Sheaves of differential operators and D-modules over non-commutative projective spaces

dc.contributor.authorGoerl, Lee W.
dc.date.accessioned2016-11-17T21:29:59Z
dc.date.available2016-11-17T21:29:59Z
dc.date.graduationmonthDecember
dc.date.issued2016-12-01
dc.description.abstractFor a scheme, let D be the sheaf of differential operators, assigning to any open subscheme it’s ring of differential operators. The study of D-modules advances their theory independently, but pervades many other areas of modern mathematics as well. Most notably, the theory provided a framework to solve Hilbert’s 21-st problem, and to develop the Riemann-Hilbert correspondence, and eventually led to the resolution of the Kazhdan-Lustig conjecture in representation theory. For an affine patch of the scheme having dimension n, the sheaf will assign the n-th Weyl algebra. In [1], Hayashi develops the quantized Weyl algebra, a deformation of this algebra, and in [2] Lunts and Rosenberg develop versions of β and quantum differential operators for a graded non-commutative algebra. Iyer and McCune compute in [3] the ring of these quantum differential operators of Lunts and Rosenberg over the polynomial algebra in n-variables, or, over affine n-space. In [4], Bischof examines how a reconciliation of the β deformation in [2] and a 2-cocycle deformation of the graded algebra influence the category of these quantum D-modules, and considers some localizations. One naturally wonders about the category of modules for these quantum differential operators on a non-commutative space; about it’s objects and it’s structure. With the aim of future study in non-commutative grassmannians and flag varieties, of U[subscript]q(sl[subscript]n), for example, we consider a non-commutative projective space glued together from a covering of 2-cocycle deformed polynomial rings, as proposed in [5] and [4]. We determine when there exists a deformed polynomial ring from which we can obtain this covering, and the category of quasi-coherent sheaves can be realized via the categorical Proj construction. With a guiding hand from Rosenberg’s [5] we develop a general ring structure for containing these quantum differential operators on polynomial algebras. Finally, towards the goal of defining holonomic quantum D-modules, we consider the GK-dimension of the corresponding associated graded algebra for the purpose of determining the dimension of what might be considered the singular support for a quantum D-module.
dc.description.advisorZongzhu Lin
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Mathematics
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/34515
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectmathematics
dc.titleSheaves of differential operators and D-modules over non-commutative projective spaces
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
LeeGoerl2016.pdf
Size:
425.2 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: