Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs?
Date
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Description
Citation: Brown, S. P., Olson, B., & Jumpponen, A. (2015). Fungi and algae co-occur in snow: an issue of shared habitat or algal facilitation of heterotrophs? Arctic Antarctic and Alpine Research, 47(4), 729-749. doi:10.1657/aaar0014-071
Late season alpine snows are often colonized by psychrophilic snow algae that may provide a source of nutrients for microbes. Such late season snows are a harsh environment, but support a diverse and complex fungal community. We used culture independent methods (Illumina MiSeq) to test if the presence of snow algae influences fungal communities. We compared algae-colonized snows to adjacent (3 m distant) noncolonized snows in a paired experimental design. Our data indicate that several fungi are locally enriched in algae colonized snows. Although many such fungi were basidiomycetous yeasts, our analyses identified a large number of snow-borne members of phylum Chytridiomycota. While the ecology and function of these Chytridiomycetes remain unclear, we hypothesize that their enrichment in the algal patches suggests that they depend on algae for nutrition. We propose that these chytrids are important components in snow ecosystems, highlighting the underestimation of their diversity and importance. Taken together, our data strongly indicate that fungal communities are heterogeneous in snow even among adjacent samples. Further, fungal and algal communities may be influenced by similar environmental drivers resulting in their co-occurrence in snow.
Late season alpine snows are often colonized by psychrophilic snow algae that may provide a source of nutrients for microbes. Such late season snows are a harsh environment, but support a diverse and complex fungal community. We used culture independent methods (Illumina MiSeq) to test if the presence of snow algae influences fungal communities. We compared algae-colonized snows to adjacent (3 m distant) noncolonized snows in a paired experimental design. Our data indicate that several fungi are locally enriched in algae colonized snows. Although many such fungi were basidiomycetous yeasts, our analyses identified a large number of snow-borne members of phylum Chytridiomycota. While the ecology and function of these Chytridiomycetes remain unclear, we hypothesize that their enrichment in the algal patches suggests that they depend on algae for nutrition. We propose that these chytrids are important components in snow ecosystems, highlighting the underestimation of their diversity and importance. Taken together, our data strongly indicate that fungal communities are heterogeneous in snow even among adjacent samples. Further, fungal and algal communities may be influenced by similar environmental drivers resulting in their co-occurrence in snow.
Keywords
South-Pole Snow, Chlamydomonas-Nivalis, Arctic Snow, Bacterial-Activity, Communities, Environment