 
Figure 9. Dryland corn and sorghum yields as a function of the length of growing season. 
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dryland corn and sorghum, respectively. Table 4 presents VIF values for explanatory 

variables for the fitted models. 

 
Figure 10. Observed dryland corn yield against fitted values of a model that linearly predicts yield from 
climatic and environmental factors in table 3 but to avoid multicolliniarity in (A) all minimum temperatures 
are not include except September minimum temperature, in (B) all minimum temperatures are not include 
except May and September minimum temperatures, in (C) all minimum temperatures are not included 
except June and September minimum temperatures, (D) contains all factors and it suffers multicolliniarity. 
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Table 3. Pearson correlation coefficient between the continuous explanatory variables of dryland yield in Kansas 
Maximum temperature Minimum temperature Rainfall Variables LGS N 

APR MAY JUN JUL AUG SEP APR MAY JUN JUL AUG SEP APR MAY JUN JUL AUG SEP 

LGS 1.00                    

N 0.28 1.00                   

Aprtmax -0.10 -0.07 1.00                  

Maytmax -0.13 0.04 0.43 1.00                 

Juntmx 0.03 -0.04 0.39 0.18 1.00                

Jultmax -0.22 0.00 0.34 -0.02 0.49 1.00               

Augtmax -0.47 -0.11 0.20 0.12 0.05 0.51 1.00              

Septmax -0.31 0.06 0.01 0.45 -0.18 0.05 0.38 1.00             

Aprtmin -0.18 -0.20 0.69 0.27 0.02 0.01 0.15 0.02 1.00            

Maytmin -0.19 -0.16 0.30 0.40 -0.23 -0.35 0.24 0.18 0.71 1.00           

Juntmin -0.09 -0.26 0.26 0.05 0.14 -0.25 0.03 -0.09 0.68 0.68 1.00          

Jultmin -0.32 -0.31 0.37 0.13 0.00 0.24 0.39 0.03 0.74 0.65 0.64 1.00         

Augtmiin -0.37 -0.19 0.17 0.06 0.00 0.19 0.69 0.18 0.49 0.64 0.58 0.75 1.00        

Septmin -0.15 -0.15 -0.02 0.23 -0.19 -0.29 0.08 0.57 0.43 0.58 0.58 0.44 0.47 1.00       

AprilRF -0.17 -0.21 -0.05 -0.16 -0.05 -0.20 -0.02 -0.29 0.28 0.17 0.37 0.18 0.11 0.02 1.00      

MayRF -0.18 -0.21 -0.13 -0.28 -0.30 -0.06 0.30 0.07 0.22 0.44 0.37 0.48 0.55 0.33 0.07 1.00     

JunRF -0.11 -0.25 -0.06 0.06 -0.23 -0.45 -0.13 0.02 0.23 0.33 0.41 0.17 0.14 0.41 0.17 0.24 1.00    

JulRF 0.12 -0.18 -0.06 0.06 -0.20 -0.58 -0.37 -0.02 0.11 0.29 0.21 -0.01 -0.14 0.19 0.14 0.12 0.35 1.00   

AugRF 0.07 -0.16 0.36 -0.04 0.25 0.03 -0.20 -0.24 0.44 0.07 0.27 0.16 0.03 0.06 0.19 -0.10 0.17 0.13 1.00  

SepRF -0.03 -0.32 -0.10 -0.09 -0.02 -0.20 -0.14 -0.23 0.22 0.22 0.48 0.40 0.19 0.34 0.25 0.22 0.50 0.22 0.20 1.00 

 
Table 4. Variance Inflation Factor for explanatory variables in models A, B, C, and D in figure 11 and 12. As rule of thumb models 
with VIF> 10 could be considered to seriously suffer from multicollinarity problems. NI in the table refers to parameter not included. 

Maximum temperature Minimum temperature Rainfall Variables LGS N 

APR MAY JUN JUL AUG SEP APR MAY JUN JUL AUG SEP APR MAY JUN JUL AUG SEP 

Model A 1.7 1.1 2.1 2.3 1.6 3.4 2.5 4.5 NI NI NI NI NI 3.4 1.3 1.8 2.1 1.7 2.0 2.2 

Model B 1.7 1.1 2.6 5.8 1.7 4.8 3.8 7.6 NI 10.2 NI NI NI 6.2 1.3 2.8 2.3 1.8 2.0 2.1 

Model C 1.7 1.2 2.4 2.3 2.1 4.0 2.6 5.5 NI NI 6.3 NI NI 6.5 1.6 2.0 2.1 1.8 2.0 2.2 

Model D 1.9 1.3 7 7 3.7 9.1 11.2 10.5 17.2 14.7 9.4 10.7 12.7 11.7 2.1 3.0 2.7 2.1 2.7 2.7 
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Figure 11. Observed dryland sorghum yield against fitted values of a model that linearly predicts yield from climatic 
and management factors in table 3 but to avoid multicolliniarity in (A) all minimum temperatures are not included 
except September minimum temperature, in (B) all minimum temperatures are not included except May and 
September minimum temperatures, in (C) all minimum temperatures are not included except June and September 
minimum temperatures, (D) contains all factors and it suffers multicolliniarity. 

 

From the results in the two figures (10 and 11), we noted a better model fit when all factors come 

together. However, even these models that contain the most relevant environmental factors did 

not fit to the level where the first environmental specific model did. The most probable reason 

(claim) being that the information contained in space and time is richer than what five or six 

environmental factors can explain. We can strengthen this claim by including a space time 

adjustment on the best of the models above. 
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Space-Time Adjustment: As Explanatory Variable  

Among the reasons why our models above did not have the best fit could be lack of additional 

information contained in space and time but not measured. Therefore, we might benefit by a 

systematic space and time adjustment. This adjustment should be conducted in such a way that 

we do not over fit the model. To do so, we first grouped every five years of our data set, the 

years 1992 to 2009, into about 4 time lines and called them lustrum, i.e. lustrum 1(1992-1996), 

lustrum 2 (1997-2001), lustrum 3(2002-2006), and one partial 4th lustrum (2007-2009). Then we 

included a categorical space information, county, and continuous time information, lustrum, on 

the best of the models above. Figure 12 depicts how this model fits our data. Using a space and 

time adjustment, we were be able to explain about 70% of the variability out of 92% possible for 

corn and 54% of the variability out of 87% possible for dryland sorghum.  

 
Figure 12. Observed dryland sorghum yield against fitted values of a model that linearly predicts 
yield from climatic and management factors (model A in figure 11 and 12) plus space and time 
adjustment. 
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Figure 13. Residual plots of dryland corn (A) and dryland sorghum (B) models that linearly 
predict yield from climatic and management factors (model A in figure 10 and 11) plus space 
and time adjustment. Lat and Long in the graphs refer to latitude and longitude. 
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Space-Time Adjustment: On the Residual Covariance Structures 

The assumption of normality, independence, and constant variance seem to hold in our models 

(Fig. 13). This was possible perhaps because we captured, not all, but the most important 

variables responsible for variability in yield. However, our response variable yield is spatially 

and temporally dependent. Here we demonstrated the spatial and temporal dependence of yield 

using USDA dryland corn data. In order to study the spatial dependency of yield, the average 

dryland corn yield for all 105 counties of Kansas for the time period 1992-2009 was used. Figure 

14 depicts dryland corn yield map of Kansas, semivariogram cloud, and semivariogram curve of 

dryland corn. From the semivariogram curve in Figure 14, it is clear that dryland corn yield of 

counties that are closer in distance are more similar (dependant). This is a clear indicator of 

spatial dependence in crop yield.  

 

In order to study the temporal dependency of yield, the average dryland corn yield reported for 

Kansas for the years 1972 to 2011 by USDA was studied. Figure 15 depicts the time series plot 

for yield, annual yield growth, and the autocorrelation and partial autocorrelation for the de-

trended (annual) yield. The autocorrelation and partial autocorrelation graphs indicate a 

significant temporal correlation with time lag 1.  

 

Therefore, this spatial and temporal dependence in yield might be reflected in error terms in 

situations where the explanatory variables available in model did not capture the variability. If 

this is realized, modeling of crop yield should be done by spatial, temporal, or spatio-temporal 

adjustments made mainly on the residual covariance. When there is only a spatial or temporal 

dependence, they can be accounted in model with spatial or temporal correlated error variance 
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through generalized least square regression approach as oppose to ordinary regression (Direnzo 

et al., 2000; Anselin, 1988; Anselin, 2007). Similarly, when there is spatio-temporal dependence, 

model should be adjusted for both space and time (Anselin et. al., 2008; Demel and Du, 2012; 

Gneiting, 2002; Millo and Piras, 2012). 

 

 
Figure 14. (A) Dryland corn yield in Kansas, (B) semivariogram cloud for dryland corn yield in 
Kansas, and (C) a semivariogram curve.  
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Figure 15. Time series plot of dryland corn yield in Kansas, de-trended yield (annual yield 
growth), autocorrelation (ACF), and partial autocorrelation (PACF) of annual yield for the years 
1972 to 2011.   

 

 

SUMMARY AND CONCLUSION 
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present research data set show that the assumption that dryland and irrigated corn and sorghum 

yields are approximately normally distributed seem to hold.  

 

The variability in yield that is explained by environment is much higher than the variability that 

is explained by genetics within each cropping system. This result signifies how environment 

plays a significant role in determining crop yield. This further emphasizes the notion that crop 

recommendation should be environmental specific. Corn yield variation explained by 

environment is much higher than sorghum. A relative stability of sorghum yields across 

environmental variations compared to corn yields in this analysis support previous findings 

(Boyer 1970; Beadle, 1973; Stone et al., 1996; Fischer et al., 1982). Obviously, dryland yields 

are relatively more environmental dependant than irrigated yields just because one 

environmental factor, water, is less of a limitation in irrigated systems.  

Table 5. The AIC, BIC, and R2 values for seven models and relationships fitted to dryland corn and sorghum yield 

Model AIC(x10000) BIC(x10000) R2 AIC(x10000) BIC(x10000) R2 
 Dryland corn Dryland sorghum 

Space-time  2.84 2.89 0.92 3.35 3.42 0.87 
Total Rainfall 3.61 3.61 0.36 4.16 4.16 0.18 
Monthly RF 3.57 3.57 0.42 4.16 4.17 0.30 
Average Temp. 3.65 3.65 0.28 4.18 4.19 0.11 
Min and Max 
Temp.  

3.59 3.60 0.38 4.09 4.10 0.29 

Length of GS 3.72 3.73 0.10 4.23 4.23 0.01 
All factors 3.50 3.52 0.52 4.07 4.08 0.36 
All factors and 
space-time adj. 

3.36 3.37 0.68 3.91 3.93 0.54 

 

Here we have done an exploratory analysis of different yield functions. We started with an 

environmental specific model. Then we break environment into its components and looked at 

relationships between yield and different environmental factors. The model goodness of fit for 

the seven models is given in Table 5. For example, we have used rainfall, which is the major 

environmental factor that is known to affects crop yield. However, total seasonal rainfall 
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explains only a portion of the variability in dryland corn and dryland sorghum yields. The fitted 

values from the robust locally weighted scatter smoothing regression that describe the 

relationship between rainfall and dryland yields are presented in figure 16.   As can be seen in 

the equation, the conclusion on relationship between yield and rainfall varies depending on 

where we are in range of rainfall value in our data set and on the type of crop we have. That is 

why there is a mixed conclusion in the literature about the effect of increasing rainfall, 

temperature, or other factors on crop yield.  

 

Figure 16. Weighted means and fitted equations for the relationship between total rainfall and 
corn and sorghum yields.   
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combined factors model. From this we can deduce that either the number of variables in the 

model or the way they interact in these models was not enough to explain the possible yield 

variability explained by environment specific model. This is always the case on variables like 

yield that can be impacted with multi factors.  

 

Time and space adjustments are made as an explanatory variable in best of our models and 

witnessed a significant improvement in model fit. In our case, the assumptions on error seem to 

hold, however, we commented on cases when the assumption of independence on error did not 

hold. In such an occurrence, modeling corn yield using spatial, temporal, and spatiotemporal 

adjustments on the covariance of residuals was suggested. In conclusion, our analysis indicated 

the importance of space and time components of data sets because they can often adjust (make 

up) for those underlying variables and factor effects that are not measured or not well 

understood.  
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Chapter IV 

Multivariate Time Series Analysis of Corn Production in the USA  

ABSTRACT 

A multivariate time series analysis presents an opportunity to analyze the characteristics of 

variables in time, space, and in relation to other variables. Our objectives were to examine the 

temporal and spatial characteristics of corn harvest area, price, yield and total production in the 

US and to build an optimal model for early forecasting using the temporal and spatial 

characteristics of the data. The annual corn yield, harvest area, and price survey data available in 

USDA National Statistics Service database collected for the years 1900-2011 was used for the 

study. Multivariate time series plots, temporal auto-and cross correlation, spatial autocorrelation 

analysis were completed. Based on the analysis, models were developed and compared. Results 

suggested that corn harvested area, price, yield, and total production trends in the US varied for 

the number of years and states considered. All of these variables demonstrated a significant 

autocorrelation with their value at time t and their value at t-1. A significant cross correlation 

was also found between price, area, and total production. Base on this auto-and cross correlation 

analysis result, a vector autoregressive, VAR(1), model was developed for area, price and 

production. This model proved better in model fit and forecasting qualities than an ad-hoc model. 

A significant spatial dependence was found for these variables by Moran’s I spatial 

autocorrelation and semivariogram analysis. This spatial dependence information was then used 

to develop a state based yield forecasting model. The VAR model was capable of using past (t-1) 

yield values of the state and its neighbors to predict yield at time t. This study demonstrates how 

data rich in time and space can be used for modeling and early forecasting.  
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INTRODUCTION 

Early crop production forecasting help producers, consumers, researchers, policy makers, and 

grain marketing agencies in decision making. A timely and accurate crop production forecast 

help these parties make better decision on crop selection, soil and crop management, marketing, 

storage, transport, and assessing risk associated with these activities (Hammer et al., 2001; 

Kantanatha, 2010; Potgieter et al. 2005; Stone and Meinke, 2005; Rasmussen et al., 1998  ).   

 

Crop production estimates could be pre-harvest estimates that can be forecasted as weather and 

plant condition data becomes available (as the growing season unfolds) or they can be made even 

before planting by surveys and other methods. United States Department of Agriculture National 

Agricultural Statistics Service (USDA NASS), for example, forecasts crop yield based on 

surveys and crop conditions on a monthly basis (USDA, 2006). Many available crop forecasting 

methods are dependent on seasonal weather information (Dudley and Hearn, 1993; Hammer et 

al., 1996; Meinke and Hammer, 1997; Singels and Potgieter, 1997). These seasonal weather 

dependant forecasting methods are usually relatively accurate but their contribution in terms of 

making better crop choice and management decision is, obviously, limited. For a better decision 

making at all stages of crop production process, i.e., starting from selecting a crop for the season, 

early forecasting methods independent of actual seasonal information are crucial. However, 

finding a reliable method for early crop production estimate is a challenge.  

 

A chronological sequence of observations on a particular variable results in time series data 

(Chatfield, 2000). Time series data collected for a reasonably long period of time may reflect an 

internal structure that contains information on how the variable relates to its past 
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(autocorrelation) or history of other variables (factors) that have an influence (cross correlation). 

For example, a corn yield data set that is collected for over a hundred years might reflect 

information on both the relationship between yield at time (t) and its past (t-k) and information 

on yield potential of corn, change of yield of corn due to changes over factors like year to year 

weather variation, genetics (hybrid or variety), nutrient rates and application methods, and 

management methods that varied over this time period. Therefore, a time series analysis presents 

a potential to early forecasting (Boken, 2000; Chatfield, 2000; Kumar et al., 2010). 

 

Corn ranks as the number one crop in both area of production and in quantities produced in the 

U.S. (Elbehri and Paarlberg, 2003; O’Brien, 2010). Corn has an innumerable uses in food, feed, 

alcohol, and biofuel industries. A time series analysis of corn production and early forecasting, 

therefore, presents a great opportunity for better decision for corn producers, consumers, 

researchers, policy makers, and grain marketing agencies in the US.  

 

The main objective of this research was to understand the temporal and spatial characteristics of 

corn production area, price of corn, corn yield and total corn production in the U.S. and develop 

a model to forecast these variables as early as possible. We hypothesized that models developed 

based on multivariate time series analysis of corn from historic data will result in a more 

effective prediction of the future than ad-hoc approach, which is assuming next year will be 

almost same as this year.  

 

Here we have presented a general exploratory analysis of corn harvest area, yield, and price in 

the USA from 1900-2011. A temporal analysis of these variables, i.e., trend analysis, auto-and 
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cross correlation among area, yield, and price, followed the exploratory analysis. A temporal 

model was developed to predict area, price, and expected total production a year ahead for the 

USA. The model was then used to predict observed values, which were not included at model 

development step, and the prediction was compared with the ad-hoc approach.  

 

As a second approach the spatial characteristics of area, yield, and price was analyzed. The intent 

of this analysis was to show how information from spatial analysis can be integrated into a 

multivariate time series approach to modeling and early prediction. A spatial autocorrelation 

analysis was conducted for the yield and how this information can be used in modeling and 

prediction at state level was elaborated on using Kansas as an example. We have presented the 

detail analysis methodology first, then results, and a conclusion at the end. 
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DATA ASSEBLY AND ANALYTICAL STEPS 

The annual yield, harvested area, and price of corn reported by USDA for 41 states (Fig. 1) from 

1900 to 2011 was used to explore time and space dependence of corn yield in the USA and to 

eventually develop models for forecasting (USDA, 2011).  

 Figure 1. Map of the USA with points indicating the 41 states that corn data for the years 1900-2011 was collected. 

An exploratory analysis was conducted by plotting corn yield, harvested area, and price of the 41 

states and 112 years, 1900-2011, data in a multivariate time series plot using Mvtsplot (Peng 

2008) function in R version 2.15.0 (R Development Core Team, 2012). The multivariate time 

series plot is an image plot of time series matrix. The value of each time series data is divided 

into three categories as “low”, “medium”, and “high”. In the plot, these categories are colored 

purple, grey, and green, respectively. These categories are based on quantiles of the time series 

value. In our case, the whole data was divided into tertiles with about equal number of values in 

each tertile so that values can be compared globally (within state or among states at any year). 

The average (for yield per hectar and price) and the total (for area and total yield) values of the 

variables are graphed under each color plot to illustrate trends over time. 

¯
1:82,435,086 
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The changes (trend) in yield, harvest area, and price of corn over time and space were discussed 

based on the colored plot and graph. The spatial and temporal dependence of each of these 

variables (corn yield, area, and price) and relationship among them were further studied in 

ArcGIS 10 (ESRI, 2011), R version 2.15.0, and SAS software as indicated below.  

 

Temporal Analysis for Modeling at National level 

To prepare the data from the 41 states for temporal analysis, the annual average yield (Mg ha-1), 

total harvested area (ha), total corn production (Mg), and average price of corn ($) were 

calculated for the USA using equations (1) to (4), respectively. A time series graph of these 

variables (Yt, At, TYt and Pt) in the USA were then plotted and discussed.   
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Where Yt, At, TYt and Pt are average yield (Mg ha-1), total area (ha), total yield (Mg), and average price at time t ($); 
nt is number of states that report these variables; Yx,t, Ax,t, and Px,t are yield, area, and price of corn at state x and 
time t, respectively. 

Following the discussion on the time series plots, an autocorrelation function (ACF) was 

calculated and plotted for average yield (Mg ha-1) and annual yield growth of corn (5) for up to 

40 year lags. The autocorrelation function shows the relationship between values of a variable at 

time t with its value at different time lag.  The annual yield growth is the difference between 

yield at time t and yield at time lag 1 (t-1). Calculating annual yield growth was essential to 

detrend (remove trend) from annual yield and make it a stationary process.  
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Rs,t = autocorrelation between value of yield (Mg ha-1) at time s and t  ; Xs and Xt are yield measured at time s and 
time t ; µs and µt are mean yields for time s and t, respectively ; σs and σt are standard deviation for yield at time s 
and time t 
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A cross correlation analysis among the variables harvested area, price, and total corn yield were 

conducted and plotted for up to 40 years lag (6). Cross correlation analysis describes the 

relationship between a variables at time t with value of another variable at different time lags.   
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Rxy(s,t)= cross correlation between value of X and Y variables (total yield, area, price) at time s and t, respectively; Xs 

is the value of X variable measured at time s ; Yt is the value of Y variable measured at time t ; µX is means for the X 
variable at time s; µYt is means for the Y variable at time t; σXs and σYt are standard deviation for variable X and Y 
variables at tim s and time t, respectively. 

 
Based on the information on autocorrelation and cross correlations between these variables, 

obtained from the analysis described above, outcomes of three variables (harvested area, price, 

and total production) at a time t were modeled using vector autoregressive models. A vector 

autoregressive model (VAR) is multivariate time series model that utilizes information from 

variable’s own history and history of related variables to predict outcomes in the future (Pfaff, 

2008). Since, yield (Mg ha-1) is not a function of area and price (it is function of genetics, 

weather, inputs, and management) we did not attempt to model and predict yield using 

information from these variables.  
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At, Pt, and TYt are area, price, and total yield at time t;  Фijk are coefficients for the ith time lag, jth predictor (area, 
price, total yield), kth variable; Ck is constant for kth variable; Tk is a trend for kth variable; ek,t is residual for the kth 
variable at time t 

 
Since our analysis on the auto and cross correlation between the three variables is different in the 

years between 1900 and1960 and from 1960-2011, two models were developed at this step. The 

first VAR model was developed using data from 1900-1999. The data from 2000 to 2011 was 

left for model testing. A second autoregressive model was developed using information from 

years 1960-1999. The appropriate time lag that should be included in the models using either of 
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the data sets (1900-1999 or 1960-1999) was determined automatically in R  based on the four 

model selection criterions, AIC, HQ, SC, FPE. Using the selected time lag, appropriate models 

were developed. Consequently, the value of each of the variables for the years 2001-2011 was 

predicted using the models developed. The VAR models were then evaluated based on their 

prediction of these observed values, i.e., there (R2).  

 

Spatial Analysis for Modeling at a State Level 

 

To prepare the data for spatial analysis, the data set (41 states by 112 years) was divided into 

three periods, i.e., period 1 (1900-1939), period 2 (1940-1979), and period 3 (1980-2011). 

Average total corn yield, average yield per area, average harvested area, and average price for 

each state at these periods were calculated with equations (8)-(11).The reason for dividing the 

data set into three periods, rather than averaging the entire period for each state, was chosen 

because we had information that the variables changed over time and the average of all the 112 

years may not have the entire story.  
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Where Yx,p, Ax,p, TYx,p and Px,p are average yield, total area, total yield, and average price at state s and period p; ny 
is number of years at a period; Yx,y, Ax,y, TYx,y and Px,y are yield, area, total yield, and price of corn at state x and 
year y, respectively. 

 

After calculating the average yield, total area, total yield, and average price at each state for the 

three periods, using equations (8) to (11), maps of the USA states with value of this variable by 

period was produced in ArcMap. In the map the value of the variables at a state was categorized 

into five groups, rather than the exact value for each state, to help visualize spatial characteristics 

(clustering or dispersion).  For a formal confirmation of a spatial characteristics of these 
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variables, the existence of spatial autocorrelation was analyzed using Moran’s I statistics in 

ArcGIS 10. The equation that was used in ArcGIS to calculate Moran’s I statistics for these 

variables is given in equation (13).   
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I = Moran’s I index; n= total number of states = 41; wi,j = is the spatial weight between state i, and j based on their 
distance from one another (inverse distance in this case); ZI = is score of the test statistics; E[I] = is the expected 

value of Moran’s index = 025.0
141
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n
; V[I] = is the variance of index = E[I2] – E[I]2 

 
Based on spatial correlation study above and semivariogram analysis, we demonstrated that we 

can use past information from the state and its neighborhood to model and forecast yield. We 

used Kansas data as an example. We defined neighbors as those states that share borders. For 

state of Kansas, for example, Colorado, Nebraska, Missouri, and Oklahoma, fall into this 

definition of neighbor.  

 
A VAR model was developed for yield.  The appropriate time lag that should be included in the 

models was determined automatically in R, based on the four model selection criterions, AIC, 

HQ, SC, FPE. Based on the selected time lags, the appropriate models were developed. The 

VAR model were then evaluated and compared with ad-hoc model.  
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RESULTS AND DISCUSSION 

Corn Yield, Harvested Area, and Price in the USA from 1900 to 2010 

The annual yield (Mg ha-1) of corn for 41 states in the years 1900 to 2011 is depicted in Figure 2. 

Yield was variable among states and there was an obvious increasing trend for yield from 1900 

through 2011. A significant yield increase across states seems to have started in the early 1940’s 

but most of states realized it in 1960’s.  

 

In the first four decades, corn yield (Mg ha-1) was relatively higher in states of Iowa, Ohio, 

Illinois, Indiana, Pennsylvania, and New York. In the last four decades, however, corn yield was 

the highest in west and south west states (Washington, Oregon, California, New Mexico and 

Arizona). The main reason for higher yield (Mg ha-1) in western states could be relatively high 

percentage of irrigated corn area compared to dryland corn in the states than is the case in the 

Corn Belt region. 

 

The harvested area of corn in the 41 states for the years 1900 to 2000 is depicted in Figure 3. As 

can be seen from the graph, area allocated to corn varied by state and by year. Over all the 

harvested area of corn was high in the early 1900’s for many states and in total for the U.S. Corn 

harvested area in the U.S. seems to have declined between years 1919-1960, was variable in the 

years between 1960 and 1980’s, and it is on the increase from 1980’s onwards. Area allocated 

for corn seems to have highly varied from state to state over the 112 years considered. 
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Figure 2. Multivariate time series plot of corn yield per hectare for 41 states in the USA from 1900 to 2011. The row data is grouped into three tertiles, i.e., 
purple representing low, gray representing medium, and green representing relatively high yields.   
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Figure 3. Multivariate time series plot of corn harvested area for 41 states in the USA from 1900 to 2011. The row data is grouped into three tertiles, i.e., purple 
representing low, gray representing medium, and green representing relatively high harvesting areas.   
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The total corn production (product of yield (Mg ha-1) and area (ha)) for the 41 states in the USA 

is depicted in figure 4. Similar to corn harvested area and yield per hectare, total corn production 

in the USA varied in time and space. Total production for the years 1900 to 1940 was about 50 

million tons per year. However, it significantly increased from 1940 onwards and currently it is 

about 300 million tons per year. In the first few decades (1900-1930), states like West Virginia, 

Virginia, Tennessee, Oklahoma, New Jersey, and Kansas contributes the highest corn 

production. In recent decades, total corn production is high in most of the 41 states considered. 

 
Figure 4. Multivariate time series plot of total corn production for 41 states in the USA from 1900 to 2011. The row 
data is grouped into three tertiles, i.e., purple representing low, gray representing medium, and green representing 
relatively high total production.  
 

The price of corn for the 41 states for the years 1900 to 2000 is depicted in Figure 6. For most of 

states, price data is only available from 1907. For 6 out of the 41 sates in our study, price data 
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was only available from 1949. As can be seen from the graph, price of corn varied very little 

between states. However, it varied significantly over time. The recent decade seem to have the 

record high price for corn (at about $0.25 kg-1 of corn).  

 
Figure 5. Multivariate time series plot of price of corn for 41 states in the USA from 1900 to 2011. The row data is 
grouped into three tertiles, i.e., purple representing low, gray representing medium, and green representing relatively 
high prices.  

 

 

Autocorrelation in Yield and Annual Yield Growth  

The average corn yield per hectare and its autocorrelation and partial autocorrelation function are 

depicted in figure 6. The autocorrelation in yield slowly decays from the first time lag to the 28 

years time lag and becomes almost zero afterwards. This type of autocorrelation function (ACF) 
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indicates that there is a trend which renders the non-stationarity of the variable yield over time. 

That also means yield was not a random process and it looked like a strong correlation between 

yields in adjacent and near adjacent years. However, the partial correlation proves the significant 

autocorrelation that we see in the ACF plot for time lag 2 and above is propagation from 

autocorrelation at time lag 1, which was the only significant time lag in the PACF plot.  

      

 
Figure 6. Average corn yield in the USA (1900-2011) and its autocorrelation and partial autocorrelation functions 
for up to 40 years lag. 

 

To make the yield data stationary, detrending the data (removing trend) was necessary. The trend 

was removed by taking a first difference, i.e., difference between yield at time t and yield at t-1.  

This differencing resulted in time series data of annual yield growth.  The annual yield growth, 

its ACF, and  PACF are depicted in figure 7. The ACF of annual yield growth was not a slow 

decay but rather a sharp “cut off” after time lag 1 indicates that there is no trend in this variable. 
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A significant spike at time lag 1 indicates a negative and strong significant correlation between 

annual yield growth at time t and annual yield growth at t-1.  

 

Figure 7. Average annual corn yield growth in the USA (1900-2011), its autocorrelation and partial autocorrelation 
functions for up to 40 years lag. 

 
Corn yield (Mg ha-1) is a function of genetics, weather, and other management factors (Assefa et 

al., 2012; Cardwell, 1982; Duvick, 2005). There is no reason to anticipate a cause and effect type 

of relationship between corn harvested area, price of corn, and/or total corn production with yield 

per hectare. Therefore, we did not perform a cross correlation between yield and the other three 

variables.  
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Auto- and Cross Correlation within and among Harvested Area, Price, and Total Corn 

Yield  

Figure 8 depicted the trend of harvested area, price, and total corn production in the USA. We 

can deduce that the trend in these variables before and after 1960s was different. Corn harvested 

area seems to have been declining from early 1920s to the 1960s and has been increasing from 

the 1960s onward. Corn price before the 1960s was relatively cheaper and showed little variation 

over time. Starting from around the end of the 1960s, however, corn price have slowly 

increasing. Similarly, total corn production in the USA did not show significant change between 

the years 1900 to1960s. Since the 1960s, however, total corn production is on the rise. For this 

reason, the auto- and cross correlations within and between these variables was studied in two 

categories, i.e., for the period 1900-2011 and for the time period 1960-2011. 

 

Figure 8. Total harvested area, annual average price, and total corn production in the USA from 1900 through 2011. 
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Figure 9. Auto- and partial correlation within annual growth (detrended) values of harvested area, annual average 
price, and total corn yield in the USA. 
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The autocorrelation indicated a slow decay due to trends that made the variables a non-

stationary process. Therefore, the variables were detrended to make them stationary. Auto 

and partial autocorrelations for detrended corn harvested area; price and total corn 

production is depicted in figure 9. Similar results are obtained when the entire data, 1900-

2011, or  part of data,1960-2011, is used for the auto and partial correlation analysis.  

 

The cross correlation between the detrended harvested area, price, and total corn yield is 

presented in figure 10. For the two data sets (1900-2011 and 1960-2011), the cross 

correlation results were slightly different for the relationship between price with total 

yield, otherwise, they were same. In both data sets, a negative significant cross 

correlation between price at time t with total yield and harvested area at time t was 

evidenced. Which means price was high when harvest area or total production is low and 

price was low when harvest area or total production were high. This is simple demand 

and supply relationship. Annual price increase at time t significantly increased annual 

harvest area increase at t+1 but did not have a significant impact for remaining time 

periods. This is an indicator that price motivates people to produce more. 

 

Annual harvest area increase at time t, obviously, positively impacted annual total yield 

at time t but negatively impacted total yield change at t+1 and vice versa.   In the 1900-

2011 data, annual total yield increase seem to positively related to price at time t+3. 

However, in the 1960-2011 data, no significant relationship between total yield increase 

at time t and price at t+h (h≠0) was observed. On the other hand, price increase at time t 

positively related to total yield at t+1 (Fig 10). 
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Figure 10. cross correlation between detrended values of harvested area, annual average price, and total 
corn yield in the USA using data from 1900-2011 (left) and data from 1960-2011 (right). In the positive 
side of this graphs, the variable whose name comes second leads (comes first in time) before the variable 
which’s name comes first. For example on the top, we have area and price. The positive side of that graph 
shows the correlation between price at time t and area at t+1, t+2…. On the negative side the variable 
whose name appears first in the title leads in time.   
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Temporal Modeling of Price, Total Area, and Total Corn Yield in the USA 

The preliminary analysis described above indicated corn production variables might best 

be modeled in an autoregressive process. The dependence between harvested area, price, 

and total production suggest that we could utilize information from the other two 

variables and own history when modeling one. For these reasons, a vector autoregressive 

(VAR) model was selected because it has the potential to utilize information from 

variables own history and history of related variables. 

 

Initially two competitive VAR models were developed, using the whole data set (1900-

1999) and with data set from 1960-1999. The reason why the whole data set (1900-1999) 

and the data set 1960-1999 was used to develop models was, as it is presented in previous 

section, the relationships between harvested area, price, and total yield, differ before and 

after 1960’s.  

 

When the data from 1900-1999 was used and the number of lags that should be included 

in the VAR model were searched (with maximum lag of 10),  a VAR model with three 

years lag was found better in terms of its goodness of fit values, i.e., AIC, HQ, and FPE. 

On the other hand, when the data from 1960-1999 is used and best time lag was searched, 

a one year lag VAR model comes out to be better in terms of the entire model selection 

criterion used, i.e., AIC, HQ, SC, and FPE. Therefore, a VAR model with three years lag 

and a VAR model with one year lag were developed and compared. Figure 11 depicts the 

observed and fitted values of area, price, and production from these two models.  Figure 

12 depicts the observed and forecasted values of area, price, and total production for the 

years 2000-2011 based on same VAR models. In table 1 we presented a comparison of 
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these two models and additional ad-hoc model that assumes this years area, price, and 

production is almost same as next year. As can be seen in the table, the VAR model with 

one year lag predicts better than the two.  
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Figure 11. Observed and fitted values of area, price, and production using VAR model with 3 lag time (top) 
and VAR model with 1 lag time (bottom). 
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Figure 12. Observed and forcasted area, price, and production using VAR model with 3 lag time (top) and 
VAR model with 1 lag time (bottom). 
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Table 1. A comparison of the VAR models with three lag, VAR model with one lag, and 
Ad-Hoc model with R2, AIC, BIC, and Mean Square Error of Prediction 

VAR model with three 
lag years 

VAR model with one 
lag year 

Ad-hoc model with 
years value predicted  
same as previous year 

 
Compariso
n Criterion 

Are
a 

Price T.Prod
. 

Are
a 

Price T.Prod
. 

Are
a 

Price T.Prod
. 

R2 0.52 0.79 0.60 0.54 0.82 0.60 0.25 0.80 0.41 
AIC 51.2 -49.5 110.9 50.7 -51.9 110.9 56.6 -50.5 115.8 
BIC 52.7 -48.1 112.4 52.1 -50.4 112.4 58.0 -49.1 117.3 
MSEP 3.0 0.000

6 
440.3 2.9 0.000

6 

442.1 4.8 0.000
6 

661.4 

 

The coefficients for predicting the average area, price, and total production at time t 

based on the selected VAR model with one year lag is presented in (15) below.   
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To predict area at time t, for example, this model suggest multiplying the previous years 

area by 0.52, previous years price by 42.7, multiplying the total production by -0.05, and 

adding a constant 12.77, and trend 0.25 values. From this we can infer a positive impact 

of price on producers’ motivation to produce more. On the other hand, we can infer a 

smaller but negative impact of previous years area of production on price at time t.   

 

 

 

Spatial dependence (Spatial Autocorrelation) 

 

The spatial characteristics of harvest area of corn, corn yield per hectare, total corn 

production and corn price in the USA can also be used as a modeling tool. In order to 

demonstrate that here we started by analyzing whether area, yield, total production, and 
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price have a spatial dependence. Moran’s I analysis was conducted and a significant 

spatial clustering was proved for all of these variables (table 2). A significant clustering 

of all of this variables implies that harvested area, yield per hectare, total production, and 

price of corn tend to be similar in places that are closer than distant.    

 

Table 2. Moran’s I analysis result for test for randomness of corn production variables  

Moran’s I 
Summary 

Harvested area Yield per acre Total corn yield Price 

Moran's Index: 0.43 0.42 0.41 0.36 
Expected Index: -0.03 -0.03 -0.03 -0.03 
Variance: 0.01 0.01 0.01 0.01 
z-score: 5.98 5.41 5.71 4.71 
p-value: <0.001 <0.001 <0.001 <0.001 

 
 

The average (average of 1900-1939, 1940-1979, and 1980-2011) spatial characteristics of 

yield, harvested area, and price are depicted in figure 13. Corn area was relatively high in 

the Corn Belt region (Illinois, Iowa, Indiana, Missouri, Kansas, and Nebraska) almost in 

all the time periods studied. West and South West regions had lowest corn harvested area.  

 

Average yield per hectare for the 1900-1939 and 1940-1979 periods was higher and 

equivalent in the Corn Belt region and West Coast. In the recent years, 1980-2011, the 

West Coast and South West regions seem to have the highest yield per hectare followed 

by the Corn Belt region.  

 

Total corn production is by far higher in the Corn Belt region (particularly in Iowa and 

Indiana) than any place in the USA. Relative price of corn follows almost the reverse of 
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total production. Corn prices are higher in places where total production is lower and vice 

versa.  

 
Figure 13. The spatial characteristics of corn harvest area, corn yield per hectare, total corn production, and 
price of corn in the USA at different periods from 1900-2011.  

 

Time series modeling using spatial information 
 

The analysis above and particularly the semivariogram in figure 14 below prove a spatial 

association in corn yield across the USA. Since states that are closer to each other tend to 

have a similar yield, we can use a states own yield history plus the history of yield in 
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neighboring state for modeling and forecasting yield. Here, we used a multivariate time 

series approach in modeling and forecasting yield for state of Kansas using the time 

series corn yield data information for state and its neighboring states. 

 

Figure 14. A semivariogram cloud and yield map of average corn yield in the US for the years 2000-2011.  

 
 

Kansas shares border in the east with Colorado, in west with Missouri, in north with 

Nebraska, and in the south with Oklahoma. Based on the semivariogram analysis above, 

it is a safe assumption to say corn yield in Kansas is much more related to these 

neighbors. Therefore, here we hypothesized a yield model that can utilize information 

from Kansas own yield history and history of yield across neighboring state might do 

well than an ahoc yield model. To test this hypothesis we assembled yield information 

from Kansas and neigboring states for the years 1900-2000 (Fig. 15). Then the time lag 

that had the highest correlation to predict yield at time t was auto-searched to model yield 

using VAR model. The yield data for Kansas and its neighboring states for the years 

1960-2011 were used to develop the model.  
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Figure 15. Time series plots of corn yield in states of Colorado, Kansas, Missouri, Nebraska, and Oklahoma 
for the years 1900-2011.   

 
When the yield data for the five states for the years 1960-2011 were assembled and the 

time lag that best predicts time t is searched, a model with time lag 1 was selected with 

all of model selection criterions employed. This selected model and the ad-hoc model that 

assumes time t is almost same as time t-1 were compared. In Figure 16 we presented the 

comparison of the VAR model and the ad-hoc model in terms of some model evaluation 

graphs. As can be seen in the graphs, both models did well but the VAR(1) model was 

better in terms of explaining the variability and meeting model assumptions. 
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Figure 16. Observed and fitted model values (on the left) and residual verses fitted values (on the right) for 
VAR(1) model (on top) and ad-hoc model(on bottom).   
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The VAR(1) model in (16) is valid for Kansas only because the neighbors are selected 

because they share border with state of Kansas. Based on this model, yield was forecasted 

for Kansas for the years 2012-2021. The forecasted yield and the 95% confidence 

intervals are presented in figure 17.  

 
 

 
 
Figure 17. Yield trend from 1960-2011 for Kansas and forecasted yield and 95% confidence band for 2012 
to 2021based on VAR(1) model presented in equation 16.   

 

 

 

SUMMARY AND CONCLUSION 

Here we started by conducting an exploratory multivariate time series analysis of corn in 

the U.S. Our analysis found that corn yield, total corn production, corn area, and price 

trends varied in time and in space in the U.S. for the years from 1900-2011. Reasons such 

introduction of hybrid technology, changes in management, irrigation, subsidies, rising in 

soybean crop acreage, weather, emerging new uses of crop and other similar reasons are 
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indicated in the literature for variation in corn trends (Duvick 2005; Runge, 2002; 

Kucharik and Ramankuty, 2005).  

 

Second we performed an autocorrelations analysis within yield, total production, area, 

and price of corn. Almost all of these variables demonstrated a significant autocorrelation 

at time lag 1, i.e., the value of these variables is highly correlated with their value at time 

t-1. Then we performed and proved that there is a cross correlation between price, area, 

and total production. That means the value of each of these variables is not only highly 

correlated with their own past but also the value of the other two variables in previous 

years.  

 

Third we developed a vector autoregressive model for area, price, and total production. 

This model predicts the value of area, price, and total production at time t using not only 

the information from each of the variables past but also the past information from the 

other two variables. We developed two of these models and proved that VAR(1) model 

performed much better than the ad-hoc model.   

 

Fourth we proved spatial dependence of corn yield in addition to the time dependence 

that we have proved above. Since, yields of states that are closer in distance tend to be 

similar; we demonstrated how we can use this information in early modeling and 

forecasting yield. We took Kansas as an example and developed a model to predict 

Kansas yield at time t using yield information from its past and past yield information of 
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neighboring states. Then we compared this model and showed a better model fit than the 

ad-hoc approach.  

 

In conclusion, this analysis demonstrates how data that is rich in its temporal and spatial 

dimension can be used in modeling. Multivariate time series approach presents the 

capability to study how variables behave in time, in space, and in relation to other 

variables. The models that we have developed herein are examples of how this capability 

can be translate into systematic use of data.  
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Chapter V 

 

A GENERAL SUMMARY AND CONCLUSION 

 
In this study we presented analysis of a time series and spatial data collected across 

different counties in Kansas and a survey data set collected by USDA across the US. The 

objectives of the study were to investigate crop yield trends in space and time, quantify 

the variability in yield explained by genetics and space-time (environment) factors, and 

study how spatio-temporal information could be incorporated and also utilized in 

modeling and forecasting yield. 

 

In our trend analysis (Chapter II), we performed a simple regression analysis of data over 

the time period and compared the means of the data at different time and space intervals. 

From this analysis we found spatial and temporal trends in corn yield in Kansas. 

Spatially, average dryland yields in Kansas decreases significantly from east to west and 

slightly from north to south. Temporally, corn yields have increased at an average rate of 

94 kg ha-1 yr-1 in dryland and 127 kg ha-1 yr-1 in irrigated trials. The rate of corn yield 

changes over time, however, was not regular for the seven decades considered. Both 

irrigated and dryland yields increased significantly at least every two decades until the 

last three, during which dryland yields stagnated.  

 

Then we modeled yield using genetic and environmental information (Chapter III).  In 

the initial step of our modeling, we checked distribution of data and declared yield can be 

assumed approximately normally distributed. We partition the variability and found from 

about 77 to 93% of the variability in yield was due to environmental factors. With the 
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assumption of spatial and temporal independence, varieties of yield functions were 

developed using traditional regression and smoothing techniques. These models are then 

improved by incorporating time and space information as an explanatory variable. 

Consequently, spatial and temporal dependence of yield was proved using spatially and 

temporally rich data set. In this case a method of generalized least square estimation with 

correlated error variance was suggested as oppose to ordinary least square regression.  

 

We conducted a multivariate time series analysis on corn production in the US (Chapter 

IV). Multivariate time series plots, temporal auto-and cross correlation, spatial 

autocorrelation analysis were carried out. Based on the analysis, models were developed 

and compared. Corn area, price, yield, and total production demonstrated a significant 

autocorrelation with their value at time t and their value at t-1, proving they are best 

modeled as an autoregressive process. A significant cross correlation was also found 

between price, area, and total production. Base on this auto-and cross correlation analysis 

result, a vector autoregressive, VAR(1), model was developed proved better in model fit 

and forecasting qualities than an ad-hoc model which assumes next year is same as this 

year. A significant spatial dependence was found for these variables by Moran’s I spatial 

autocorrelation and semivariogram analysis. This spatial dependence information was 

then used to develop a state based yield forecasting model. The VAR model was capable 

of using past (t-1) yield values of the state and its neighbors to predict yield at time t. 

This study demonstrates how data rich in time and space can be used for modeling and 

early forecasting. 
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Over all, we demonstrated how time and space information are useful (i) in analyzing 

trends and possible reasons for trend in data set, (ii) in adjusting a model for unknown or 

unmeasured variables, and (iii) in developing models that are purely based on temporal 

and spatial history of a variable. Assuming our results emphasized enough on the 

importance of time and space in a research, we want to comment on how time and space 

(location) should be treated in a model. This is especially important for researchers and 

consultants who want to have a logical way on how to determine the time and space 

information as random or fixed effect. 

 

From many aspects, the information contained within space and time can be considered 

equivalent because time and space have similar characteristics, i.e., in both time and 

space; climate, technology, management, and resources vary. However, space and time 

are not same in absolute sense, i.e., the extent in which climate, technology, management, 

and resource variation in time and space is not likely same. The way we select space and 

time and the way we treat them in the analysis, therefore, might be different. 

 

Space is static and given, time is dynamic and irreversible. Since space is given and it is 

in our hand, we can carefully choose it depending on what we wanted to conclude at the 

end of our experiment. That means, if we are going to model yield and conclude yield 

relationship with our independent variables for a targeted space (location), then we can 

do so by conducting our experiment in that specific location. However, if our intention is 

to make conclusion on similar locations after experimenting in representative locations, 

then the selection of this representative locations should be unbiased (random). 
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Therefore, it is our selection of the space at the beginning of the experiment that 

determines whether our space information should be treated random or fixed effect. 

Time, however, is not in our hand and it is usually impossible to randomly select time of 

our experiment. The reason for randomization is to avoid bias and time is out of this bias 

because it is unknown. Therefore, time could be considered a random effect in our model 

unless one justifies that the environmental conditions that occurred in time of his 

experiment are extreme and want to infer the result of conclusion for times like that. 

 

Time and space information in a data set contain both known and unknown or measured 

and unmeasured factors that might have an influence on a response variable. If the 

numbers of factors that influence a response factor are few and the relationship between 

them is well known, time and space could possibly be replaced by measuring all those 

factors. This is possible for research in controlled environment or industrial researches. 

However, for response variables like yield that is proved to be influenced by number of 

factors and with the present knowledge that how these factors combined to have an effect 

is unknown, space and time information are irreplaceably important. For the above 

reason, time and space selection at the beginning of a study and utilization of time and 

space information at the analysis stage of a study that wishes to model yield should be 

carefully done.  

 
 

 
 
 

 


