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Abstract

Late season alpine snows are often colonized by psychrophilic snow algae that may pro-
vide a source of nutrients for microbes. Such late season snows are a harsh environment,
but support a diverse and complex fungal community. We used culture independent meth-
ods (Illumina MiSeq) to test if the presence of snow algae influences fungal communities.
We compared algae-colonized snows to adjacent (3 m distant) noncolonized snows in a
paired experimental design. Our data indicate that several fungi are locally enriched in al-
gae colonized snows. Although many such fungi were basidiomycetous yeasts, our analy-
ses identified a large number of snow-borne members of phylum Chytridiomycota. While
the ecology and function of these Chytridiomycetes remain unclear, we hypothesize that
their enrichment in the algal patches suggests that they depend on algae for nutrition. We
propose that these chytrids are important components in snow ecosystems, highlighting
the underestimation of their diversity and importance. Taken together, our data strongly
indicate that fungal communities are heterogeneous in snow even among adjacent sam-
ples. Further, fungal and algal communities may be influenced by similar environmental

drivers resulting in their co-occurrence in snow.
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Introduction

Earth’s cryosphere is composed of solid water persisting for
more than one month (Fountain et al., 2012) and includes all snow,
permafrost, sea ice, freshwater ice, glaciers, and ice shelves. It
plays important roles in global climate (Walsh et al., 2005) and
terrestrial energy balance by influencing surface albedo (Prestrud,
2007). With the predicted increase in the mean global annual tem-
perature, the cryosphere is declining and becoming a more endan-
gered ecosystem (Derksen et al., 2012). The decrease in the annual
persistence of late season snow has exceeded climate model pro-
jections in the Northern Hemisphere (Derksen and Brown, 2012).
These changes likely impact local watershed dynamics as well as
global biogeochemical cycles (Fountain et al., 2012). In addition
to the consequences to local and global hydrological cycles, the
cryosphere decline sets constraints on the distribution and diversity
of organisms that depend on these unique habitats (Hoham and Du-
val, 2001). The transience of the late season snow coupled with its
changing volume highlights the importance of understanding the
endemic biodiversity residing in late season snow packs.

Snowpacks are a harsh environment characterized by low
temperatures and intense ultraviolet irradiation that may act as
mutagenic stressors. Yet, there is evidence for rich and diverse
metabolically active microbial life in snow (Carpenter et al., 2000;
Harding et al., 2011; Hell et al., 2013). These metabolically active
communities contrast the belief of some that snow is but a pas-
sive recipient of aerially dispersed propagules whose metabolism
is limited because of minimally available liquid water (Warren and
Hudson, 2003). Yet, microbial activity or at least the presence of
diverse microbial communities has been suggested for over a cen-
tury (Hersey, 1913). These dichotomous viewpoints emphasize our
present rudimentary understanding of microbial diversity in snow,
particularly so for eukaryotic microbes. Consequently, snow can
arguably be considered as a vast unexplored and undocumented
ecosystem for microbial diversity (Larose et al., 2013).
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Alpine and polar snows that persist through or linger late into
the growing season often house snow-borne algal communities,
frequently dominated by the red-pigmented algae Chlamydomonas
nivalis or Chloromonas nivalis, both of whose taxonomies remain
currently unresolved. These algae often produce colonies that are
visible to the naked eye as a result of their characteristic red color.
The red color of these algae is a result of the secondary carotenoid
astaxanthin (Miiller et al., 1998) and its fatty acid ester deriva-
tives (Gorton et al., 2001) produced in large quantities during their
diploid, zygotic stage that is also characterized by thickened cell
walls that are resistant to harsh environmental conditions includ-
ing repeated freezing temperatures (Hoham, 1980; Remias et al.,
2005, 2010). During the warm season in small meltwater pools,
the zygotes undergo meiosis, producing haploid offspring that are
green, are metabolically active, and multiply asexually. Late in the
season, when nitrogen is more limiting, these organisms develop
into flagellated sexual gametes that mate producing new zygotes
that can survive the next season’s cold temperatures and snow
(Miiller et al., 1998).

Although the red C. nivalis colonies may be visually domi-
nant, snow algal communities often consist of many species repre-
senting Chlorophyceae (Fujii et al., 2010; Remias et al., 2010). In
addition, snow colonized by algae houses a broad range of fungi
and bacteria that may be specifically adapted to grow in such envi-
ronments (Hodson et al., 2008; Naff et al., 2013). Some evidence
suggests syntrophic relationships between the snow algae and bac-
teria or fungi. In the most comprehensive microscopic examination
to date, Weiss (1983) described the ultrastructure of the snow alga
C. nivalis and repeatedly found encapsulated gram-negative bacte-
ria on the surface of the zygotic resting stage. Weiss (1983) posited
that the microscopic observations suggested syntrophy, as no simi-
lar bacteria were present in the adjacent snow without algal colo-
nization. Similar syntrophisms have been suggested for snow algae
and fungi (Kol, 1968; Hoham et al., 1993). In such syntrophic or
loose symbiotic relationships, algae-associated microorganisms
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may utilize dissolved organic carbon (DOC) excreted by the algae.
This is indirectly supported by recent studies of Chlamydomonas
reinhardtii, suggesting that algae excrete large amounts of carbon
(Kind et al., 2012). Algae, in turn, may benefit from the “shade”
provided by the microorganisms, thus buffering the algae against
the harsh environmental conditions (Light and Belcher, 1968; Ho-
ham and Duval, 2001; Remias et al., 2005). However, Kol (1968)
argued that some of these fungi might simply parasitize the algae
rather than form mutually beneficial associations.

To our knowledge, studies of snow-borne fungi and bacteria
are rare and limited primarily to select fungi such as “snow molds.”
Generally, these “snow molds™ are filamentous and thrive on or-
ganic substrates in the snow-soil interphase, but are not active in
the snow itself (Robinson, 2001; Matsumoto, 2009). Recently, Naff
et al. (2013) suggested that Chytridiomycota are abundant in snow
and significantly influence snow food-web dynamics. Additional
broad inquiries of snow-borne microbial communities indicate an
abundance of microbes in snow (Harding et al., 2011) and suggest
that these snow/ice-inhabiting microbes are physiologically adapt-
ed to psychrophilic environments (Gunde-Cimerman et al., 2003).
Our current understanding of the general ecology of fungi in snow
remains rudimentary and is based primarily on soils liberated by
thawing snow (de Garcia et al., 2007) or periglacial soils (Freeman
et al., 2009; Schmidt et al., 2012; Brown and Jumpponen, 2014).
Studies of fungal communities associated with snow algae are usu-
ally motivated by the great abundance of fungi observed in the
course of microscopic examination (Stein and Amundsen, 1967;
Kol, 1968; Hoham et al., 1993).

Here we present the first high-throughput investigation of
fungal communities associated with the snow algae by targeted
ITS2 Illumina MiSeq sequencing. The Internal Transcribed
Spacer (ITS) regions are the designated fungal barcode of life
(see Schoch et al., 2012). The ITS2 region in particular has been
more frequently utilized because its diminutive and largely con-
served length allows for sequencing the entire region even when
using more recent sequencing technologies that provide rela-
tively short reads. We utilized a community-filtering framework
(Diamond, 1975; Keddy, 1992) and explicitly test hypotheses
on co-occurrence of algae and snow fungi (see Jumpponen and
Egerton-Warburton, 2005). We compared paired adjacent sam-
ples with and without visible snow algae. We utilized this paired
sample design because both snow algae (Miiller et al., 1998) and
nutrient loads (Fahnestock et al., 2000) in snow are heterogene-
ous and potentially confound landscape level analyses. Thus,
any shifts in community-wide distributions should be detected
locally (in all or most of the paired samples). Paired sample de-
signs to interrogate community ecology are not new (Welling-
ton, 1982; Schooley et al., 2000), but are often under-utilized in
microbial community analyses (but see Taylor and Bruns, 1999;
Hartmann et al., 2014). In this study, we addressed the follow-
ing three questions: (1) do snow algae enrich the communities
with specific fungi; (2) do snow algae shift fungal community
composition; and, (3) will such shifts be consistent across larger
geographic scales?

Materials and Methods
SAMPLING SITES

We sampled late season snows at six paired locations in Sep-
tember 2011 and August 2012 in the Glacier Peak Wilderness
area, Wenatchee National Forest, Washington, U.S.A. (see Table
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1 for locations and dates). Samples from each of the locations
in Washington State were within 150 m of each other between
2011 and 2012. Additionally, in Colorado we sampled two paired
sampling locations within Niwot Ridge Long Term Ecological
Research Site (http://culter.colorado.edu/NWT) in August 2011
and in July 2012 at two paired sampling locations within nearby
Indian Peaks Wilderness area, Arapahoe and Roosevelt National
Forest. Colorado sites at Niwot Ridge LTER could not be sam-
pled in 2012 due to lack of snow in areas where 2011 samples
were collected. The sampling locations were still adjacent: the
maximum distance between the 2011 and 2012 Colorado sam-
pling locations was 5.7 km. We sampled all the accessible algae
colonized snows at each location, resulting in 16 paired samples
(32 total). Most snow colonized by algae was inaccessible and
could not be sampled (similar to Miiller et al., 1998). At each
sampling site, snows were collected only if the following condi-
tions were met: (1) there were no signs of foot traffic or other
anthropogenic disturbance; (2) there was an adjacent patch of
uncolonized snow (based on visual assessment) within 3 m from
the boundary of algae-colonized patch but within the same snow
pack; and (3) there were no topographical differences between
algal and nonalgal colonized snows, thus minimizing potential
confounding effects of microsites. We confirmed the absence of
algae in the uncolonized snows using flow cytometry.

SAMPLING PROTOCOL

Snows colonized by algae and paired noncolonized controls
3 m away from the edge of the algal colony were selected (selec-
tion criteria detailed above) and a total of five 85 cm?® volumetric
surface subsamples were collected using a steel cylinder. Sur-
face scrapings of the top 5 cm were combined into clean 1-gallon
zip-top plastic bags and allowed to melt at ambient temperature.
Once melted, one 100 mL sample was drawn with a sterile syringe
(BD 30 mL Syringe, Dickinson and Company, Franklin Lakes,
New Jersey) and passed through a 1.0 pm Nuclepore Track-Etch
Membrane filter (47 mm diameter) encased in a 47 mm Swin-
Lok Plastic Filter Holder (Whatman, Kent, U.K.) to collect large
cells (mainly fungi and algae). The flow-through was collected
into a field-sterilized container (using denatured alcohol) and
passed through 0.22 um Nuclepore Track-Etch Membrane filter
(47 mm diameter) to collect bacterial cells (data not shown here).
Collection and flow through containers were field sterilized with
denatured alcohol between sample collections. Filter holders and
syringes were used only once to minimize cross contamination
between samples. After filtration, filters were stored in MoBio
UltraClean Soil DNA Isolation Kit bead tubes (Carlsbad, Califor-
nia) with reagents S1 and IRS added to aid in sample preservation.
In 2012, additional unfiltered samples were collected into sterile
15 mL falcon tubes for flow cytometric cell counts. Samples were
shipped to Kansas State University and stored at =20 °C until
processed. Total proportions of autofluorescent microbial constit-
uents in snow (cells with chloroplasts relative to all cells) from
the 2012 samples were estimated using flow cytometry (Guava
Technologies PCA-96, Hayward, California) equipped with a 532
nm (green) excitation laser to confirm the low abundance of algae
in noncolonized snows. Triplicate 10 pL samples were diluted in
250 mL 1X PBS. A combination of fluorescence emission at 675
nm (PM2, measure of chloroplast autofluorescence) and Forward
Scatter (FCS) directly related to particle size were used to gener-
ate dot-plots. Using the program Flowing Software (v.2.5; www.
flowingsoftware.com), boundaries of segregating autoflorescent



TABLE 1

Sampling locations of paired algae-colonized and uncolonized snows across consecutive years. WA = Washington State, U.S.A., CO = Colo-
rado, U.S.A. All Washington sampling locations were collected at or near the Lyman Glacier Basin.

State Site Landmark Latitude Longitude Date Elevation (m)
2011

(¢[0) Niwot 1 Near Soddie Laboratory 40°02'56”"N 105°34’51"W 10 Aug. 3368
Cco Niwot 2 Saddle 40°03"30"N 105°35"20"W 10 Aug. 3514
WA Glacier Peak 1 Cloudy Pass 48°12°09”"N 120°55"28"W 13 Sept. 1961
WA Glacier Peak 2 Terminal moraine 48°10"59”"N 120°54’11"W 13 Sept. 1802
WA Glacier Peak 3 Lyman Glacier 48°1021"N 120°53'50"W 14 Sept. 1880
WA Glacier Peak 4 Spider Gap N 48°10'14"N 120°52'55"W 14 Sept. 2135
WA Glacier Peak 5 Spider Gap S 48°10°10"N 120°52'53"W 14 Sept. 2123
WA Glacier Peak 6 Lower Spider snowfield 48°09’42"N 120°52°42"W 14 Sept. 1897
2012

CcO Indian Peaks 1 E of Shoshoni Peak 40°04’02"N 105°37"44"W 15 July 3407
CcoO Indian Peaks 2 S shore Lake Isabelle 40°04’01”"N 105°04°01"W 15 July 3358
WA Glacier Peak 1 Cloudy Pass 48°12'10"N 120°5527"W 2 Aug. 1966
WA Glacier Peak 2 Terminal moraine 48°10°58”N 120°54’11"W 2 Aug. 1794
WA Glacier Peak 3 Lyman Glacier 48°1024"N 120°53’49”"W 2 Aug. 1866
WA Glacier Peak 4 Spider Gap N 48°10'14"N 120°52'55"W 2 Aug. 2173
WA Glacier Peak 5 Spider Gap S 48°10'10"N 120°52'53"W 2 Aug. 2137
WA Glacier Peak 6 Lower Spider snowfield 48°09’41”N 120°52'35"W 2 Aug. 1893

cells along the FCS axis were manually generated based on visual
clustering. The proportions of snow algae were estimated by the
proportion of counts that autofluoresced but were larger than bac-
teria (to discriminate against cyanobacteria). Pollen grains may
autofluoresce using these cytometric filters (gymnosperms have
paternal ctDNA transmission and may be included) potentially
overestimating the algal counts. However, pollen grain deposi-
tion in snow is generally spatially homogenous (Bourgeois et al.,
2001) at the local scale and unlikely to impact the efficacy of
the analyses of algal abundance. We used a paired t-test to test if
the proportion of algae in the visibly colonized and uncolonized
snows differed. The autofluorescent particles were on average 35
times more abundant within the algal snows than in the adjacent
noncolonized snows (¢ = 3.25, P = 0.007). In conclusion, the al-
gae were functionally negligible in the noncolonized snows.

DNA EXTRACTION AND AMPLICON GENERATION

Total genomic DNA was extracted using MoBio extraction
kits according to the manufacturer’s protocol with the following
modifications: (1) filters were sonicated for 10 minutes (FS20;
ThermoFisher Scientific, Waltham, Massachusetts) in DNA ex-
traction tubes to dislodge any cells adhering to the filters; (2)
the filter was removed and two 2.4 mm zirconia beads (Bio-
Spec Products, Bartlesville, Oklahoma) were added into the
bead tubes; and (3) particles were homogenized in a FastPrep
instrument (FP120; ThermoFisher Scientific, Waltham, Massa-
chusetts) at setting 4.0 for 60 s. The extracts were quantified
(ND1000 spectrophotometer; NanoDrop Technologies, Wilm-
ington, Delaware) and each sample was aliquoted to a 96-well

plate at 2 ng uL~' DNA concentration. PCR amplicons for Il-
lumina MiSeq sequencing were generated using fungus specific
primers to amplify the Internal Transcribed Spacer 2 (ITS2)
region of the fungal rRNA gene repeat with primers fITS7 (Ihr-
mark et al., 2012) and ITS4 (White et al., 1990). Unique molec-
ular identifier tags (MIDs) were incorporated to the ITS4 primer
(MID-ITS4). MIDs were selected from the published Illumina
MID list (Caporaso et al., 2012) and each MID-ITS4 combina-
tion was tested in silico (OligoAnalyzer 3.1; Integrated DNA
Technologies, Coralville, Iowa, http://www.idtdna.com/ana-
lyzer/Applications/OligoAnalyzer) for possible hairpins and/or
primer dimers at melting temperatures above 40 °C. Primers
that passed this rubric were synthesized. PCR amplicons were
generated in 50 pL reactions under the following conditions:
1 uM forward and reverse primers, 10 ng template DNA, 200
uM of each deoxynucleotide, 2.5 mM MgCl,, 10 pyL 5x Green
GoTaq Flexi Buffer (Promega, Madison, Wisconsin), 14.6 uL
molecular biology grade water, and 2 U GoTaq Hot Start Poly-
merase (Promega, Madison, Wisconsin). PCR cycle parameters
consisted of 94 °C initial denaturing step for 4 min, followed by
30 cycles of 94 °C for 1 min, 54 °C annealing for 1 min, and 72
°C extension step for 2 min, followed by a final extension step
at 72 °C for 10 min. All PCR reactions were done in triplicate
to control for PCR stochasticity. Negative PCR controls (sterile
molecular grade water in place of DNA template) were included
in each run; these controls remained free of observable ampli-
fication. Triplicate PCR products were pooled by experimental
unit (total of 32) and cleaned with Agencourt AmPure cleanup
kit using a SPRIplate 96-ring magnet (Beckman Coulter, Bev-
erly, Massachusetts) following the manufacturer’s protocol, ex-
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TABLE 2

The most abundant OTUs and sequence abundance for each observed phylum are provided. Nested within phylum, the most abundant order
and family (genera where Incertae sedis at the family level are represented parenthetically) are provided in subsequent columns. Taxonomic
representations of OTUs based on best BLASTn matches across accessioned fungi deposited in GenBank. Purported ecologies at the family
(genus) level are also reported. Number of OTUs representing each taxonomic rank are provided (number of OTUs at phylum level sum to
200, and OTU counts within phylum are a subset of the total OTUs shown for phylum).

Percentage Number
Phyla Orders Families/(Genera) Ecology of sequences of OTUs
Ascomycota 12.6% 67
Dothideales 5.9% 13
Dothiorceae Biotrophic or Necrotrophic 4.8% 8
(Celosporium) Uncertain (BFM) 1.0% 5
Chaetothyriales 2.3% 12
Herpotrichiellaceae 0.9% 8
(Sarcinomyces) Uncertain (BFM) 1.3% 4
Pleosporales 1.5% 7
Pleosporaceae Necrotrophic or Saprobic 1.4% 5
Basal fungal lineages 1.1% 6
Mucorales 0.7% 2
(Umbelopsis) 0.7% 2
Mortierellales 0.4% 4
Mortierellaceae Saprobic 0.4% 4
Basidiomycota 77.3% 99
Incertae sedis 32.3% 15
(Rhodotorula) Saprobic/(Pathogen?) 32.3% 15
Kriegariales 20.5% 17
Kriegeriaceae Saprobic/(Pathogen?) 20.5% 17
Leucosporidiales 7.3% 9
(Leucosporidiella) Uncertain (non-phytoparasitic)! 4.1% 4
(Leucosporidium) Uncertain (non-phytoparasitic)' 3.2% 5
Chytridiomycota: 9.4% 26
Rhizophydiales 6.6% 10
Incertae sedis Uncertain 4.3% 2
Rhizophydiaceae Saprobic 2.3%
Polychytriales 1.1%
(Polychytrium) Saprobic 1.1% 4
Incertae sedis 0.2% 11
Glomeromycotaf 0.5% 2
Glomerales 0.5% 2
Glomeraceae 0.5% 2

#Best BLASTn match to phyla Chytridiomycota and Glomeromycota are extremely dissimilar to any accessioned taxa (query coverage < 25% and BLAST score < 90; see
Appendix Table A2). Thriving Glomeromycetes are unlikely in absence of host, thus these likely represent unknown taxa.
BFM = black meristematic fungi, polyphyletic group, primarily anamorphic, known to be resistant to harsh environments.
'These genera are defined as nonphytoparasitic (Sampaio et al., 2003) but ecologies remain uncertain.

cept we used a 1:1 bead solution to amplicon ratio to better
discriminate against small nontarget DNA. Barcoded samples
were equimolarly combined so that each experimental unit was
equally represented. This final pool was cleaned with Agencourt
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AmPure cleanup kit once more as above. Illumina MiSeq se-
quencing linkers were ligated onto the library and paired-end
sequenced on a MiSeq Personal Sequencing System (Illumina,
San Diego, California) using a MiSeq Reagent Kit v2 with 500



cycles. Ligation and sequencing were performed at the Integrat-
ed Genomics Facility at Kansas State University.

SEQUENCE ANALYSIS

Sequence data were processed using MOTHUR (v. 1.29.1;
Schloss et al., 2009). The two obtained fastq (bidirectional reads)
were contiged and the resultant fasta and qual files used as in-
puts for further sequence processing that we briefly describe be-
low. We screened contiged sequences and required the following
for inclusion: exact match to the MIDs (see Appendix Table Al
for complete list of MID sequences), at most 1 bp difference in
match to both forward and reverse primers, and with a quality
score of 235 over a 50 bp sliding window for the sequence. In
other words, a sequence was culled if the average Q-score fell
below 35 for any 50 bp window (with a 1 bp slide) or if the se-
quences did not match both primers or MID. Additionally, se-
quences were culled if they had homopolymers longer than 8
bp or contained ambiguous nucleotides. This ensured that only
high-quality full-length ITS2 reads remained. ITS2 sequences
were truncated to 250 bp for further analysis removing any con-
served 5.8S regions, sequences shorter than 250 bp culled, and
putative chimeras removed (UCHIME, Edgar et al., 2011). Re-
maining sequences were pair-wise aligned (Needleman-Wunsch)
and the resulting distance matrix was clustered at 97% similarity
using the average-neighbor algorithm. The rare OTUs (opera-
tional taxonomic units) (OTUs not among the 200 most abundant
OTUs) were eliminated to focus on only the most abundant and
presumably also the metabolically active taxa in these analyses.
The 200 most abundant fungal OTUs represented 97.12% of all
fungal sequences, therefore likely minimizing the impact of resi-
dent dormant propagules in these analyses. Randomly selected
sequences representing each of the 200 most abundant OTUs
were queried (BLASTn nr/nt with the exclusion of uncultured
and environmental samples against GenBank) and best BLAST
matches were recorded with full taxonomic string (see Appen-
dix Table A2). Despite the use of fungal specific primers, many
common OTUs were classified to nonfungal phyla: Chlorophyta
(15 OTUs), Streptophyta (3 OTUs), Ciliphora (1 OTU), and su-
pergroup Rhizaria (1 OTU). We omitted these nonfungal OTUs
and appended our analyses to include only the most abundant
200 fungal OTUs. Of note is that the most abundant OTU was
algal (best BLASTn match to Coenochloris sp.) and seven times
more abundant than the next most abundant OTU, suggesting that
primer bias was not adequate to discriminate against algal tar-
gets in samples highly enriched with phylum Chlorophyta under
the reaction conditions that we used. Richness and diversity esti-
mates were calculated iteratively—OTU richness = S | , Good’s
coverage = 1 —n N where n, is number of local singletons and
N is number of sequences within each sample, complement of
Simpson’s Diversity = 1 — D = 1 — X pi® (where pi is the propor-
tion of individuals in the ith species), and Simpson’s Evenness =
Ed=(1D")S" (where S is the OTU richness at each sample and
D is the Simpson’s diversity index)—using 1000 iterations at a
subsampling depth of 1500 sequences per experimental unit to
control for biases due to unequal sampling (Gihring et al., 2011),
the average of each estimator used in our analyses. This itera-
tive approach controls for potential false positives on diversity
estimates due to single subsample-based (rarefying) diversity
estimates as detailed by McMurdie and Holmes (2014) by dimin-
ishing the importance of false positives as one extreme measure-
ment has little impact on community-wide metrics after multiple

iterations. Nonmetric Multidimensional Scaling (NMDS), based
on a subsampled Bray-Curtis dissimilarity matrix with 1000 it-
erations (at 1500 subsampling depth) was used to examine fungal
community composition for the first three axes (73.3% commu-
nity variation, 3D stress = 0.198). To determine if the Washington
sites possessed different fungal communities than the Colorado
sites or if the 2011 and 2012 Washington samples differed, we
used Analysis of Molecular Variance (AMOVA; PERMANOVA
in Anderson, 2001). Diversity estimates and NMDS generation
and analyses based on iterative subsampling were implemented
in MOTHUR. Across the resolved three-dimensional NMDS
space, linear (Euclidian) distances were calculated between
paired algae colonized and nonalgae colonized samples and these
values were analyzed using Student’s t-test to test if Colorado and
Washington paired samples differ in their community similari-
ties. To test for OTU enrichment between paired algae-colonized
and uncolonized snows, we used a nonparametric paired test of
count data. Because of our paired design, our richness, diversity,
NMDS axes scores, and OTU abundance were analyzed using a
nonparametric two-tailed Wilcoxon signed-rank test (HO: M. =

non-algac’ HI: Mo M) and any significant responses were
corrected for multiple comparison effects using a liberal False
Discovery Rate (FDR = 0.50). Data were also analyzed using a
parametric paired t-test. These analyses were consistently con-
gruent with the nonparametric tests. As a result, we only report
the nonparametric test statistics, as those rely on no assumptions
on data distribution or variance homogeneity. All statistics were
performed using a combination of MOTHUR and JMP (v. 10.0.2,
SAS Institute, Cary, North Carolina).

The taxon assignment of OTUs to phylum Chytridiomy-
cota (26—or 13%—of the top 200 OTUs) was challenging due
to their low similarity to any vouchered or uncultured/environ-
mental accessions. Since the low coverage and low similarity
to any accessioned sequence made these BLASTn assignments
to Chytridiomycota tentative, we further explored these data
through a confirmatory Maximum Likelihood (PhyML) analy-
sis. The hypervariable ITS gene regions are difficult to align
globally at the phylum level and thus considered poor at dis-
cerning taxonomic relationships in phylogenetic analyses at
more inclusive taxonomic ranks (order/family). Even though we
used the designated barcode for identifying fungal taxa, these
putative Chytridiomycota consistently failed to be assigned
with satisfactory affinities. As a result, we utilized the PhyML
approach as a method to confirm the phylum-level placement
of the OTUs tentatively assigned within Chytridiomycota.
ITS2 reads for representatives of our chytridiomycetous en-
vironmental reads (26 OTUs) were aligned with a number of
accessioned and vouchered Chytridiomycota and two closely
related basal phyla (Blastocladiomycota and Monoblephari-
domycota) with full-length ITS2 gene regions in GenBank as
well as the ascomycetous yeast Saccharomyces cerevisiae, as
an outgroup. Reference sequences were selected across phylum
Chytridiomycota to include all available orders of Chytridio-
mycota (orders Cladochytriales and Polychytriales were not in-
cluded because no full-length ITS2 sequences from vouchered
specimens were available in GenBank at the time of analysis).
Sequences were aligned using MUSCLE (1000 iterations) as
implemented in GENEIOUS (v. 5.3.4, BioMatters, Auckland,
New Zealand). The alignment was trimmed manually to only
include full-length ITS2 regions and a Maximum Likelihood
tree was generated (100 bootstrap iterations, substitution model
= HKYS85) in GENEIOUS with Saccharomyces cerevisiae as an
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outgroup. The fasta file of the representative sequences of OTUs
used for this confirmatory PhyML analysis along with reference
sequences used are available as a Appendix File Al (available
as an open access file accompanying the online version of this
article).

Results
SEQUENCE DATA CHARACTERIZATION

We obtained more than 11 x 10° sequences from our MiSeq
library (paired-end fastq files are deposited in Sequence Read
Archive at NCBI: SRR1104197). Of these, 1,466,702 full-length
ITS2 sequences were retained after quality control. After the
removal of nontarget, mainly algal OTUs (363,005 sequences)
and OTUs that were not among the 200 most abundant, 466,243
sequences remained with unequal sequence counts per experi-
mental unit (range 1971-24,964). Among the total of 7835
OTUs are OTUs that are exceedingly uncommon (3949 global
singletons and an additional 3686 nonsingleton rare OTUs) and
most likely represent dormant organisms and aerially deposited
spores or hyphal fragments that unlikely contribute to ecosys-
tem function, or methodological artifacts of uncertain origin
(Brown et al., 2015). For this reason, we limited our analysis to
the 200 most abundant OTUs (see Appendix Fig. A1) that repre-
sent more than 97% of all fungal sequences in our data set (see
Appendix File A2 for OTU x Sample community matrix) (File
A2 available as an open access file accompanying the online
version of this article).

TAXONOMIC DISTRIBUTION

The fungal communities were dominated by Basidiomy-
cota (see Table A2 for complete taxonomic assignments for
the 200 most abundant OTUs and Appendix File A3 [available
as an open access file accompanying the online version of this
article] for representative sequences of the 200 most abundant
OTUs). Sequence and OTU counts of the most abundant orders
and families with inferred ecological roles are presented in Table

100+
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Ave. Algae Colonized Richness - 74.98 OTUs
Ave. Non-Algae Colonized Richness - 64.54 OTUs
o Wilcoxon signed-rank test: W=58, PIW|=0.0013

2. Cosmopolitan polyphyletic yeasts in the genus Rhodotorula
(46 OTUs—23% of all OTUs and 53.30% of total sequences)
dominated among Basidiomycetes, as also observed in other
snow and glacier fungi surveys (de Garcia et al., 2007, 2012).
The four most abundant OTUs were classified as Rhodotorula
and the next most abundant OTU was classified as Cryptococ-
cus saitoi, a commonly encountered snow-dwelling yeast with
uncertain ecology. OTUs assigned to Lyophyllaceae were also
common (8 OTUs) and included 2 OTUs with close BLASTn
affinities to accessioned sequences of Asterophora—a genus with
members known to be parasites. The remaining 6 OTUs in the
family were marginally similar to genus Lyophyllum, members
of which are often described as soil-borne saprobic or mycor-
rhizal macrofungi. Chytridiomycota were surprisingly frequent
(26 OTUs—13% and ~10% of total sequences). Of these OTUs,
none had a strong similarity to any accessioned sequences based
on BLASTn alignments (coverage ranged from 15% to 60%
with very low total BLAST scores; see Table A2). Because of
the low similarity for known accessioned Chytridiomycota, we
reanalyzed these data in queries that also included uncultured/
environmental sequences. These BLASTn analyses consistently
failed to match closely any accessioned sequences. Despite their
low similarity to sequences in the combined global genetic data-
bases, our confirmatory Maximum Likelihood (PhyML) analysis
supported placement of the 26 OTUs with 99% bootstrap support
within Chytridiomycota. Additionally, our environmental OTUs
were most closely related to the soil-borne chytridiomycetous or-
der Lobulomycetales (Appendix Fig. A2). Yet, bootstrap support
within the environmental Chytridiomycota clade remains low, a
likely result of use of the hypervariable ITS2 region that tends to
perform poorly in analyses in more inclusive taxonomic ranks
(e.g., order or family). As a result, the placement of these OTUs
below phylum cannot be deduced from our PhyML analysis. Yet,
most of our snow Chytridiomycota OTUs form a distinct clade
suggesting that these taxa may represent a monophyletic group
of snow-borne Chytridiomycetes with very little ITS2 sequence
similarity to anything known. Unfortunately, our phylogenetic
analyses suffered from the poorly populated databases that in-
clude no vouchered reference ITS2 sequences similar to the ob-
served environmental chytrids.

FIGURE 1. Operational taxonomic unit
(OTU) richness in the algae-colonized snows are
higher than in the adjacent paired uncolonized
snows (Wilcoxon Sign-Rank test). This analysis
is based on 1000 iterations to generate average
richness estimates (1500 sequences subsampled
per iteration) based on the 200 most abundant
OTUs. Uncolonized fungal OTU richness
estimates are solid symbols and algae colonized

T T L]
Non-Algae (WA) Algae (WA) Non-Algae (CO)
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Algae (CO)

richness estimates are open symbols. Dashed
lines connect paired samples.



DIVERSITY ESTIMATORS

Coverage and rarefaction (see Appendix Fig. A3) estima-
tors indicated that the fungal community was adequately captured
(Good’s Coverage for colonized and noncolonized snow 0.972 +
0.003 and 0.986 + 0.001, respectively) in our sequencing. We find
that a greater proportion of the 200 most abundant OTUs occur in
the algal-colonized snow than in the snow without algae. Estimated
OTU richness in the algae-colonized snow (74.98 + 11.72; mean
+1 SD) was greater than in the adjacent, noncolonized snow (64.54
+ 11.72) across both sites and years (Fig. 1; paired two-tailed Wil-
coxon Sign-Rank test; W =58, P = 0.0013). In contrast, neither di-
versity (complement of Simpson’s Diversity, 1 — D: 0.890 + 0.051
for the algae-colonized and 0.865 + 0.067 for noncolonized snows;
W =30, P = 0.130) nor evenness (E_: 0.146 + 0.053 for algae-
colonized and 0.145 + 0.073 for noncolonized snows; W = 10, P
= 0.632) differed between the paired colonized and noncolonized
snow samples.

COMMUNITY DIFFERENCES

Fungal communities were resolved optimally on three NMDS
axes (stress = 0.198, r* = 0.733). Our community-wide AMOVA
(PERMANOVA in Anderson, 2001) analyses indicated regional
(Colorado vs. Washington) but not temporal differences in the
snow fungal communities. These analyses failed to distinguish fun-
gal communities in the colonized and noncolonized snow (F, , =
1.247, P = 0.227) globally. However, paired analyses of the Axis 2
ordination loading scores (representing 57.16% of community var-
iability) indicated that fungal communities in the algae-colonized
snow were distinct from those in the paired uncolonized snows
(Fig. 2; W=48, P =0.011). In contrast, neither Axis 1 (* = 6.38%)
nor Axis 3 (7 = 9.85%) distinguished between the paired algal and

nonalgal snows (W =21, P = 0.298; W = 23, P = 0.252, respec-
tively). When the paired Axis 2 values were analyzed separately
for Colorado and Washington, an interesting pattern emerged. Our
Colorado locations showed no discernable difference between the
fungal communities of the paired samples across all three axes (see
insert in Fig. 2). The Washington samples show a contrast; a shift
in fungal communities in the paired algae colonized/uncolonized
snows (W =27, P =0.034 for Axis 2; see insert in Fig. 2). Further,
our AMOVA suggested no difference across years (F,,, = 1.135,
P = 0.286) in the Washington sites but clearly distinguished the
snow inhabiting fungal communities from Colorado and Washing-
ton (F ;, = 8.654, P <0.001). These analyses suggest that although
our sites located in Colorado and Washington are distinct, the com-
munities remain fairly stable over time—likely as a result of local
and/or regional fungal propagule inputs.

We also analyzed Euclidian distances between the paired
samples from algae colonized and uncolonized snows to test if
they differed in the magnitude of fungal community-wide shifts
between Colorado and Washington. The Euclidian distances across
the three resolved axes between paired algae-colonized and uncol-
onized snow-fungal communities was greater in the Washington
snows than in Colorado (t = 2.47, P = 0.0267; Appendix Fig. A4).
This difference may be the result of a constrained shift in the fun-
gal community associated with sampling locations or dates.

In all, 13 of the 200 most abundant OTUs were more common
in algae-colonized snow (see Table 3), whereas none were enriched
in the uncolonized snow as determined by paired Wilcoxon Sign-
Rank analyses of OTU abundance. An additional 3 OTUs differed
between paired algal-colonized and uncolonized snows but were
no longer significant after controlling for multiple comparisons.
The colonized snow was enriched for saprobic and putatively
pathogenic OTUs. Several Rhodotorula OTUs were enriched in
the algal-colonized snows, suggesting the opportunistic utilization

TABLE 3

Fungal operational taxonomic units that are enriched in algal colonized snow compared to paired nonalgal colonized snow based on Wil-

coxon Sign-Rank test after correction for multiple comparisons (P [W]| is the two-tailed P-value between colonized and paired uncolonized

snow). Best BLASTn matches and putative ecologies are also reported (EcM = ectomycorrhizal). The symbol ‘I’ represents taxa whose best

BLASTn match is extremely dissimilar to any accessioned taxa (query coverage < 25% and BLAST score < 90; see Appendix Table A2) that
are likely novel fungal taxa whose ecologies remain uncertain.

OoTu Wilcoxon Sign-Rank P-value

number test statistic (W) (P |W)) Ecology Best BLASTn match
2 47 0.0126 Saprobic Rhodotorula sp.

4 41.5 0.03 Saprobic Rhodotorula psychrophenolica
9 43 0.0248 Unknown Rhizophydiales sp. #

37 30 0.0059 Unknown Chytridiomycota sp. i

40 14 0.0156 Unknown Chytridiomycota sp.

43 23.5 0.0156 Saprobic Rhodotorula sp.

45 32 0.0103 Saprobic Rhodotorula sp.

48 10.5 0.0313 EcM (#Unknown) Tylopilus formosus #

59 47 0.0122 Pathogenic Ilyonectria macrodidyma
119 22.5 0.0234 Saprobic Rhodotorula sp.

163 14 0.0156 Saprobic (Unknown) Lyophyllum sp.

195 14 0.0156 Saprobic Rhodotorula sp.

199 10.5 0.0313 Saprobic Leucosporidium scottii
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FIGURE 2. Non-Metric Multi-Dimensional Scaling (NMDS) plot of snow-borne fungi in algal colonized snow (solid symbols) and
uncolonized snow (open symbols). Dashed lines connect paired algal colonized and adjacent uncolonized samples. Analysis of Molecular
Variance (AMOVA) indicates that Colorado (circles) and Washington (squares) fungal communities are distinct. Insert represents paired
Wilcoxon Signed-Rank test across Axis 2 (57.12% of community variability) and indicates that snow algae colonized snows possess different
fungal communities than paired uncolonized snows (W = 48, P = (0.011); dashed lines connect paired samples.

of increased organic matter associated with these snow algae. Par-
ticularly interesting are OTUs 9, 37, and 40 that—based on our
PhyML analyses—represent novel chytrids whose functions re-
main unknown (Fig. A2). OTUs 48 and 163 were more common
in algal-colonized snow but are highly dissimilar to any known
accessioned fungi (see Table A2 for full BLAST scores). Best
BLASTn matches identify these OTUs within the genera Tylopilus
(ectomycorrhizal) and Lyophyllum (saprobic or parasitic). Given
the great dissimilarity to any accessioned taxa, these OTUs most
likely represent novel taxa and/or taxa that are underrepresented in
the global nucleotide repositories. Thus, further and more detailed
investigation is needed to better understand the fungal communi-
ties in this environment.

Discussion

We present one of the very first deep-sequencing studies of
snow-borne fungi. The late season alpine snow-packs are a declin-
ing ecosystem; climate change predictions suggest that the earth’s
cryosphere will dramatically decline in volume (Derksen and
Brown, 2012). As a result, assessment of the biodiversity in these
“endangered” ecosystems is timely and critical. There is a dearth
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of knowledge about snow-borne life or microbial communities and
their function in snow, particularly so for fungi. Our analyses sug-
gest strongly coupled snow-borne fungi/algae co-occurrence pat-
terns.

Our data indicate that the presence of snow algae may act
as an environmental filter (Jumpponen and Egerton-Warburton,
2005) that structures the snow-borne fungal community. Alterna-
tively, the snow algae and co-occurring fungal communities share
some yet unidentified environmental variable that determines their
greater frequency in those samples. This co-occurrence is best evi-
denced by the shift in the Axis 2 loading scores between the paired
colonized and uncolonized samples (Fig. 2). Interestingly, this shift
only was significant in the Washington samples in our conserva-
tive nonparametric tests. There are two primary reasons that may
underlie the lack of significance in Colorado samples. (1) Our sam-
pling in Colorado was more superficial than that in Washington
and included only two algae patches that we were able to locate
within the Niwot Ridge LTER or Indian Peaks Wilderness. With
so few samples, we may lack the statistical power to resolve those
trends. (2) Alternatively, for logistical reasons, the Colorado snows
were sampled about one month before the Washington snows in
both years. This temporal difference may explain this observation;
perhaps the shifts in communities are not as strong in Colorado



because the communities have not had as much time to diverge
early in the growing season. We speculate that the establishment
of greater algal abundance later in the growing season or similar
environmental tolerances may facilitate a component of the extant
snow fungal community. However, our Colorado sampling preced-
ed this community shift. Our ordination analyses partially support
this explanation: the Euclidian distance between the paired sam-
ples in ordination space is smaller in Colorado than in Washington
(Fig. A4), suggesting that sampling later in the season may per-
mit a further divergence among the compared snow communities.
Naturally, we cannot distinguish between the temporal effects of
sampling and the confounding spatial effects in this case.

Alpine snow supports diverse fungal communities dominated
by basidiomycetous yeasts whose ecologies and taxonomies are
poorly understood. Yeast-dominated systems have been reported
on glacier surfaces (de Garcia et al., 2012) and in periglacial soils
(Schmidt et al., 2012; Brown and Jumpponen, 2014). In our analy-
ses, the most common fungal OTU was assigned to genus Rhodo-
torula (46 OTUs in all; 6 of which are enriched in algal snows).
These yeasts are polyphyletic, understudied, and their generic de-
lineation is historically morphological, not phylogenetic (Toome et
al., 2013). Additionally, many OTUs were placed into taxa grouped
as black meristematic fungi (BMF), another polyphyletic group-
ing based on anamorph phenotypes. Although BMFs are overall
poorly understood, they are suspected to play a large role in min-
eral transformations and often are resilient in harsh environments
(Onofti et al., 2007). These cosmopolitan BMFs most likely utilize
allochthonous organic matter such as wind-blown particulate mat-
ter common on the snow surface. These results reiterate that there
is a dearth of information on psychrophilic/tolerant fungi and high-
lights the importance for future studies into these systems.

We expected that OTUs enriched in algae-associated snows
would provide the most valuable clues on the ecology of these
fungi. We initially hypothesized that the algal cells and/or their
nutrient-rich exudates provide substrates that potentially facilitate
syntrophy or presence of opportunistic saprobes and algal patho-
gens. Many of the observed enriched OTUs are suspected to have
saprobic/parasitic ecologies and thus support our latter hypotheses.
Additionally, several taxa that were more abundant in algae-colo-
nized snow were either macrofungi or form ectomycorrhizal as-
sociations. The presence of an active community of macrofungi in
snow is unlikely but may represent snowbank fungi that fruit at the
periphery of snowpacks (Cooke, 1955; Cripps, 2009). Addition-
ally, there may be an abundance of fungal spores representing an
allochthonous introduction from surrounding areas. Unfortunately,
our analyses do not permit assessing whether these yeasts or other
observed fungi are metabolically active in this substrate.

The abundance of Chytridiomycota in our study was surpris-
ing. This suggests that these enigmatic fungi may be more abun-
dant and diverse than previously thought. We have just recently
begun to appreciate the hidden diversity of Chytridiomycota.
Freeman et al. (2009) demonstrated that Chytridiomycota domi-
nate high altitude periglacial soils. The snow chytrids in our study
were abundant and dissimilar to any sequences accessioned to the
nucleotide repositories. Our confirmatory phylogenetic analyses
suggested that these fungi might represent a novel clade of snow
Chytridiomycota (Fig. A2). Placement of these novel chytrids from
this study at levels below phylum remains uncertain but they may
belong to the early divergent snow Chytridiomycetes identified as
‘Snow Clades’ from North American and European snows (Naff et
al., 2013). However, this cannot be determined because our study
and that of Naff et al. (2013) targeted different rRNA gene regions,

making direct comparisons impossible. Naff et al. (2013) posited
that these snow Chytridiomycetes parasitize snow algae because
they were common in clone libraries from algal snows. However,
these hypotheses were not explicitly tested, nor is parasitism the
only reasonable nutritional hypothesis. The present study also dif-
fers from Naff et al. (2013) in a very important way, Naff and co-
authors only collected snow that was colonized by snow algae and
sequenced shallowly, whereas we utilized paired samples with and
without algae. Given that Chytridiomycota also were abundant in
the snows free of algae, these Chytridiomycota may be saprobes or
facultative syntrophs. Nevertheless, to capture a high abundance of
Chytridiomycota is striking; Chytridiomycota tend to be infrequent
in most locus-targeted community sequencing studies. This may be
a result of the highly divergent and difficult to amplify ITS regions
of these basal fungi (Schoch et al., 2012), and analyses of environ-
mental DNA may get overwhelmed by more easily amplified tem-
plates (Anderson and Cairney, 2004; but see Taylor et al., 2008).
Thus, even the relatively high estimates of the chytrid abundance
observed here might be an underestimation. Of note, solely rely-
ing on OTU abundance as a proxy for organismal abundance may
be ill advised as there is no 1:1 relationship between copy num-
bers and organism abundance (Amend et al., 2010). Also, different
fungal lineages may be differentially abundant in environmental
sequences due to a myriad of factors including primer bias and
differential ITS copy number (Pukkila and Skrzynia, 1993; Porter
and Golding, 2012). Yet, despite the potential poor amplification
of Chytridiomycota, we found that chytrids were abundant and di-
verse, highlighting that they both are common and likely important
in snows.

It is tempting to speculate on whether these chytrids parasitize
or prey on snow algae (Naff et al., 2013) as such associations are
common in algae-dominated freshwater systems (Hoffman et al.,
2008; Gutman et al., 2009; Rasconi et al., 2011). Snow chytrids
may also act as facultative mutualists or have obligate syntrophic
relationships; there is a precedence of such relationships in other
aquatic systems (Picard et al., 2013). Although our data suggest the
enrichment of these communities with such fungi, they do not al-
low specific statements about their ecology or life strategies. How-
ever, it is most likely that these novel chytrids are major players in
snow-borne fungal communities. It is also clear that snow fungi
are a product of establishment from local propagule pools as the
snow-borne fungal communities were compositionally distinct in
Washington and Colorado. In contrast, both locations had stable
fungal communities over two sampling years. It is probable that
snow fungi initially establish from local propagules and the pres-
ence of snow algae facilitate their growth and metabolic activity.
Many small-scale biotic and/or abiotic factors that vary spatially
can select for cryotolerant communities differing in their ecologi-
cal and functional attributes. Further and more detailed investiga-
tions of the snow fungal metabolic activity and community dynam-
ics are needed to better understand them in the cryosphere.

Overall, our results indicate that snow algae and snow fungi
co-occur and either share similar environmental tolerances or algae
may act as an environmental filter in fungal community assembly.
In the latter case, this community filtering is potentially facilitated
by enrichment of saprobic and pathogenic fungi that are able to uti-
lize snow algae directly or indirectly through their exudates. Alter-
natively, the enrichment of specific fungal community constituents
may be an outcome of facultative syntrophic associations between
algae and fungi that are engaged in loose symbioses. Further in-
depth studies on the life history strategies and ecology of snow-
inhabiting fungi are required to shed light into these unresolved
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questions. Interestingly and congruently with other studies (Naff et
al., 2013), our data identified potentially novel groups of Chytridi-
omycota, some of which were enriched in algae-colonized snows
and of undetermined functions. From these studies, it is clear that
we are barely scratching the surface of the nearly unexplored
cryosphere. To put it simply, snow is an ecosystem that maintains
unique communities that may vanish with the declining cryosphere
before we have an opportunity to understand them.
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APPENDIX

TABLE A1

Primer sequences (upper) and multiplex Molecular Identifier sequence tags (lower) used in this study.

Gene Primers

ITS7f 5’-GTGARTCATCGAATCTTTG-3’
ITS4 5’-TCCTCCGCTTATTGATATGC-3’
Tags Samples

TCCCTTGTCTCC Lyman-5-2011-Algae
ACGAGACTGATT Lyman-1-2011-Algae
TACCGCTTCTTC Niwot-3-2011-Algae
ATCACCAGGTGT Lyman-3-2011-Algae
TGGTCAACGATA Lyman-4-2011-Algae
ATCGCACAGTAA Niwot-1-2011-Algae
GTCGTGTAGCCT Lyman-6-2011-Algae
GATTATCGACGA Niwot-2-2011-Algae
ATCCTTTGGTTC Lyman-2-2011-Algae
GCCTAGCCCAAT Lyman-6-2011-Non_Algae
ACCGGTATGTAC Lyman-2-2011-Non_Algae
GATGTATGTGGT Lyman-4-2011-Non_Algae
TGCATACACTGG Lyman-5-2011-Non_Algae
AGTCGAACGAGG Niwot-1-2011-Non_Algae
ACCAGTGACTCA Niwot-2-2011-Non_Algae
GAATACCAAGTC Lyman-3-2011-Non_Algae
GTAGATCGTGTA Niwot-3-2011-Non_Algae
TAACGTGTGTGC Lyman-1-2011-Non_Algae
ACTCCTTGTGTT IndianPeaks-2-2012-Algae
CCAATACGCCTG IndianPeaks-1-2012-Algae
ACTTGGTGTAAG Lyman-3-2012-Algae
TCACCTCCTTGT Lyman-4-2012-Algae
CAAACAACAGCT Lyman-6-2012-Algae
GCAACACCATCC Lyman-5-2012-Algae
GCACACCTGATA Lyman-2-2012-Algae
CGAGCAATCCTA Lyman-1-2012-Algae
AGTCGTGCACAT IndianPeaks-1-2012-Non_Algae
GCGACAATTACA IndianPeaks-2-2012-Non_Algae
CGAGGGAAAGTC Lyman-2-2012-Non_Algae
TCATGCTCCATT Lyman-6-2012-Non_Algae
AGATTGACCAAC Lyman-3-2012-Non_Algae
AGTTACGAGCTA Lyman-4-2012-Non_Algae
GCATATGCACTG Lyman-1-2012-Non_Algae
CAACTCCCGTGA Lyman-5-2012-Non_Algae
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FIGUREA1. Ranked operational
taxonomic unit (OTU) abundance
distribution plot of all OTUs. The
dashed line represents our cutoff
of 200 OTUs for analyses and
represents greater than 97% of all
fungal sequences. Insert represents
the 30 most abundant OTUs (notice
the change in scale) demonstrating
that few OTUs make up most of the
fungal community members.
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FIGURE A2. Phylogenetic analysis (Maximum Likelihood) of putative chytrid OTUs with vouchered representative ITS2 sequences
within phyla Chytridiomycota, Blastocladiomycota, and Monoblepharidomycota indicates that observed novel OTUs are nested within
phylum Chytridiomycota with 99% bootstrap support.
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FIGURE A3. Rarefaction analysis of observed
204 ; H OTUs for algal colonized and non-algal colonized
— Aigal Colonized snow fungi indicate that at the 1500 sequence
__________ Non-Alaal Colonized : subsampling point (dashed line), the majority of
o0+ r . 9 ; . community members have been observed as this
0 500 1000 1500 2000 subsample value is well past the inflection point
# Sequences Sampled of the curves.
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FIGURE A4. Distances of paired algal colonized and non-algal
colonized axes loading score across three-dimensional space
indicate that Colorado (CO) fungal communities are more similar
between paired samples than Washington (WA) paired fungal
communities (Euclidian distance between paired samples based on
t-test).
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