
SHEAVES OF DIFFERENTIAL OPERATORS AND D-MODULES

OVER NON-COMMUTATIVE PROJECTIVE SPACES

by

LEE W. GOERL

B.S., Kansas State University, 2005

AN ABSTRACT OF A DISSERTATION

submitted in partial fulfillment of the
requirements for the degree

DOCTOR OF PHILOSOPHY

Department of Mathematics
College of Arts and Sciences

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2016



Abstract

For a scheme, let D be the sheaf of differential operators, assigning to any open sub-

scheme it’s ring of differential operators. The study of D-modules advances their theory

independently, but pervades many other areas of modern mathematics as well. Most no-

tably, the theory provided a framework to solve Hilbert’s 21-st problem, and to develop the

Riemann-Hilbert correspondence, and eventually led to the resolution of the Kazhdan-Lustig

conjecture in representation theory. For an affine patch of the scheme having dimension n,

the sheaf will assign the n-th Weyl algebra. In [1], Hayashi develops the quantized Weyl

algebra, a deformation of this algebra, and in [2] Lunts and Rosenberg develop versions of β

and quantum differential operators for a graded non-commutative algebra. Iyer and McCune

compute in [3] the ring of these quantum differential operators of Lunts and Rosenberg over

the polynomial algebra in n-variables, or, over affine n-space. In [4], Bischof examines how a

reconciliation of the β deformation in [2] and a 2-cocycle deformation of the graded algebra

influence the category of these quantum D-modules, and considers some localizations. One

naturally wonders about the category of modules for these quantum differential operators on

a non-commutative space; about it’s objects and it’s structure. With the aim of future study

in non-commutative grassmannians and flag varieties, of Uq(sln), for example, we consider

a non-commutative projective space glued together from a covering of 2-cocycle deformed

polynomial rings, as proposed in [5] and [4]. We determine when there exists a deformed

polynomial ring from which we can obtain this covering, and the category of quasi-coherent

sheaves can be realized via the categorical Proj construction. With a guiding hand from

Rosenberg’s [5] we develop a general ring structure for containing these quantum differential

operators on polynomial algebras. Finally, towards the goal of defining holonomic quantum

D-modules, we consider the GK-dimension of the corresponding associated graded algebra



for the purpose of determining the dimension of what might be considered the singular

support for a quantum D-module.
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Chapter 1

Introduction

1.1 Overview

There are two main motivations for the work herein. The first, more general motivation

is a general interest in non-commutative algebraic geometry. Typically, non-commutative

algebraic geometries arise either from considering non-commutative rings over an existing

space, by deformation of the rings of the structure sheaf or by considering the differential

operators of those rings; they may also arise by constructing, via one of the various theories

for non-commutative algebraic geometry, a space made with a non-commutative spectrum

which has a structure sheaf of non-commutative rings.

1.1.1 Commutative Algebraic Geometry

It could be said that modern abstract algebraic geometry, was, at least initially, concerned

with providing a setting for studying geometry over an arbitrary field which would contain the

points that make up the various geometric objects of interest. This ambitious endeavour lead

to numerous advances in the theory of commutative algebra. With the benefit of hindsight,

we outline briefly some of the well-developed framework.

Over a topological space we can consider sheaves and presheaves; essentially, an assign-

ment to each open set of the topological space an algebraic object. An example to keep in
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mind is the correspondence of a subspace to the ring of functions over the subspace.

Definition 1.1.1. Let X be a topological space with Open(X) the category of open subsets

in X, whose morphisms are inclusions U ↪→ V for U ⊆ V . A presheaf of objects in a category

C on X is a contravariant functor from F : Open(X)→ C.

This categorical language obfuscates much of what a presheaf is. First of all, it is an

assignment of objects in C to objects in Open(X). Being contravariant means that a presheaf

reverses the direction of arrows in Open(X), by which we obtain, for U ↪→ V , the restriction

morphism resU,V : F(V ) → F(U). For triples U ↪→ V ↪→ W we have that resU,W =

resV,W ◦ resU,V . Furthermore, for every U , we have resU,U = idF(U).

A sheaf is a special kind of presheaf, one whose global properties are determined locally.

The classical example is the sheaf F of functions over the space X, assigning to a subspace

U ⊆ X the ring of functions over U . A sheaf encodes the idea that if a function f ∈ F(U)

and a function g ∈ F(V ) agree on the intersection U ∩ V , then these functions must glue

together to be the same function on the union U ∪ V . Let us restrict ourselves to categories

C whose objects have elements (sets, groups, rings, algebras, etc); we call the elements of

F(U) ∈ C the sections of F over U . The sections of F(X) as called the global sections.

Definition 1.1.2. Let F be a presheaf of objects in C on the space X, and U =
⋃
i∈I
Ui ⊆ X.

F is called a sheaf if it satisfies the following

(S1) If f, f ′ ∈ F(U) are such that f |Ui = f ′|Uj for all i, j ∈ I, then f = f ′,

(S2) If fi ∈ F(Ui) are such that fi|Ui∩Uj = fj|Ui∩Uj then there exists f ∈ F(U) such that

f |Ui = fi for all i ∈ I.

Let R be a commutative, unital ring.

Definition 1.1.3. We call the set of all prime ideals of the ring R the prime spectrum, or

simply the spectrum, and denote it by Spec(R).

We denote X = Spec(R) to emphasize that it is being considered as a topological

space, rather than just a collection of ideals. The topology on X is the Zariski topology,
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which is defined by its closed subsets. For an ideal I ⊆ R, we have the closed subset

V (I) = {p ∈ X | I ⊆ p}. There is a basis for the Zariski topology, consisting of the

distinguished open sets of X: for f ∈ R, denote by Xf = {p ∈ X | f /∈ p} = X \ V (Rf).

The first quintessential example to consider is R = k[x] for k an algebraically closed

field of characteristic 0. We know then that each polynomial in R can be factored into linear

factors of the form (x−a) for a ∈ k, which comprise the totality of prime ideals of R, besides

the zero ideal (0). Thus, X = Spec(R) = k.

Setting OX(Xf ) = Rf = S−1
f R as the localization of R by the multiplicitive subset

Sf = {fn | n = 0, 1, ...} constructs a presheaf OX on the distinguished base of X = Spec(R).

To determine the restriction maps, note that Xf ⊆ Xg if and only if fn ∈ Rg for some n,

which gives resXg ,Xf : Rg → Rf = Rgf = (Rg)f as just a subsequent localization. Verifying

resXg ,Xh = resXf ,Xh ◦ resXg ,Xf for Xh ⊆ Xf ⊆ Xg gives us a presheaf on X.

Theorem 1.1.4. The presheaf OX defined on X = Spec(R) as above is a sheaf of rings with

respect to the Zariski topology.

Proof. See [6].

The sheaf OX is referred to as the structure sheaf of X = Spec(R), and such a pair

(X,OX) will be called an affine scheme. For an open U ⊂ X we have that the pair (U,OU =

OX |U) is an open affine subscheme of X. A sheafM on X is called a sheaf of OX-modules,

or, an OX-module, ifM is a sheaf of abelian groups on X together with a map of presheaves

of sets OX×M→M, such that, for each open U ⊂ X, the resulting map OX(U)×M(U)→

M(U) is an abelian group homomorphism defining on M(U) the structure of an OX(U)-

module.

Definition 1.1.5. An OX module M on X = Spec(R) is called quasi-coherent if M is

locally presentable. That is, for all x ∈ X, there exists an open subset x ∈ U ⊆ X such that

the following sequence of OX-modules is exact:

⊕
i∈I

OU →
⊕
j∈J

OU →MU → 0,
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where I and J are indexing sets and 0 denotes the sheaf having constant value {0} for all

open U ⊆ X.

Quasi-coherent sheaves on X = Spec(R) form a category, Qcoh(X), which turns out to

have a very nice description. Consider the category R-mod, and an R-module M therein.

Denote byM the presheaf of OX modules formed by the assignment of distinguished opens

Xf 7→ S−1
f M = Rf

⊗
R

M. One can verify that M is indeed a quasi-coherent sheaf of OX-

modules. Denote the assignment by ∆(M) =M. Conversely, consider a quasi-coherent sheaf

of OX-modules F ∈ Qcoh(X), and denote by Γ(X,F) = F(X) ∈ OX(X)-mod = R-mod.

Theorem 1.1.6. ∆ : Qcoh(X) → R-mod : Γ form an adjoint pair of functors, resulting in

an equivalence of the categories Qcoh(X) and R-mod.

Of course, there are more parts to the story of affine schemes, but these are sufficient for

our needs. We are interested in something more general than an affine scheme.

Definition 1.1.7. A scheme is a pairing (X,OX) of a topological space X and a structure

sheaf of rings OX over that space, such that for any point x ∈ X there exists a neighborhood

U of X containing x for which the pair (U,OX |U) is an affine scheme.

One common method for constructing a scheme is to glue more than one affine scheme

together. As you might expect here, the word ”glue” is not simply a colloquialism, but a

precise term. To glue schemes {Xi}I together, we glue by open subschemes Xij = Xi∩Xj ⊂

Xi which are isomorphic via morphisms φij : OXj |Xji ' OXi |Xij , wherein φii = idXi , such

that the cocycle condition is met:

φik|Xki∩Xkj = φij|Xji∩Xjk ◦ φjk|Xki∩Xkj (1.1)

so that the three pairwise intersections are equal.

A classic example of a non-affine scheme which can be constructed in such a manner is that

of projective n-space, Pnk . We will consider the case when n = 2. Let k be an algebraically

closed ring of characteristic 0, and denote by R = k[x0, x1, x2] the ring of polynomials in three
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indeterminants with coefficients in k, which has as it’s elements k-linear sums of monomials

xa = xa0
0 x

a1
1 x

a2
2 with 0 ≤ ai ∈ Z for all i. We say that an element f =

∑
bαx

aα ∈ R is

homogeneous of degree n if
3∑
i=0

aαi = n for all α. In this way we see that R is Z-graded.

Let Sj = {xij | 0 ≤ i ∈ N} ⊂ R be the multiplicitive set generated by the element

xj, and denote Rj = (S−1
j R)0 the homogeneous elements of degree 0 of the localization

S−1
j R = k[x0, x1, x2, x

−1
j ]. Each element f ∈ Rj can then be written as a k-linear sum of

monomials xa

xnj
where n =

2∑
i=0

ai. Hence, Rj ' k[x0/j, x1/j, x2/j], where xj/j = 1. To construct

P2
k we will glue together the affine schemes Xj = Spec(Rj) corresponding to the Rj by

considering the open sets Xjk obtained by removing from Xj the locus of points wherein

xk/j = 0. Thus we have, for instance, OX2(X20) = k[x0/2, x1/2, x
−1
0/2], and OX2(X20 ∩X21) =

k[x0/2, x1/2, x
−1
0/2, x

−1
1/2]. Note, here, that X20 ∩ X21 is the locus of points in Spec(R2) where

both x0/2 6= 0, andx1/2 6= 0.

To establish the morphisms φij : OXj |Xji ' OXi|Xij , we simply utilize the isomorphisms

of rings of global sections φij : k[x0/j, x1/j, x2/j, x
−1
i/j] ' k[x0/i, ..., x3/i, x

−1
j/i] defined by xk/j 7→

xk/ix
−1
j/i. We verify condition 1.1 for the element x0/2; the others verify similarly. Behold,

(φ01 ◦ φ12)(x0/2) = φ01(x0/1x
−1
2/1) = (x1/0)(x−1

2/0x1/0) = x−1
2/0 = φ02(x0/2).

With the cocycle condition verified, we conclude that we have indeed glued together

the scheme P2
k. Since OP2

k
is a quasi-coherent (indeed, coherent) sheaf, the process for gluing

together the quasi-coherent sheaves in the category Qcoh(Pnk) will be similar, and the process

is formally explicated in the final chapter, section 6.1.2.

1.1.2 Goals

Inspired thusly, the work in this thesis addresses the following problems:

1. Developing an adaptation of the quantum differential operators of Lunts and Rosenberg

[2] from which we can glue together a sheaf of differential operators for a quasi-affine

non-commutative space.
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2. Gluing together a suitable non-commutative quasi-affine space over which we will con-

sider these differential operators. In this case, the space is a non-commutative version

of projective space with an affine cover.

3. In the direction of holonomic D-modules, calculating the associated graded algebra for

the algebra of differential operators, and its Gelfand-Kirillov dimension.

1.2 Outline

This dissertation is organized into five chapters, aimed at addressing the problems enu-

merated above in 1.1.2. Chapters 2, 3, and 6 are concerned with the first two of those

problems, while Chapter 4 attempts to address the third. Chapter 5 offers no help in the

pursuit, but provides a few very interesting research questions.

In [7] Grothendieck establishes a particularly generalizable concept of differential opera-

tors for modules of commutative rings by considering the bimodules of morphisms between

them. Lunts and Rosenberg generalize this concept to non-commutative rings in [2], and,

specifically, to graded-non-commutative algebras where they are able to deform the defin-

ing relation with a bicharacter γ. We recall these definitions at the beginning of Chapter

2, before outlining an adaption more suitable to our specific setting: shifted γ-differential

operators. Namely, the setting in which k is an algebraically closed field of characteristic

0, an R = ⊕ΓRa a commutative k-algebra graded by an abelian group Γ. For Γ we fix a

bicharacter γ : Γ× Γ→ k×. Over R we consider a Γ-graded R-bimodule M . For a ∈ Γ, we

define

Z0
γ,a(M,R) = {m ∈M | r ·m− γ(|r|+ a, |m|)m · r = 0 for all r ∈ R},

analagous to the centers used by Grothendieck and Lunts and Rosenberg, and putD0
γ(M,R) =∑

a∈Γ

Z0
γ,a(M,R). We define Dγ(M,R) = ∪Di

γ(M,R), with each Di
γ(M,R) defined similarly

to the degree 0 case. In particular, we wish to consider the differential operators of the k-

algebra R, so we specify the bimodule Endk(R) of homogeneous k-linear endomorphisms of
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R, and denote the shifted γ-differential operators on R simply as Dγ(R). Half of the reason

we choose to restrict ourselves to commutative algebras is because there exists literature

detailing how to work with the differential operators of Lunts and Rosenberg over commu-

tative rings, namely, [3] of Iyer and McCune, and half is due to the results of Bischof’s [4],

revealing to us a method to determining the sheaves of differential operators for a specific

non-commutative algebraic variety. In [3] Iyer and McCune determine generators for Lunts

and Rosenberg’s quantum differential operators over the polynomial algebra k[x1, ..., xn].

From this we obtain what our shifted γ-differential operators are on the same algebra.

Chapter 3 addresses the second issue in problem 1 above: establishing the localizations

necessary to glue together, via descent, the differential operators of Chapter 2 over for

non-commutative projective space. Let S ⊆ R be a multiplicitive subset of R; denote by

R′ = S−1R the algebra of fractions of R with demoninators in S, and M ′ = M ⊗R R′ for

M an R-bimodule. We first determine the elements of Dγ(M
′, R′) and how to obtain them

from Dγ(M
′, R). Switching back to the differential operators of Lunts and Rosenberg over

a non-commutative algebra R, we present a result from the classical theory of localization

of differential operators, that Dγ(RS
−1) ' Dγ(R)S−1, which carries over to our setting. We

end the chapter by applying the results to our polynomial algebra k[x1, ..., xn], and show the

shifted γ-differential operators are not affected by differeing the order of localization by two

multiplicitive subsets S1, S2 ⊆ R, which is necessary when gluing together sheaves.

With all objects now collected in Chapters 2 and 3 we can go about laying the ground-

work for putting them together. After reviewing notions for descent and gluing together

categories, we apply the machinery to construct both our non-commutative projective space

and its sheaves of differential operators in Chapter 6. We construct the non-commutative pro-

jective space from an affine covering of varieties corresponding to the algebras kβi [x1, ..., xn],

where {βi | i = 0, ..., n} is a collection of 2-cocycle deformations of the multiplication in the

standard, commutative polynomial algebra. This means that xixj = βi(ei, ej)xjxi. In doing

so we find when this collection can be determined as homogeneous degree 0 elements from

localizations of kβ[x0, ..., xn] by the Ore subsets Si = {1, xi, x2
i , ...}.

By this point, we have established a suitable theory which will provide us with modules

7



for the sheaf of differential operators over a non-commutative, quasi-affine space, provided

we carefully apply the results of [4]. Breifly, we wished to come up with a definition for

holonomic D-modules over a non-commutative space. What we obtain is an approach to

such a definition. Algebraically, the concept of holonomic D-modules depends on having an

assocated graded sheaf of differential operators, Σ =
⊕
i≥0

Di/Di−1, and a way to calculate its

dimension so that we can calculate the dimension of the support of the associated graded

module corresponding to a D-module. In Chapter 4 we determine what the associated

graded algebra is for the algebra of shifted γ-differential operators of the polynomial algebra

k[x1, ..., xn], and we calculate its GK-dimension.

The last chapter contains an extension of a construction of A. Rosenberg in [5]. Rosen-

berg’s hyperbolic algebras are a class of algebras containing generalized Weyl algebras, aimed

at simplifying the calculation of classes of irreducible representations, and thus primitive

ideals. As mentioned before, differential operators, and thus Weyl algebras, provide an ap-

proach to non-commutative algebraic geometry, wherein one of the pitfalls is that the notion

of points includes not only maximal ideals, as in the commutative case, but also primitive

ideals. Rosenberg adapts the definition to categories, creating the hyperbolic categories,

from which he outlines the calculation of their spectrum. We provide no results to accom-

pany our definition of graded hyperbolic algebras, other than that they describe the algebras

of differential operators we have been working with throughout this thesis. Future work

would include an adaptation to define graded hyperbolic categories, and the calculation of

the spectrum of said category, which would provide an actual collection of points to define

the space in which we are studying these geometries.

1.3 Questions for Future Research

First and foremost it must be emphasized again that the construction for affine non-

commutative schemes presented in this thesis eschews the requirement of having an under-

lying topological space corresponding to the spectrum of the ring of global sections. To that

end, the highest priority for future research is adapting the (left) spectrum developed by
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Rosenberg in [5] for hyperbolic rings and categories to the graded hyperbolic rings defined

in chapter 5 and the yet-to-be-defined graded hyperbolic categories.

Additionally, though it is not explored in this thesis, the construction employed here

and the example on which we build is general enough to extend from projective spaces to

grassmannians and geometric representation theory via D-modules on the quantized flag

variety. Indeed, Lunts and Rosenberg developed the theory for, via the quantum differential

operators we will see in Section 2.2.3, and formulated an analogue of the Beilinson-Bernstein

correspondence, which Tanisaki proved in [8]. Work here could have an eye toward an

analogue for the Riemann-Hilbert correspondence in this setting of Lunts and Rosenberg,

and a Kazhdan-Lustig conjecture in the setting of quantized enveloping algebras.
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Chapter 2

Shifted Differential Operators

Here we wish to offer an additional description to the quantum differential operators of

Lunts and Rosenberg, introduced in [2], the reference we will follow until Section 2.3. The

innocuous change to the general definition of differential operators by Grothendieck made in

that work introduces a second grading on the ring of differential operators. In this chapter

we explore this additional structure with some standard results, and see what this ring looks

like in the case of our affine covers in our attempt to construct the differenial operators on

a non-commutative projective space.

2.1 Differential Operators on Commutative Rings

Just to set the stage for the differential operators we will be working with, we will review

the setting for the differential operators of Grothendieck.

Let k be a commutative ring, R a commutative k-algebra, and M an R-bimodule. Recall

that for r ∈ R, adr ∈ Endk(M) is defined by adr(m) = r ·m−m · r, for all m ∈M .

Definition 2.1.1. A filtration by R-sub-bimodules Mi ⊆ Mj for all i ≤ j ∈ Z of an R-

bimodule M , is called a D-filtration if

a) Mi = 0 for all i < 0

b) adr(Mi) ⊂Mi−1 for all r ∈ R

10



A natural choice of filtraion, and the largest with respect to inclusion, is the filtration on

M by M∨
i := {m ∈M | adr(m) ∈M∨

i−1}. One can show, using the commutativity of R, that

each of these M∨
i is an R-sub-bimodule of M , hence M∨ =

⋃
i≥−1

M∨
i is as well. It is called

the differential part of M . Note that if R is non-commutative, this is only a k-submodule.

Recall that for M,N ∈ R-mod, we have Homk(M,N) as an R-bimodule, with (r ·f)(m) =

r · f(m) and (f · r)(m) = f(r ·m). We can now make the differential part of Homk(M,N),

Diff(M,N) := Homk(M,N)∨ whose elements are called k-linear differential operators from

M to N .

This defines for us an order for the differential operators from M to N , by Diff(M,N)i =

Homk(M,N)∨i = {f ∈ Homk(M,N)| adr(f) ∈ Homk(M,N)∨i−1}, and this notion of degree

lines up with the notion of order of differential operator, wherein an operator d is of order n

precisely if n+1 is the minimum number of elements in R such that [rn+1, [rn, ...[r1, d]...]] = 0

for all r1, ..., rn+1 ∈ R, considered as operators. Furthermore, when M = N and Endk(M)

is considered as a k-algebra, then Endk(M)i ◦ Endk(M)j ⊆ Endk(M)i+j. For the sake of

convenience and tradition, we will denote

Diff(M) = Diff(M,M) ⊂ Endk(M).

There are numerous results that can be proven from these definitions, such as establishing

localization and showing that we can construct a sheaf of differential operators for an affine

scheme, and that its sections can be determined on any open subscheme, but all we really

need for the moment is the construction itself.

2.2 Quantum Differential Operators

When R is not necessarily commutative, there are actually two notions of differential

operator algebras between the previously outlined formulation of Grothendieck’s differential

operators on a commutative ring and those to be oulined in this section. These are, unsur-

prisingly, differential operators on a non-commutative ring, and β-differential operators, for
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a bicharacter β of a Γ-graded ring R. We will elucidate these briefly.

2.2.1 Differential Operators on non-commutative rings

Let R be a k-algebra which is not necessarily commutative. If we tried to take Definition

2.1.1 and use it for the bimodule Endk(R), we would find that left multiplication by an

element of R is not necessarily a differential operator, and assuredly not a degree 0 differential

operator as in the commutative case. Indeed, with λs(t) = st, we would need adr(λs)(t) =

r ·λs(t)−λs · r(t) = rst− srt = 0 for all r, t ∈ R for λr to be in Endk(R)∨0 , which, obviously,

we do not have in the non-commutative case.

Recall that a filtration by R-sub-bimodules Mi ⊆ Mj for i ≤ j ∈ Z is exhaustive if

∪Mi = M . In particular,

Definition 2.2.1. An R-bimodule M is differential if it has an exhaustive filtration 0 =

M−1 ⊆ M0 ⊆ M1 ⊆ ..., such that each Mi/Mi−1 is a quotient of
⊕
i∈I
R, for I some not-

necessarily-finite indexing set.

Remark 2.2.2. Note that the second condition on this filtration, that Mi/Mi−1 is a quotient

of
⊕
i∈I
R, is not a condition imposed in the commutative case, though it is satisfied. We will

not go into detail explaining how this condition is used in creating a workable theory of

differential operators on non-commutative rings, suffice to say that it allows for extension of

the operators to a localization of the ring R by an Ore subset.

Definition 2.2.3. The center of a bimodule M is defined as usual, with k-submodule

Z(M) := spank〈m ∈M | adr(m) = 0 for all r ∈ R〉.

Starting with this center it can be shown, as before, there exists a maximal chain of

R-sub-bimodules satisfying the filtration described in Definition 2.2.1:

z0M := RZ(M)R,

ziM := Rπ−1
i (Z(M/zi−1M))R,
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where πi : M →M/zi−1M is the canonical R-bimodule morphism. Notice that at each level

of this inductive definition we have to generate the R-subbimodule ziM . Just like in the

commutative case, to talk about differential operators of the left R-module M , we consider

the R-bimodule Endk(M), and set Diff(M) = ∪zi Endk(M).

2.2.2 β-Differential Operators

As hinted by the use of the bicharacter β in β-differential operators, the setting will

be more involved. However, it will allows for the generalization to quantum differential

operators we will see next.

Let k be a field and Γ an abelian group. Let R =
⊕
a∈Γ

Ra be a Γ-graded k-algebra, with

Rh = ∪Ra denoting the homogeneous elements of R, and |r| = a for r ∈ Ra their degree. As

we are now examining a graded ring, we will require graded modules M =
⊕
a∈Γ

Ma. Denote

by grΓR-bimod the category of all such Γ-graded R-bimodules.

Definition 2.2.4. Let k× the multiplicitive group of k. A function β : Γ×Γ→ k× is called

a bicharacter if for all a, b, c ∈ Γ,

β(a+ b, c) = β(a, c)β(b, c), and β(a, b+ c) = β(a, b)β(a, c).

A bicharacter β is called skew-symmetric if χ(a, b)−1 = χ(b, a).

Fix a skew-symmetric bicharacter β : Γ × Γ → k?. The construction of β-differential

operators is much the same as those on a general non-commutative ring, with two main

differences: the use of the β-center rather than the usual center, and the notion of the

required filtration on a module tweaked to include the grading action from Γ.

Definition 2.2.5. For each M ∈ grΓR-mod, this action, via β, define the grading action of

Γ on M as the representation σM : Γ→ Autk(M) defined by

σM(a)|Mb
:= β(a, b) idMb

for a, b ∈ Γ.
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This means that Γ acts on the k-algebra R as well, via the representation σR. We call

RΓ := k[Γ]#R =
⊕
a∈Γ

Ra

the crossed product algebra resulting from this action. Explicitly, we have

a · r = σR(a)(r)a = β(a, b)ra, for r ∈ Rb, a, b ∈ Γ.

Definition 2.2.6. Let β be a bicharacter of Γ with R a Γ-graded ring and M ∈ grΓR-bimod.

For homogeneous elements r ∈ Rh and m ∈Mh we define the β-commutator as

[r,m]β = mr − β(|m|, |r|)rm.

Definition 2.2.7. The β-center of a graded R-bimodule M is defined as the k-module

Zβ(M) = spank〈m ∈Mh | [r,m]β = 0 for all r ∈ Rh〉.

We say an exhaustive filtration by R-sub-bimodules 0 = M−1 ⊆ M0 ⊆ ... is β-differential if

Mi/Mi+1 is a quotient of
⊕
i∈I
RΓ.

It is with this center we construct our maximal β-differential sub-bimodule in exactly the

same way as in the general non-commutative case. It can be shown that ∪zβiM is maximal

among β-differential R-sub-bimodules of M , where

zβ0M := RZβ(M)R,

zβiM := Rπ−1
i (Zβ(M/zβi−1M))R,

and πi : M →M/zβi−1M is the canonical R-bimodule morphism. To talk about β-differential

operators, we consider the R-bimodule Endk(M) for a left R-module M , and as before we

set Diffβ(M) =
⋃
i

zβi Endk(M).
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2.2.3 Quantum Differential Operators

Finally, we arrive at the quantum differential operators of Luntz and Rosenberg. The

setting is much the same, except, as noted, there is an additional grading introduced. For

M ∈ grΓ k-mod, and γ ∈ Γ, let

M [γ] =
⊕
a∈Γ

M [γ]a, with M [γ]a = Mγ+a for any a ∈ Γ.

Note that, as before, this defines the action of Γ on the objects of grΓR-bimod, with

σM [γ]|M [γ]b := β(γ + a, b) idM [γ]b .

For R a Γ-graded k-algebra, the previously defined RΓ is a Γ-graded R-bimodule. Denote

by Rq
Γ the sum

Rq
Γ =

⊕
γ∈Γ

RΓ[γ].

Definition 2.2.8. A module M ∈ grΓR-bimod is called q-differential if it has an exhaustive

filtration by graded R-sub-bimodules with M−1 = 0, such that each successive quotient

Mi/Mi−1 is a subquotient of a direct sum of copies of the R-bimodule Rq
Γ.

Definition 2.2.9. For M ∈ grΓ R-bimod, the q-center of M , Zq(M) is defined as the k-span

of homogeneous elements in m ∈Mh, for which there exists a b ∈ Γ such that

mr = β(|m|+ b, |r|)rm for all r ∈ R.

M is called q-central if M = RZq(M)R.

For a general bimodule M , there is a canonical, maximal q-differential sub-bimodule
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Mq =
⋃
i≥−1

zqiM where the zqiM are defined iteratively:

zq0M := RZq(M)R,

zqiM/zqi−1M = RZq(M/zqi−1M)R.

As in the commutative case, there are certain R-bimodules we wish to consider; namely,

the (bi)modules of morphisms between graded left R-modules. Let M and N be graded left

R-modules and let gr Hom(M,N) denote the k-submodule of Homk(M,N) =
⊕
γ∈Γ

Homk(M,N)γ

spanned by homogeneous elments.

Definition 2.2.10. For M, and N ∈ grΓR-mod, define the q-differential operators of order

at most n from M to N to be

Diffnq (M,N) = zqn gr Hom(M,N),

and Diffq(M,N) =
⋃
i≥−1

Diffiq(M,N).

Notice, again, that at each step of constructing the q-differential submodule of a graded

bimodule, we must generate the submodule overR. It may seem obvious from this generating,

but the problem is that the center is not closed under action from the ring. Explicitly, con-

sider m ∈ Zq(M), then the claim is that rm /∈ Zq(M). Indeed, (rm)r′ = β(|m|, |r′|)r′(rm) 6=

β(|rm|, |r′|)r′rm unless β(|r|, |r′|) = 1.

2.3 Shifted Differential Operators

We will retain the notation from the setting of the quantum differential operators of

[2] in section 2.2.3 above with the significant alteration that R is now a commutative, Γ-

graded k-algebra. The loss of generality is, frankly, disappointing, but allows us to describe

out specific setting, and, as noted in [4], will extend to some special non-commutative rings.

The exact ones, in fact, used as examples in [2]. As we just saw, the introduction of quantum
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differential operators and this idea of shifting introduces an additional grading. Instead of

combining all of those graded components into one ”quantum” center and generating the

bimodule at each step, we can instead make a center for each shift, whence it turns out we

do not have to generate to get a module closed under the ring action. After all, with R

commutative, we are now guaranteed that β(|r|, |r′|) = 1 for all r ∈ R.

Definition 2.3.1. Let M be a Γ-graded R-bimodule. For all a ∈ Γ we define the a-shifted

center of M as

Z0
β,a(M,R) := 〈m ∈Mh | mr = β(|m|+ a, |r|)rm for all r ∈ Rh〉k. (2.1)

Further, define the 0-degree shifted-β-differential operators as

D0
β(M,R) :=

∑
a∈Γ

Z0
β,a(M,R). (2.2)

With a skew-symmetric β, it is immediate that we also must have rm = β(|r|, |m| +

a)mr for all r ∈ Rh and m ∈ Z0
β,a(M,R), an element of the R-bimodule M.

The following theorem shows us that the action of R moves elements of M between these

shifted centers, just as it shifts them between the graded components of the module itself.

Theorem 2.3.2.

1. Z0
β,a(M,R) is a Γ-graded k-vector subspace of M .

2. For all r ∈ Rh,


rZ0

β,a(M,R) ⊆ Z0
β,a−|r|(M,R),

Z0
β,a(M,R)r ⊆ Z0

β,a−|r|(M,R).

In particular, D0
β(M,R) is an R-bimodule.

Proof. The first is obvious. For the second, consider m ∈ Z0
β,a(M,R) for some a ∈ Γ. Then,

17



by definition, mr = β(|m|+ a, |r|)rm for all r ∈ R. Thus, for any s ∈ R, we have

(rm)s = r(ms) = β(|m|+ a, |s|)r(sm)

= β(|rm| − |r|+ a, |s|)rsm

= β(|rm| − |r|+ a, |s|)s(rm),

since for a Γ-graded module M we have |rm| = |r|+ |m|. Thus, rm ∈ Z0
β,a−|r|(M,R) for m ∈

Z0
β,a(M,R).

We will again rely on these shifted centers, gathering them to form the collection of

differential operators for each degree. To define the higher order operators we need, just

as in the classical case, a bracket. Here, we need one that takes into account both the

bicharacter β relating the left and right actions on our bimodules and the shifting discussed

in the above theorem, 2.3.2.

Definition 2.3.3. Let M ∈ grΓ R-mod, with m ∈ Mh and r ∈ Rh. For a ∈ Γ define their

a-shifted β-commutator as

[m, r]β,a = mr − β(|m|+ a, |r|)rm.

Definition 2.3.4. For a bimodule M ∈ grΓR-mod, we define the a-shifted, i + 1-th degree

center iteratively to be

Zi+1
β,a (M,R) := 〈m ∈Mh | [m, r]β,a ∈ Di

β(M,R) for all r ∈ Rh〉k.

We then make Di+1
β (M,R) :=

∑
a∈Γ

Zi+1
β,a (M,R).

Proposition 2.3.5.

1. Zi+1
β,a (M,R) is a Γ-graded k-vector subspace of M .
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2. For all r ∈ Rh


rZi+1

β,a (M,R) ⊆ Zi+1
β,a−|r|(M,R),

Zi+1
β,a (M,R)r ⊆ Zi+1

β,a−|r|(M,R).

In particular, Di+1
β (M,R) is an R-bimodule.

Proof. Again, the first is obvious. For the second, consider m ∈ Z0
β,a(M,R) for some a ∈ Γ.

Then, by definition, [m, r]β,a ∈ Di
β(M,R) for all r ∈ R. Thus, for any s ∈ R, we have

(rm)s = r(ms) = r(β(|m|+ a, |s|)sm+ d)

= β(|rm| − |r|+ a, |s|)rsm+ rd

= β(|rm| − |r|+ a, |s|)s(rm) + rd,

where [m, s]β,a = d ∈ Di
β(M,R).

Though we have made our definitions for general bimodules, recall that we have a specific

motivation here: the bimodule Homk(M,N) for left-R-modules M and N . But, really, we

seek Endk(M) for a left-R-module M . But really, really, Endk(R). To this end, we denote

Dβ(M) :=
⋃
i≥−1

Di
β(Endk(M), R), with D−1

β = 0.

Proposition 2.3.6. For M ∈ grΓ R-mod, Dβ(M) is a ring. In particular, we have

Di
β,a(M) ◦Dj

β,b(M) ⊆ Di+j
β,a+b(M).

Proof. It is known that Endk(M) is a ring; we simply need to show Dβ(M) ⊆ Endk(M), ob-

viously containing identity elements, is closed under composition. Let ϕ ∈ Di
β,a(M) and ψ ∈

Dj
β,b(M), then for r ∈ Rh we have

(ϕ ◦ ψ)r = ϕ ◦ β(|ψ|+ b, |r|)rψ

= β(|ϕ|+ a, |r|)β(|ψ|+ b, |r|)rϕ ◦ ψ

= β(|ϕ|+ |ψ|+ a+ b, |r|)r(ϕ ◦ ψ).
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Thus, ϕ ◦ ψ ∈ Di+j
β,a+b(M).

In the next chapter we will discuss the localization of our rings of differential operators,

as it is imperative we understand the construction for us to pursue our goal of examining the

differential operators on non-commutative projective space and their modules. Imminently,

we will apply this construction to the relevant commutative ring with we plan to work.

Eventually, however, we must address the fact that our construction is for commutative

rings, while we have again, just now, claimed the goal is to work with a non-commutative

projective space.

2.4 Examples on Polynomial Algebras

As in [3], we will start out on k[x], polynomials of one variable before moving on to the

general n-variable case. Let k be an algebraically closed field of characteristic 0. In this

case, our grading group Γ = Z. Denote by β : Z × Z → k× the bicharacter determining

grading action by Z on k[x], defined by β(a, b) = qab for some q ∈ k×, then we have for

M ∈ grZ k[x]-bimod, σM : Z→ GLk(M) defined as before:

σM(a)(m) = β(a, |m|)m = qa|m|m for all a ∈ Z and m ∈Mh.

Be reminded, we are considering homogeneous k-linear morphisms; that is, morphisms

ϕ ∈ Homk(M,N) =
⊕
α∈Z

Homk(M,N)α such that ϕ(Ma) ⊆ N|ϕ|+a. For f ∈ k[x] we will

denote by λf the endomorphism of k[x] defined as left multiplication by f . Explicitly:

λf (g) = fg for all g ∈ k[x]. We will use this convention when referring to the image of

elements of k[x] under the standard embedding k[x] ↪→ Endk(k[x]). i.e. f 7→ λf . There is a

right multiplication as well, ρf . Note that this means λf ∈ Endk(k[x])a for f of homogeneous
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degree a. On Endk(k[x]) we define the a-shifted, β-commutator

[ϕ, ψ]β,a := ϕψ − β(|ϕ|+ a, |ψ|)ψϕ for homogeneous ϕ, ψ ∈ Endk(k[x]).

It is important to note that σa ∈ Endk(k[x])0 for all a ∈ Z, since the operators simply

add an invertible scalar coefficient, and thus do not change the homogeneous degree of any

f ∈ k[x].

Now that we have the setting, the first obvious question to ask is about what elements

are in Z0
β,a(Endk(k[x]), k[x]).

Proposition 2.4.1. If ϕ ∈ Z0
β,a(Endk(k[x]), k[x]), then ϕ = ρfσa.

Proof. Suppose ϕ ∈ Z0
β,a(Endk(k[x]), k[x]), and suppose that ϕ(1) = f ∈ k[x]. Then

[ϕ, λg]β,a(1) = ϕλg(1)− β(|ϕ|+ a, |g|)λgϕ(1) = 0

=⇒ ϕ(g) = β(|ϕ|+ a, |g|)gf

=⇒ ϕ = ρfσa.

On the other hand,

[ρfσa, λg]β,|f |+a(h) = ρfσ|f |+a(gh)− β(|f |+ a, |λg|)ρfσ|f |+a(h)

= β(|f |+ a, |gh|)ghf − β(|f |+ a, |g|)β(|f |+ a, |h|)ghf

= 0.

Thus ρfσ|f |+a ∈ Z0
β,a(Endk(k[x]), k[x]) for any f ∈ k[x] and a ∈ Z.

Natrually, now we wish to consider Z1
β(Endk(k[x]), k[x]), and to do so we will need degree-

lowering operators. Of course, we have some special ones for this specific setting; these are

defined in [3].
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Definition 2.4.2. For a ∈ Z, the operator ∂β
a

is defined by the equation

∂β
a

(xn) : = [n]β(a,1)x
n−1

= (1 + β(a, 1) + β(a, 2) + ...+ β(a, n− 1))xn−1.

For a ∈ Z, we can rewrite this in terms of the operators σa as

∂β
a

=
1− β(1, 1)

1− β(1, a)
∂β

1

[σ0 + σ1 + ...+ σa−1], for a > 0, (2.3)

∂β
a

=
1− β(1, 1)

1− β(1,−a)
∂β
−1

[σ0 + σ−1 + ...+ σa−1] for a < 0. (2.4)

It’s clear that ∂β
a

is an element of Z1
β,a(Endk(k[x]), k[x]). Indeed,

[∂β
a

, x]β,a+1(xn) = ∂β
a

(xn+1)− β(|∂βa |+ a+ 1, 1)x∂β
a

(xn)

= [n+ 1]β(a,1)x
n − β(a, 1)[n]β(a,1)x

n

= xn.

Thus, [∂β
a
, x]β,a+1 = 1 ∈ D0

β. While this is just an example, we get a representation

in the form of λfσa for any other [∂β
a
, xn]β,a+1, for which there exists a b ∈ Z so that

[[∂β
a
, xn]β,a, x

m]β,b = 0.

Theorem 2.4.3. The first order differential operators {∂βa | for a = 0, 1} generate D1
β as

an R-module.

Proof. Since we have defined D1
β as the collection

⋃
a∈Γ

Z1
β,a(Endk(k[x]), k[x]), this is really just

a statement about Z1
β,a(Endk(k[x]), k[x]).
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Chapter 3

Localization

Here, we expand the notion of shifted differential operators introduced in the previous

chapter so that we may mimic the algebraic geometry construction of schemes. The main

goal is to describe what happens when we make the differential operators on the localization

of the ring, and to compare this to what happens to the ring of differential operators when

we localize it. Specifically, in the language of shifted differential operators: what happens

to the shifted centers? This may sound like a banal algebraic result, but localization is an

extremely important construction in algebraic geometry in general, and specifically here for

obtaining our main objective.

Let us recall the localization concept in detail. Let R be a commutative, unital ring and

1 ∈ S ⊆ R be a multiplicitive subset, i.e. a multiplicitive submonoid of R. The essential idea

is that we are adding the formal multiplicitive inverses to the elements of S to the ring R.

To this end, we make the cartesian product R× S and quotient by the equivalence relation

(r, s) ∼ (r′, s′) if and only if there exists s1 ∈ S such that s1(rs′ − r′s) = 0.

This ring of fractions denoted S−1R consists of the equivalence classes for (r, s) denoted by
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r
s
. This collection is a ring with the familiar addition and multiplication:

r

s
+
r′

s′
=
rs′ + r′s

ss′
and

r

s

r′

s′
=
rr′

ss′
,

with additive identity 0
1
, additive inverses −a

b
, and multiplicitive identity 1

1
. It is routine to

check that these operations are well-defined.

In the non-commutative case, we have to be more careful about how we define our

elements. For instance, if we wish to consider right inverses of our multiplicitive set S ⊆ R

of the non-commutative, unital ring R, we mean that for s ∈ S there exists s−1
r such that

ss−1
r = 1. Thus the ring RS−1 has as its elements rs−1 for r ∈ R and s ∈ S. Since these

s−1 are still elements of the ring, they can be multiplied on the left, and the necessary well-

defined-ness of multiplication of these elements demands the ability to write s−1r as r′s′−1

for some r′ ∈ R and s′ ∈ S.

3.1 Localization of Shifted Differential Operators

Definition 3.1.1. Let S be a multiplicitive subset of a ring R, then S is right Ore if for

each r ∈ R and s ∈ S, there exists s′ ∈ S and r′ ∈ R such that rs′ = sr′. Alternatively,

rS ∩ sR 6= ∅. We will also require that s is not a zero divisor for all s ∈ S, or, a regular

element.

The following lemmas make it much easier to show that a multiplicitive subset is Ore

than is done simply by definition. For a longer, more detailed discussion of the localization

non-commutative rings, see [9].

Lemma 3.1.2. The multiplicatively closed subset of a ring R generated by a family of right

Ore sets of R is right Ore.

Proof. See Lemma 4.1 in [10].
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Definition 3.1.3. Let V be a k-vector space. A k-endomorphism α of V is called locally

nilpotent if for all v ∈ V there exists m ∈ N such that α(v) = 0 .

Lemma 3.1.4. Let x be a a regular element of R such that the map δx : a 7→ ax − xa is

locally nilpotent, then S = {1, x, x2, ...} is Ore.

Proof. See Lemma 4.7 in [10].

Example 3.1.5. Consider γ : Zn × Zn → k× a skew symmetric bicharacter and a 2-cocycle

for the group Zn which grades the ring of polynomials in n variables k[x1, ..., xn] over the

field k. Instead, we will work with the ring of skew polynomials kγ[x1, ..., xn], wherein xixj =

γ(ei, ej)xjxi, with ei the ith basis vector in Zn. Note here, that with the specified grading,

the homogeneous elements of kγ[x1, ..., xn] are just monomials.

If we make Si = {1, xi, x2
i , ...}, then Si is right Ore. In the notation of definition 3.1.1,

we set r = xa1
1 x

a2
2 ...x

am
m and s = xmi . Clearly, s′ = xmi and r′ = Cxb11 x

b2
2 ...x

bn
n with C ∈ k. We

have,

rs′ = (xa1
1 x

a2
2 ...x

an
n )xni =

(
n∏

k=i+1

γ(akek,mei)

)
xa1

1 ...x
ai+m
i ...xann and,

sr′ = xmi (Cxb11 x
b2
2 ...x

bn
n ) =

(
i−1∏
k=1

γ(mei, bkek)

)
xb11 ...x

bi+m
i ...xbnn

We need s = s′, and r′ = Cr with C =

n∏
k=i+1

γ(akek,nei)

i−1∏
k=1

γ(nei,akek)

=
n∏
k=1
k 6=i

γ(akek, nei). Consequently, Si

is a right Ore subset of kγ[x1, ..., xn]. The ring kγ[x1, ..., xn]S−1
i is the ring whose elements

are fx−mi for f ∈ kγ[x1, ..., xn]; its homogeneous elements are monomials cxa1
1 ...x

an
n x
−m
i with

c ∈ k. Additionally, 3.1.2 allows us to generate Ore subsets containing monomials in more

than one variable by using these Ore subsets Si. From those, we can make the localization

containing the inverses of these monomials.

It’s important to note the grading here as well. We have x−1
i ∈ kγ[x1, ..., xn]−ei , and thus
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the degree of the monomial xa1
1 ...x

an
n x
−m
i is

deg(xa1
1 ...x

an
n x
−m
i ) = (a1, ..., an)−mei = (a1, ..., ai −m, ..., an) ∈ Zn.

Example 3.1.6. Let D = D(k[x1, ..., xn]) denote the ring of differential operators on the

ring of polynomials in n variables. Since our ring is commutative, we work in the setting

of section 2.1. It is known that D ' An, the n-dimensional Weyl algebra, the k-algebra

generated by x1, ..., xn and ∂1, ...∂n subject to the relations

[∂i, ∂j] = [xi, xj] = 0, and, [∂i, xj] = δij for all 1 ≤ i, j ≤ n,

with δij the usual Kronecker delta function. Due to these relations, we can write any element

of D as a sum of monomials of the form

axa1
1 ...x

an
n ∂

b1
1 ...∂

bn
n . (3.1)

As before, consider the multiplicitive subset Si = {1, xi, x2
i , ...} ⊂ D. It is evident that D

is a infinite-dimensional k-vector space, and any finite dimensional subspace will be generated

by monomials as in equation (3.1). Suppose V ⊆ D is one such finite dimensional subspace

and v ∈ V is one of its finitely many generators. If v = xa1
1 ...x

an
n , then we have directly

[xi, v] = 0. If v contains non-zero powers of any of the partial derivatives ∂k, then v ∈ Dl is a

differential operator of order l ≥ 0 and thus [v, f ] = −[f, v] ∈ Dl−1 for any f ∈ k[x1, ..., xn].

Simply set f = xi and proceed iteratively to see that [xi, ·] is nipotent for any such V . Thus,

by Lemma 3.1.4, Si ⊂ D is Ore in D, and we can form the ring of right fractions DS−1
i .

To see what the ring DS−1
i looks like, consider A1 = D(k[t]), and let t = x−1. We

have d
dt

= dx
dt

d
dx

= ( d
dx
t)−1 d

dx
= (−x2) d

dx
. Thus, we can write ∂x−1 = −x2 d

dx
. To find the
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commutation relations, we have in D(k[t]) that ∂tt− t∂t − 1 = 0, which gives us

∂x−1x−1 − x−1∂x−1 − 1 = 0,

(−x2∂x)x
−1 + x−1x2∂x − 1 = 0, or

x−1∂x − ∂xx−1 − x−2 = 0,

after multiplying by x−2 on both sides. This makes the ringDS−1
i = 〈x1, ..., xn, x

−1
i , ∂1, ..., ∂n〉k,

subject to the relations

[∂i, ∂j] = [xi, xj] = 0, and, [∂i, xj] = δij for all 1 ≤ i, j ≤ n,

with the addition [∂j, x
−1
i ] = 0, and [∂i, x

−1
i ] = −x−2

i .

As we noted in the previous chapter, there is another grading on the ring of shifted

differential operators and it is our goal here to see what happens to both these gradings and

the filtration by which we define these operators.

Consider R =
⊕
a∈Γ

Ra, a Γ-graded, commutative ring and β : Γ × Γ → k× a bicharacter

of the group Γ. Suppose S ⊆ R is a multiplicitive Ore subset of Γ-homogeneous elements of

R, and denote by R′ = RS−1 the ring of right fractions with denominators in S.

Proposition 3.1.7. For M ∈ grΓ R-bimod and M ′ = R′
⊗
R

M
⊗
R

R′ we have, for all s ∈ S

1. 1
s
Z0
β,a(M,R) ⊆ Z0

β,a+|s|(M
′, R),

2. Z0
β,a(M

′, R′) = Z0
β,a(M

′, R).

Proof. For the first, simply observe for m ∈ Z0
β,a(M,R) and r ∈ Rh :

(
1

s
m)r =

1

s
(mr)

= β(|m|+ a, r)
1

s
rm

= β(|1
s
m|+ a+ |s|, r)r1

s
m.
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Hence 1
s
m ∈ Z0

β,a+|s|(M
′, R), and 1) follows.

Now, consider m′ = 1
s
⊗m⊗ 1

s′
∈ Z0

β,a(M
′, R). For t ∈ S we have by definition,

1

s
⊗m⊗ 1

s′
=

(
1

s
⊗m⊗ 1

s′

)
t
1

t

= β(|m′|+ a, |t|)t
(

1

s
⊗m⊗ 1

s′

)
1

t
,

thereby forcing
(

1
s
⊗m⊗ 1

s′

)
1
t

= β(|m′|+a,−|t|)1
t

(
1
s
⊗m⊗ 1

s′

)
. This putsm′ ∈ Z0

β,a(M
′, R′)

and shows Z0
β,a(M

′, R) ⊆ Z0
β,a(M

′, R′). For the reverse inclusion, simply note that R ⊆ R′

since we’ve specified that S contains no zero-divisors.

Recalling that we have defined D0
β(M,R) as the sum

∑
a∈Γ Z

0
β,a(M,R), the next theorem

is essentially a corollary of the previous proposition. It appears in [2] in Lemma 1.2.1.1 and

Theorems 1.2.1 and 3.2.2; here, we couch it in terms of the shifted differential operators and

provide an alternative proof.

Theorem 3.1.8. For R =
⊕
a∈Γ

Ra a commutative, Γ-graded integral domain and S ⊂ R a

multiplicitive set, denote R′ = RS−1. Let M ∈ grΓR-bimod, a bimodule and M ′ = R′ ⊗M .

We have

Di
β(M ′, R′) = Di

β(M ′, R) = R′
⊗
R

Di
β(M,R)

⊗
R

R′,

for all i ≥ 0.

Proof. We will consider the base case i = 0 and proceed by induction. We have already seen

that for all m′ ∈ Z0
β,a(M

′, R) there exist s′, s ∈ S such that m = sm′s′ ∈ Z0
β,a−|s|−|s′|(M,R).

Hence, m′ ∈ 1
s
Z0
β,a−|s|−|s′|(M,R) 1

s′
. and we have

R′(
∑
a∈Γ

Z0
β,a(M,R))R′ =

∑
a∈Γ

Z0
β,a(M

′, R)

=
∑
a∈Γ

Z0
β,a(M

′, R′),
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where the last equality is from the previous proposition.

Now assume that the statement is true for i. That assumption grants

Zi+1
β,a (M ′, R) = 〈m ∈Mh | [m, r]β,a ∈ Di

β(M ′, R) for all r ∈ Rh〉k

= 〈m ∈Mh | [m, r]β,a ∈ Di
β(M ′, R′) for all r ∈ Rh〉k

= 〈m ∈Mh | [m, r]β,a ∈ R′Di
β(M,R)R′ for all r ∈ Rh〉k, and

Di+1
β (M ′, R) =

∑
a∈Γ

Zi+1
β,a (M ′, R),

where [m, r]β,a = mr − β(|m|+ a, |r|)rm. Let s ∈ S and m ∈ Zi+1
β,a (M,R), then we have

(
1

s
m)r =

1

s
(mr) =

1

s
(β(|m|+ a, |r|)rm+ d), for some d ∈ Di

β(M,R)

= β(|1
s
m|+ a+ |s|, |r|)r1

s
m+

1

s
d,

for any r ∈ Rh, and thus 1
s
Zi+1
β,a (M,R) ⊆ Zi+1

β,a+|s|(M
′, R). On the other hand, if m′ ∈

Zi+1
β,a (M ′, R), there exist s, s′ ∈ S such that m = sm′s′ ∈M , with m ∈ Zi+1

β,a−|s|−|s′|(M,R), via

the same proof as Proposition 3.1.7. Hence

R′
⊗
R

∑
a∈Γ

Zi+1
β,a (M,R)

⊗
R

R′ =
∑
a∈Γ

Zi+1
β,a (M ′, R) = Di+1

β (M ′, R)

=
∑
a∈Γ

Zi+1
β,a (M ′, R′) = Di+1

β (M ′, R′).

Additionally, applying Proposition 2.3.6 from the last chapter to the bimodule Endk(M)

for M ∈ grΓR-mod, we now know that

Dβ(M ′) = Dβ(Endk(M)′, R′) = R′
⊗
R

Dβ(Endk(M), R)
⊗
R

R′
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is a ring. From there we have that

Di
β,a(M

′) ◦Dj
β,b(M

′) ⊆ Di+j
β,a+b(M

′).

3.2 Localization of Diffβ(R)

We are now ready to return to our desired setting: the example of k[x1, ..., xn] and its

quantum differential operators, but we are missing a big piece of the puzzle that exists

in the standard case when considering differential operators, and which is essential when

considering the global differential operators of a quasi-affine geometric object. This missing

piece is the fact that we can localize the ring and then construct its differential operators,

or we can construct the ring differential operators for the ring and then localize. In other

words, for a commutative ring R, a multiplicitive subset S1 ⊂ R, and differential operators

on R denoted by D(R) in the sense of section 2.1, we have the following equivalence:

D(RS−1
1 ) ' D(R)S−1

1 .

Equally important for quasi-affine constructions is the commutativity of localization by a

second multiplicitive set S2 ⊆ R; it is in fact a requirement for gluing a sheaf together. In

our setting this means the following diagram commutes:

D((RS−1
1 )S−1

2 ) D(R)S−1
1 S−1

2

D((RS−1
2 )S−1

1 ) D(R)S−1
2 S−1

1 ,

where all arrows are isomorphisms.

Before pursuing these results let us be reminded that heretofore our ring R has indeed

been commutative, which is divergent from the formulation in [2] of β and quantum differ-

ential operators for a bicharacter β on a non-commutative ring R. As noted before, this

divergence is both convenient and necessary. It is convenient because, with strategic ap-

plication of the results of [4], we can still study the specific case we wish to study, and
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necessary because of our insistence on using the shifted differential operators of the previ-

ous chapter, which allows us to simply collect all of the shifted centers together to form an

R-sub-bimodule, rather than having to generate it at every step as we would otherwise be

required to do. If we no longer wish to restrict ourselves to commutative rings R, we can

simply collect all of the shifted centers and generate the bimodule of ith quantum differential

operators at each step and this, by definition, coincides with the construction of [2].

We do not need to go that far, however. Let R =
⊕
a∈Γ

Ra be a unital, associative,

commutative Γ-graded k-algebra, and γ : Γ × Γ → k× a bicharacter of the group Γ. Let

Dγ(R) denote the shifted γ-differential operators of Section 2.3. Let λ : R ↪→ Dγ(R) be the

injective mapping associating each element of R to the left multiplication by that element:

λ(r) := λr such that λr(s) = rs. As before, we will not distringuish between r and λr in

Dγ(R).

Lemma 3.2.1. Suppose R is a finitely generated Γ-graded k-algebra and S ⊆ R is a multiplic-

itive subset with no zero divisors. Let T ∈ Dγ(R). Then there exists a unique T̄ ∈ Dγ(RS
−1)

such that the following diagram is commutative:

R R

RS−1 RS−1,

T

qS qS

T̄

where qS : r 7→ r
1

is the standard localization map.

Proof. To show uniqueness it is enough to show that for any W ∈ Dγ(RS
−1) with W (r) = 0

for any g ∈ qS(R), then W = 0. If the order i of the γ-differential operator W is 0 then this

is immediate. Suppose i > 0. Then by definition [W, t]γ,a ∈ Di−1
γ (RS−1) for all s ∈ S and for

some a ∈ Γ and it annihilates qS(R). Hence by induction [W, t]γ,a = 0. Let f ∈ RS−1. Then

there exists some t′ ∈ S such that t′f ∈ qS(R). Thus t′W (f) = γ(|W | + a, |t′|)W (t′f) = 0.

Since 1
t′
∈ RS−1 we conclude W (f) = 0.

For existence see Lemma 4.1.6 in [4].
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Proposition 3.2.2. Suppose R is a finitely generated Γ-graded k-algebra and S ⊂ R is a

multiplicitive subset with no zero divisors. Then qS : R→ RS−1 induces an isomorphism

pS : Dγ(RS
−1)

∼−→ Dγ(R)S−1,

where pS(T ) = T̄ as in 3.2.1.

Proof. S has no zero divisors and is comprised exclusively of degree zero operators, i.e.

elements of RS−1. Hence we have injectivity.

For surjectivity we show that for all T ∈ Di
γ(RS

−1) there exists s ∈ S such that sT (R) ⊆

R. The initial case i = 0 is immediate. Suppose the statement is true for arbitrary i > 0,

and denote by r1, ..., rn the generators of R. By definition of Di
γ(R), we have that [T, r]γ ∈

Di−1
γ (R) for any r ∈ R and by assumption there exists s ∈ S such that (s[T, r]γ)(R) ⊆ R.

This means that for any h ∈ R such that sh ∈ qS(R) we have

s[T, ri]γ(h) = sT (rih)− γ(|T |, |ri|)sriT (h) ∈ R

⇒ sT (rih) ∈ R.

Considering r = rirj ∈ R, we have

s[T, rirj]γ(h) = s(Trirj)(h)− γ(|T |, |rirj|)srirjT (h) ∈ R

⇒ sT (rirj)(h) ∈ R for all h ∈ R.

Using sT (1) ∈ R and an induction on the length of the monomials ra1
1 ...r

an
n , we see that

this relations implies sT (R) ⊆ R.

Corollary 3.2.3. Let Ŝ2 ⊆ RS−1
1 be a multiplicitive subset with no zero divisors and R

finitely generated. Denote by R̂ = RS−1
1 , then by the previous proposition we have

Dγ(R̂Ŝ
−1
2 ) ' Dγ(R̂)Ŝ−1

2 .
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Furthermore,

Dγ(RS
−1
1 Ŝ−1

2 ) ' (Dγ(RS
−1
1 ))Ŝ−1

2 ' (Dγ(R)S−1
1 )Ŝ−1

2 .

Finally, we wish to say these results lead us to the last result we set out to obtain, that

RS−1
1 Ŝ−1

2 RS−1
2 Ŝ−1

1

Dγ((RS
−1
1 )Ŝ−1

2 ) Dγ(R)S−1
2 Ŝ−1

1 .

∼

∼

(3.2)

3.3 Examples on Polynomial Algebras

Let us now return to the quantum differential operators of Luntz and Rosenberg [2] as

(partially) realized by Iyer and McCune [3]. Starting again with the quantum differential

operators on k[x1, ..., xn], we have that Dq(k[x1, ..., xn]) is the ring generated by elements

ρfσa for f ∈ k[x1, ..., xn] and a ∈ Γ, and the first-order operators ∂β
i

k for i = 0, 1, with

[∂β
a

k , xk]β,a = 1, and [∂β
a

k , xk] = σa Let Si = {1, xi, x2
i , ...} We find that

[∂β
a

i , x
−1
i ](xni ) = ∂β

a

i (xn−1
i )− x−1

i ∂β
a

i (xni )

= (1 + β(a, ei) + ...+ β(a, (n− 2)ei))x
n−2
i − (1 + β(a, ei) + ...+ β(a, (n− 1)ei))x

n−2
i

= −β(a, (n− 1)ei)x
n−2
i .

Thus [∂β
a

i , x
−1
i ] = −x−1

i σax
−1
i .

From [4] this also includes the example of quantum differential operators on kγ[x1, ..., xn]

for γ a 2-cocycle deformation of the multiplication in k[x1, ..., xn]. Due to the so-called

twisting and untwisting oulined therein, we have no worries about how elements of R and

RS−1 commute, ergo we obtain in these cases the result we failed to obtain in the diagram

(3.2), that
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RS−1
1 Ŝ−1

2 RS−1
2 Ŝ−1

1

Dq((RS
−1
2 )Ŝ−1

1 ) Dq(R)S−1
2 Ŝ−1

1 ,

∼

commutes in the category of k-algebras and thus the lower horizontal arrow is an equivalence.
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Chapter 4

Gelfand-Kirillov dimensions

In the theory of holonomic D-modules, dimension plays a role of utmost importance.

Indeed, it is the defining characteristic of the modules, though this is not as simple as taking

the dimension of the module over the the ring of differential operators.

Let X be a smooth algebraic variety over C (or, an algebraically closed, zero-characteristic

field k), with a structure sheafOX and sheaf of differential operatorsDX with Σ =
⊕
i≥0

DiX/Di−1
X

the associated graded sheaf of algebras. There, a coherent DX-module, necessarily hav-

ing a ”good” filtration M =
⊕
i≥0

M i 6= 0 with M i ⊆ M i+1, and thus its own associated

graded module MΣ =
⊕
i≥0

M i/M i−1 naturally has the structure of a Σ-module. What’s

going on here is that Σ is the sheaf of functions on the cotangent bundle T ?(X), and so

we have Supp(MΣ) ⊂ T ?(X). This support is a closed subvariety and has a defining ideal

JMΣ
= ann(MΣ) ⊂ Σ, i.e. Supp(MΣ) = Spec(Σ/JMΣ

). Bernstein’s theorem on defect, or

Bernstein’s Inequality, gives us a lower bound to the dimension of this support:

dim(Supp(MΣ)) ≥ dim(X).

From this inequality it is obvious that there should be nonzero coherent DX-modules with

a minimum dimension, namely dim(X), and it is with this in mind that Holonomic DX-

modules are named to be those with this lowest possible dimension.

We will not be able to go so far as to follow this program to the end, and in this section
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the culmination is the calculation of the GK-dimension of the associated graded algebra of

the ring of γ-differential operators. This would then conceivably make it possible to calculate

dim(Σ/JMΣ
).

The idea is to use localization of our shifted differential operators, Dγ = Dγ(k[x1, ..., xn]),

of section 2.3 and 2.4 to compute the gk-dim of Dγ, since, as we will see, the proper local-

ization doesn’t change the GK-dimension.

4.1 Almost Central Elements

Definition 4.1.1. Let R =
⊕
γ∈Γ

Rγ be a graded k-algebra, and V denote a graded k-subspace

of R; i.e. V =
⊕
γ∈Γ

(V ∩ Rγ) 3 1. We call x almost V-central if xV = V x implies that

(xV )n = xnV n. Additionally, x Rh is called R-central if there is a finite dimensional graded

k-subspace V ⊂ R such that V generates R as a k-vector space and x is almost V -central.

Proposition 4.1.2. Let R =
⊕
γ∈Γ

Rγ be a graded k-algebra and let Ω be a multiplicatively

closed subset of regular, almost R-central elements of R. Then

GKdim(RΩ−1) = GKdim(R).

Proof. Let W be a finite dimensional subspace of RΩ−1 and s ∈ Ω a common denominator of

basis elements in W , then Ws ⊂ R. Consider V = Ws+ks+k. As a direct consequence we

have both that V is a finite dimensional k-subspace of R, and that W ⊂ V ns−n for all n ∈ N.

Indeed, s is almost V -central and this follows immediately.

Thus dimk(W
n) ≤ dimk(V

n) ∀ n ≥ 0, and so GKdim(RΩ−1) ≤ GKdim(R).

Since GKdim(RΩ−1) ≥ GKdim(R) is obvious, we have GKdim(RΩ−1) = GKdim(R).

The rest of the chapter is a consquence of this proposition. Directly, we have:

Corollary 4.1.3. Let SX be the multiplicitive set generated by x1, ..., xn in k[x1, ..., xn], then

GKdim(grΓ(Dγ(k[x1, ..., xn]))S−1
X ) = GKdim(grΓ(Dγ(k[x1, ..., xn])).
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This will allow us to calculate the GK-dimension of the localized associated-graded in-

stead of the original, more complex one.

4.2 GK-dimension of grΓ(Dγ(k[x1, ..., xn]))

Recall the definition of the differential operators ∂γi = ∂γ
ei

i from 2.4.2 by their action on

the xi ∈ k[x1, ..., xn] :

∂β
a

i (xni ) : = [n]β(a,ei)x
n−1
i

= (1 + β(a, ei) + β(a, 2ei) + ...+ β(a, (n− 1)ei))x
n−1
i .

Consider the product ∂i∂
γ
i ; everywhere there is a problem, this is the element that causes

it, and it does so because there is no ”nice” way to write the commutator, or even the γ-

commutator of these elements ∂i, and ∂γi . We start with reminding that ∂ixi∂
γ
i = ∂γi xi∂i.

On the left hand side we have

∂ixi∂
γ
i = ∂i(∂

γ
i xi − σei)

= ∂i∂
γ
i xi − ∂iσei ,

while on the right there is

∂γi xi∂i = ∂γi (∂ixi − 1)

= ∂γi ∂ixi − ∂
γ
i .
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Explicitly, we can write:

∂ix∂
γ
i = ∂γi x∂i,

∂i∂
γ
i xi − ∂iσei = ∂γi ∂ixi − ∂

γ
i ,

∂i∂
γ
i xi − ∂

γ
i ∂ixi = ∂iσei − ∂

γ
i ,

(∂i∂
γ
i − ∂

γ
i ∂i)xi = ∂iσei − ∂

γ
i .

Thus, having now localized by Sx = {xmk | k = 1, ..., n, m ∈ N}, we obtain

∂i∂
γ
i − ∂

γ
i ∂i = (∂iσei − ∂

γ
i )x−1

i , (4.1)

the right side of which is, finally, in the first filtered part of Dγ(k[x1, ..., xn]))S−1
X .

This means that ∂i∂
γ
i = ∂γi ∂i in grΓ(Dγ(k[x1, ..., xn]))S−1

X ), and makes our associated

graded algebra a run-of-the-mill skew-polynomial ring, when considered over k[Γ].

Lemma 4.2.1. grΓDγ = grΓ(Dγ(k[x1, ..., xn]))S−1
X ) is an iterated skew polynomial ring over

k[Γ]. Explicitly,

grΓ(Dγ(k[x1, ..., xn]))S−1
X ) ' k[Γ][x1, x

−1
1 , ..., xn, x

−1
n , ∂1, ∂

γ
1 , ..., ∂n, ∂

γ
n; θ],

where θi is the family of automorphisms on k[Γ] defined by θi(σa) = γ(a, ei)σa.

Proof. From the example 3.3 we what elements make up Dγ(k[x1, ..., xn]))S−1
X and how they

act on k[x1, ..., xn], and from the discusion surrounding the relation 4.1 we have seen that

∂i∂
γ
i = ∂γi ∂i + (∂iσei − ∂

γ
i )x−1,

where (∂iσei − ∂
γ
i )x−1 is in the first filtered part of grΓDγ. Thus, in grΓDγ, we have ∂i∂

γ =
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∂γi ∂i. Similarly,

∂γ
a

i xj = xj∂
γa

i + δijσa,

shows [∂γ
a

i , xj] is in the zeroth filtered part of grΓ Dγ, and so ∂γ
a

i xj = xj∂
γa

i .

Furthermore, from the defining relations in [3] and Example 2.4 we have for K =

(k1, ..., kn) ∈ Γ, xK = xk1
1 ...x

kn
n ,

xiσa(x
K) = γ(a,K)xK+ei ,

σaxi(x
K) = γ(a,K + ei)x

K+ei

= xiθi(σa)(x
K),

and

∂γ
b

i σa(x
K) = γ(a,K)[ki]γbx

K−ei ,

σa∂
γb

i (xK) = γ(a,K − ei)[ki]γbxK−ei

= γ(a,K)γ(a,−ei)[ki]γbxK−ei

= ∂γ
b

i θ
−1
i (σa)(x

K).

A problem remains: we have an infinite number of linear generators for Dγ(k[x1, ..., xn]).

However, there is hope since k[Γ] ⊂ Dγ(k[x1, ..., xn])), and, as we saw in chapter 2 and as

noted in [3], ∂γ
a

i is generated by ∂γi over k[Γ] for all i = 1, ..., n and a 6= 0, 1 ∈ Γ. It’s

important then to note that Dγ(k[x1, ..., xn])) is a k[Γ]-algebra, and in fact of finite type.

Lemma 4.2.2. for Γ = Zn, k[Γ] ' k[t1, t
−1
1 , ..., tn, t

−1
n ].

Proof. Elements of k[Γ] are k-linear combinations of the automorphisms σa for all a ∈ Γ.

First, note that for a, b ∈ Γ we have σaσb = σa+b. This is evident from the action on

39



k[x1, ..., xn] : (σa ◦ σb)(xK) = σa(γ(b,K)xk) = γ(a,K)γ(b,K)xK = γ(a+ b,K)xK . Thus, for

ai ≥ 0 ∈ Z and (0, ..., 0, ai, 0, ..., 0) ∈ Γ, we have σai = σaiei , while if ai ≤ 0, we use σai = σai−ei .

Thus, for any a ∈ Γ, σa = σb1e1 ◦σ
c1
−e1 ◦ ...◦σb1e1 ◦σ

cn
−en for bi ≥ 0, ci ≤ 0 ∈ Z such that a1 +bi−ci.

Clearly, k[Γ] is gerenated by the elements {σ±ei | i = 1, ..., n}.

The k-algebra morphism defined on generators by σ±ei 7→ t±1 then gives the claimed

isomorphism.

Lemma 4.2.3. Let A be a k-algebra with a k-derivation δ such that each finite dimen-

sional subspace of A is contained in a δ-stable finitely generated subalgebra of A. Then

GKdim(A[x; δ]) = GKdim(A) + 1.

Proof. see Proposition 3.5 of [10]

Proposition 4.2.4. GKdim(grΓ(Dγ(k[x1, ..., xn]))) = 3n.

Proof. By repeated application of Lemma 4.2.3 and Proposition 4.1.2 we obtain GKdim(k[Γ]) =

n.

By Lemma 4.2.1 we have

GKdim(grΓ(Dγ(k[x1, ..., xn]))) = GKdim(k[Γ][x1, x
−1
1 , ..., xn, x

−1
n , ∂1, ∂

γ
1 , ..., ∂n, ∂

γ
n; θ]) =

n+ 2n = 3n.
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Chapter 5

Graded Hyperbolic Algebras

Hyperbolic algebras are a construction of Alexander Rosenberg, first appearing in 1989 in

his preprint Geometry of Grothendieck Categories, and appearing later containing Vladimir

Bavula’s Generalized Weyl Algebras. The rings appear numerously as examples of tractable

non-commutative rings, and specifically in non-commutative algebraic geometry, as we will

see below. One of the greatest results obtained for hyperbolic rings is the description of their

irreducible representations. While this result is not obtained here for our construction, it is

in our sights as the target result of future research.

5.1 Hyperbolic Algebras

Definition 5.1.1. Let θ be an automorphism of a commutative ring R, and ξ ∈ R. Denote

by R{θ, ξ} the R-ring generated by the indeterminants x and y subject to the relations:

xa = θ(a)x and ya = θ−1(a)y for all a ∈ R,

xy = ξ, yx = θ−1(ξ)

The rings R{θ, ξ} are called hyperbolic because these defining relations can be interpreted

as the equations of a non-commutative hyperbola.
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Remark 5.1.2. It may not seem as though these relations encode the one between x and y,

and, explicitly, they do not. The relationship cannot be seen explicitly since, in general, we

do not precisely know the automorphism θ. It is hidden in the relation xa = θ(a)x, since,

indeed, xy = ξ ∈ R, and thus we could take a = ξ. In the specific example of the Weyl

algebra A1 below this will be seen readily.

Note that the ring R{θ, ξ} is not just an R-ring, but, more importantly, an R[ξ]-ring.

Furthermore, that R[ξ] is a commutative subalgebra of R{θ, ξ}.

Lemma 5.1.3. Every element of R{θ, ξ} can be represented as a sum f(x) + g(y) where

f(x) =
∑
i≥0

xiai and g(y) =
∑
i≥1

yjbj,

with ai, bj ∈ R for all i ≥ 0, j ≥ 1 ∈ Z.

Proof. This follows directly from the definition xy = ξ ∈ R, yx = θ−1(ξ).

As a direct conesquence, we have that R[x, θ]⊕ yR[y, θ−1] ' R{θ, ξ} as R-modules, with

R[x, θ] and R[y, θ−1] skew polynomial rings.

5.2 Examples

5.2.1 Weyl Algebra

As we know, the first Weyl Algebra A1 is realized as the algebra of differential operators

on the polynomial ring k[x]. In terms of generators and relations, we have A1 = k[x, y]/〈xy−

yx+ 1〉.

To realize A1 as a hyperbolic algebra R{θ, ξ}, we set ξ = xy and let R = k[ξ]. Lastly,

then, we need to encode the defining relation [x, y] = −1 in terms of θ: since ξ ∈ R, we have,
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by definition,

xξ = xxy = x(yx− 1) = xyx− x = (ξ − 1)x = θ(ξ)x,

yξ = yxy = (xy + 1)y = xyy + y = (ξ + 1)y = θ−1(ξ)y.

Thus, we have θ(ξ) = ξ − 1 and θ−1(ξ) = ξ + 1.

Alternatively, consider the ring R = k[ξ] and the hyperbolic ring R{θ, ξ} generated by

x and y overR with xy = ξ and θ ∈ Aut(k[ξ]) defined on the single generator ξ by the linear equation θ(ξ) =

ξ − 1. Notice it is from here we obtain the defining relation of the Weyl algebra:

xξ = θ(ξ)x,

xxy = θ(xy)x = (xy − 1)x = x(yx− 1),

which obviously gives us the relation xy = yx− 1, or, [y, x] = 1.

5.3 Graded Hyperbolic Algebras

Though hyperbolic algebras may be naturally Z-graded (or Z2-graded), we wish to adapt

the construction to consider the case wherein this grading comes with an action.

Let R =
⊕
α∈Γ

Rα be a commutative Γ-graded k-algebra. Let β : Γ×Γ→ k× be a 2-cocycle

for the action of Γ on R. Via the map λ : R → Endk(R) defined by r 7→ λr : a 7→ ra,

for all a ∈ R, we see that the grading on R naturally extends to a grading on Endk(R) =⊕
α∈Γ

Endk(R)α. Define the operators σα ∈ Autk(R) ⊆ Endk(R) by σα(r) = β(α, |r|)r, where

| · | gives the degree of a homogeneous element in R; i.e. |r| = α for r ∈ Rα.

Remark 5.3.1. From this, we see that Γ will also act on Endk(R), giving, for instance,

σ̂α(φ) = β(α, |φ|)φ. In the traditionally confusing manner, we will condense the notation in

the case when φ = λr, just using r for r ∈ R, nor will we distinguish between σ̂α and σα. In
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fact, for φ = λr we have |φ| = |r|, i.e. σ̂α(λr) = λσα(r). Furthermore,

σ̂α(φ)(x) = β(α, |φ|)φ(x)

= β(α, |r|)(rx) = λσα(r)(x).

Remark 5.3.2. Equivalently, we could instead define the action of Γ on the objects of grΓR-

mod, wherein we have Γ-graded R-modules, M =
⊕
α∈Γ

Mα. For all M ∈ grΓR-mod, there is

a natural group homomorphism σM : Γ→ Autk(M) defined by

σM(γ)|Mα := β(α, γ) idMα , for α, γ ∈ Γ.

5.3.1 Application to Dβ(k[x])

Obviously, the goal here is to create a general construction, based on hyberbolic algebras,

that contains our ring of β-differential operators as a specific example. One important aspect

of this example to recall is that we could write every ∂β
a

as a sum

∂β
a

=
q − 1

qa − 1
∂β

a−1∑
i=0

σi for a > 0 ∈ Γ, and every ∂β
−a
, (5.1)

∂β
−a

=
q − 1

q−a − 1
∂β
−1

a−1∑
i=0

σ−i, (5.2)

and that we have this relation in addition to the fact that both ∂β
a

and σa are elements

of Dβ for all a ∈ Γ. There is no way to obtain the standard partial differential operator

∂ in such a fashion; ∂ and ∂β are not only k-linearly independent operators, but they are

algebraically independent over k[Γ].

The other important aspect to consider is the relation

∂x∂β = ∂βx∂. (5.3)

Thus, inspired by the hypberbolic construction upon the ring k[ξ] where ξ = xy, we set
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ξ0 := x∂, and ξ1 := x∂β, we make the ring k[ξ0, ξ1]. Just as in the case of hyperbolic

algebras, this ring k[ξ0, ξ1] is commutative. Indeed, by the relation 5.3, we have that

ξ0ξ1 = x∂x∂β = x∂βx∂ = ξ1ξ0.

Furthermore, k[Γ][ξ0, ξ1] = k[ξ0, ξ1][Γ] is a commutative ring as well, by the fact that

ξγσα = σαξγ for γ = 0, 1, and α ∈ Γ,

since ξγ = x∂γ does not change the degree of a monomial in k[x], i.e. is an element of

Dβ(k[x])0.

Definition 5.3.3. Let θ be an automorphism of a Γ-graded, commutative ring R =
⊕
α∈Γ

Rα;

and let ξ0, ξ1 be elements of R. Denote by R[Γ]〈x, y0, y1〉 the R-ring generated over the group

algebra R[Γ] by the indeterminants x, y0, y1, with the following relations:

xa = θ(a)x, y0a = f(θ−1(a))y0, and y1a = f(θ−1(a))y1 for all a ∈ R[Γ];

xy0 = ξ0, xy1 = ξ1,

where f(θ−1(a)) is some map f : R[Γ]→ R[Γ].

Of course, this is not simply an abstraction of a general construction to include the Γ

action on the graded ring R =
⊕
α∈Γ

Rα, it is a naturally occuring phenomenon.

Recall from section 2.2.3 that our ring Dβ(k[x]) is the ring of quantum differential oper-

ators of Luntz and Rosenberg on the ring of polynomials in one variable over the algebraicly

closed, 0-characteristic field k. By Iyer and McCune’s [3] Dβ(k[x]) is the k-algebra gener-

ated by k[x] and the set {∂β−1
, ∂, ∂β} over k[x]. This description uses the relations (5.1),

but ignores the facts that

1. σa /∈ k[x], and

2. ∂β
−a

= σ−a∂
βa ,
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which is why we choose here to generate over the group algebra R[Γ].

To show Dβ(k[x]) can be realized as a graded hyperbolic ring R[Γ] < x, y0, y1 >, with

R = k[ξ0, ξ1], we have a few things to work through; namely, the three defining relations of

the graded hyperbolic ring.

Lemma 5.3.4. xa = θ(a)x for all a ∈ k[Γ][ξ0, ξ1].

Proof. Let β(1, 1) := q ∈ k×. We will determine the automorphism θ ∈ Autk(k[Γ]) be its

value on the elements a = ξ0, ξ1, and σα for α ∈ Γ.

1. a = ξ0 : xξ0 = x(x∂) = x(∂x − 1) = (x∂ − 1)x = (ξ0 − 1)x, where we see that

θ(ξ0) = ξ0 − 1, thus providing the relation xξ0 = θ(ξ0)x.

2. a = ξ1 : xξ1 = x(x∂β) = x(∂βx − σ1) = x∂βx − xσ1 = (x∂β − q−1σ1)x, where we see

that θ(ξ1) = ξ1 − q−1σ1, making xξ1 = θ(ξ1)x.

For the fourth equality above, recall (xσ1 − σ1x)(xn) = qn(1− q)xn+1 = (1− q)xσ1x
n.

Thus,

xσ1 − σ1x = (1− q)xσ1

xσ1 − (1− q)xσ1 = σ1x

qxσ1 = σ1x.

3. a = σα : comes directly from the relation σαx = qαxσα, providing θ(σα) = q−ασα, and

so xσα = θ(σα)x.

Setting θ(a) = a for all a ∈ k, the rest is immediate.

Lemma 5.3.5. ∂a = f(θ−1(a))∂ for all a ∈ k[Γ][ξ0, ξ1].

Proof. 1. a = ξ0 : ∂ξ0 = ∂x∂ = (x∂ − 1)∂ = (ξ0 + 1)∂ = θ−1(ξ0)∂.

2. a = ξ1 : ∂ξ1 = ∂x∂β = ∂βx∂ = (x∂β + σ1)∂ = (ξ1 + σ1)∂ = (θ−1(ξ1) + (1− q−1)σ1)∂

so we have that ∂ξ1 = f(θ−1(ξ1))∂.
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3. a = σα : ∂σα = qασα∂ = θ−1(σα)∂.

Lemma 5.3.6. ∂βa = f(θ−1(a))∂β for all a ∈ k[Γ][ξ0, ξ1].

Proof. 1. a = ξ0 :

∂βξ0 = ∂β(x∂)

= ∂x∂β

= (x∂ + 1)∂β

= (ξ0 + 1)∂β

= θ−1(ξ0)∂β.

2. a = ξ1 :

∂β(ξ1) = ∂β(x∂β)

= (x∂β + σ1)∂β

= (ξ1 + σ1)∂β

= (θ−1(ξ1) + (1− q−1)σ1)∂,

again showing ∂βξ1 = f(θ−1(ξ1))∂β.

3. a = σα :

∂βσα = qασα∂
β

= θ−1(σα)∂β.

These lemmas show that our ring can be realized as a graded hyperbolic algebra. The
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next will show that our morphism θ, as defined, is indeed a k-linear endomorphism of the

ring k[Γ][ξ0, ξ1]. Now that we know what the map does to the generators, we verify how it

handles products. To summarize the above:

θ(ξ0) = ξ0 − 1, θ(ξ1) = ξ1 − q−1σ1, and θ(σα) = q−ασα.

Lemma 5.3.7. As determined in Lemma 5.3.4, θ is a k-linear algebra endomorphism of

k[Γ][ξ0, ξ1].

Proof. We need only verify that multipication of two of the three combinations of generators

of k[Γ[ξ0, ξ1] are respected by θ, since we can obtain for free that

θ(ξ0ξ1) = θ(ξ1ξ0).

1. ξ0 and σα for α ∈ Γ

θ(σαξ0) = θ(σα)θ(ξ0) = q−ασα(ξ0 − 1)

=θ(ξ0σα) = θ(ξ0)θ(σα) = (ξ0 − 1)q−ασα,

and q−ασα(ξ0 − 1) = (ξ0 − 1)q−ασα since σαξa = ξaσα. Hence, θ(σαξ0) = θ(ξ0σα).

2. ξ1 and σα for α ∈ Γ

θ(σαξ1) = θ(σα)θ(ξ1) = q−ασα(ξ1 − q−1σ1)

= ξ1q
−ασα − q−1σ1q

−ασα

= (ξ1 − q−1σ1)q−ασα

= θ(ξ1)θ(σα) = θ(ξ1σα).

Hence θ(σαξ1) = θ(ξ1σα).

Thus we see that the multiplication of k[Γ][ξ0, ξ1] is preserved by θ.
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With the inverse of θ already defined on the generators of k[Γ][ξ0, ξ1], we have now seen

that θ is a k-linear automorphism, and that our ring Dγ(k[x]) can be seen as a graded

hyperbolic ring.

Proposition 5.3.8. Any element of R[Γ]〈x, y0, y1〉 can be represented as a sum of polyno-

mials f(x) + g(y0, y1) where

f(x) =
∑
l≥0

xlrl, g(y0, y1) =
∑
n,m≥1

yn0 y
m
1 rn,m, with rn,m ∈ R[Γ].

Proof. Given the defining equations

xy0 = ξ0, xy1 = ξ1,

and the fact that ξ0, ξ1 ∈ R, by definition, this is obvious.

5.4 Iterated Graded Hyperbolic Rings

Definition 5.4.1. Let θ1, ...θn be a family of pairwise commuting automorphisms of a graded,

commutative ring R; and ξ10, ξ11, ξ20, ξ21, ...ξn0, ξn1 a collection of elements in R. Denote by

R[Γ]〈(xi), (yi0), (yi1)〉 the R-ring generated over the group algebra R[Γ] by the indeterminants

xi, yi0, yi1 which satisfy the following relations

xia = θ(a)xi, yi0a = f(θ−1(a))yi0, and y1a = f(θ−1(a))yi1;

xiyi0 = ξi0, xiyi1 = ξi1;

xiyjα = yjαxi, xixj = xjxi, yiαyjβ = yjβyiα.

for every a ∈ R[Γ], 1 ≤ i, j ≤ n, and α, β ∈ {0, 1}.
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Chapter 6

Gluing and Descent

6.1 Gluing Framework

Gluing is a traditionally informal terminology referring to combining two separate topo-

logical or geometric spaces into one, wherein the original spaces are mostly preserved. There

are multiple ways of doing this, but we will employ a version of descent adapted more to

gluing categories together rather than gluing spaces or sheaves.

Descent allows one to construct a scheme (or quasi-coherent sheaf), by putting together

pieces formed from a much coarser covering than is typically required. An example is the

case of PnC with the construction by descent on a finite collection of open affine patches, as

opposed to specifying the value of the structure sheaf at arbitrary distinguished open subsets

of the underlying space. It does this in a way mandated by the definition of a sheaf: by

considering the intersections and triple intersections of the sets in the collection. It still must

respect the cocycle condition for sheaves.

6.1.1 (Co)Monads and their (co)Algebras

Let us recall some of the categorical concepts from [11].

Definition 6.1.1. SupposeA and B are categories with functors F : A → B and G : B → A.

We say that 〈F,G, η, ε〉 is an adjunction between A and B, and that F and G are adjoint
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functors with F the left adjoint and G the right adjoint. We write (F,G) if there exist

natrual transformations

η : IdA
·−→GF, ε : FG

·−→ IdB,

with ηA, εB universal for all objects A of A, B of B.

Now consider a general endofunctor T of a category A. Naturally, then we have that

any positive power of T , T n = T n−1 ◦ T is an endofunctor as well. T 2 is equipped with a

natural transformation µ : T 2 ·−→ T , object-wise denoted µA : T 2(A) → T (A), for an object

A of A. Customarily, Tµ : T 3 = T ◦ T 2 ·−→ T 2, and µT : T 3 = T 2 ◦ T ·−→ T 2, where the

former has object-wise components (Tµ)A = T (µA) : T (T 2)(A) → T (T (A)), and the latter

(µT )A = µT (A).

Definition 6.1.2. A monad in a category A is a triple 〈T, η, µ〉, with T an endofunctor of

A while µ and η are natural transformations

η : IdA
·−→ T, µ : T 2 ·−→T, (6.1)

such that the diagrams below commute

T 3 T 2

T 2 T,

Tµ

µT µ

µ

IdAT T 2 TIdA

T T T.

ηT

µ

Tη

Notice that η plays the role of the unit transformation, and so we reuse the notation

from adjoint pairs above. Also of note, the diagram on the left recalls associativity of

multiplication, while the right recalls the identity for multiplication.

The comonad is the dual construction in A to the monad, essentially with all the defining

arrows in the diagrams reversed. Clearly any adjoint pair 〈F,G, η, ε〉 : A ⇀ B provides a

monad 〈GF, η,GεF 〉 on A and a comonad 〈FG, ε, FηG〉 on B.

The next construction we need is that of algebras of a monad. For a monad T = (T, η, µ)

of the category A, the T -algebras are the sets on which the monoid T acts. It is worth
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noting that often, especially when the category is svelt and abelian, algebras of a monad

are referred to instead as modules, and for good reason: the category of R-modules can be

realized as the algebras of the monad T = R
⊗
− on the category of abelian groups.

Definition 6.1.3. If T = 〈T, η, µ〉 is a monad in the category A, a T -algebra is a pair

〈A, h〉, where A is an object of A, and h : T (A) → A is an arrow of A satisfying the

following equations for associatvity and unit laws: h ◦ Th = h ◦ µA and h ◦ ηA = idA. The

former of which can be depicted as the exact diagram

T 2(A) T (A) A.
Th

µA

h

A morphism f : 〈A, h〉 → 〈A′, h′〉 of T -algebras is an arrow f : A → A′ of A such that the

diagram

T (A) A

T (A′) A′

h

Tf f

h′

commutes. AT will denote the category of T -algebras.

Example 6.1.4. For R a ring, let TR be the endofunctor R⊗Z− on the category of abelian

groups Z-mod. From TR we can make the monad (TR, η, µ), where

TR(M) = R⊗Z M, ηM :M → R⊗M, µM : T 2
R(M) = R⊗ (R⊗M)→ R⊗M,

x 7→ r ⊗ x, r1 ⊗ (r2 ⊗m) 7→ r1r2 ⊗m.

For M ∈ Z-mod we have the pair (M,h) where h : R ⊗M → M by r ⊗m 7→ r ·m. The

category TR-algebras is the category of R-modules.

Example 6.1.5. Let k be a field and consider the category k-mod of k-vector spaces. Then

the category of k[x]-modules is the category of algebras of the monad T = k[x]⊗k −..

Dually, we can define the coalgebras of a comonad in A and we denote by AT the category

of all T -coalgebras in the category A. The following lemma from [12] will be very useful for

us.

52



Lemma 6.1.6. Let A be an abelian category, and 〈T, η, µ〉 a monad or (comonad) on A.

Assume that T is additive and right (left) exact, then the categories AT of T -algebras and

AT of T -coalgebras are abelian, and their forgetful functors to A are exact.

Let 〈F,G, η, ε〉 : A ⇀ B be an adjunction between abelian categories A, and B. Let

〈Φ, ε, µ〉 = 〈FG, ε, FηG〉 be the associated comonad on B and BΦ the category of coalgebras

of Φ. The following theorem is a version of the venerable Barr-Beck tailored to comparing

the category of coalgebras of a comonad from an adjunction to the category through which

the adjunction filters. For a more general statement and conditions, see §IV.7 Theorem 1 in

[11].

Theorem 6.1.7. Let A and B be abelian categories and 〈Φ, ε, µ〉 = 〈FG, ε, FηG〉 the

comonad on B associated to the adjunction 〈F,G, η, ε〉 : A ⇀ B wherein F is additive,

exact, and faithful. Then A ' BΦ.

Proof. See Theorem 2.6 in [12].

6.1.2 Descent in Categories

The entire reason for the consideration of monads and their algebras in the previous

section was to develop the language for descent. Here, we again consider an adjunction

between two categories, A and B, but this time the category B has only objects which are

divided into parts from other categories, some Bi. That is, B = ⊕JBi.

Consider a collection of functors {Bi
ui∗−→ A | i ∈ J} wherein the ui∗ have left adjoints

which we will denote by u∗i . Let B be the product category
∏
j∈J
Bj. If A has products of |J |

objects, then we can make u∗ : B → A defined by (Li) 7→
∏
j∈J

uj∗(Lj), with which we have

right adjoint u∗ : A →
∏
j∈J
Bj, with M 7→ (u∗i (M) | i ∈ J). The adjunction morphisms are
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given by

ηu,M : M →
∏
i∈J

ui∗u
∗
i (M) for M ∈ A,

εu,Li : u∗i (
∏
j∈J

uj∗(Lj))→ u∗iui∗(Li)→ Li for L = (Li) ∈ B.

As an adjoint pair (u∗, u∗), we have an associated comonad Gu = u∗u∗ B; denote this by

(Gu, δu) = (u∗u∗, u
∗ηuu∗). Denote by BGu the category of coalgebras of the comonad Gu whose

objects are ((Li), ζ). Beck’s theorem says that if A, and B are abelian, and if u∗ is additive,

exact, and faithful, then A ' BGu . In terms of the local data from each Bi, a Gu-coalgebra

(L, ζ) is a collection (Li, ζi) with (Li) = L and

ζi : Li → u∗iu∗(L) = u∗i (
∏
j∈J

uj∗(Lj)),

satisfying the following equalization of arrows:

u∗iu∗(L) = u∗i (
∏
j∈J

uj∗(Lj)) u∗i (
∏
m∈J

um∗u
∗
m(
∏
j∈J

uj∗(Lj))) = u∗iu∗u
∗u∗(L),

u∗i ηu,u∗(L)u∗(L)

u∗i (uj∗ζj)

and εu,Li(L)ζi = idLi . Note, these are simply the requirements for being a coalgebra of a

comonad made from an adjoint pair (u∗, u∗). In terms of exactness, we need the exactness

of the diagram below for all i ∈ J

Li u∗i (
∏
j∈J

uj∗(Lj)) u∗i (
∏
m∈J

um∗u
∗
m(
∏
j∈J

uj∗(Lj))), or

L Gu(L) G2
u(L).

ζ
ηu(L)

Gu(ζ)

If the functors u∗k preserve products of |J | objects, then this can be simplified slightly as

the exact diagram

Li u∗i (
∏

j,m∈J
uj∗(Lj))

∏
j,m∈J

u∗ium∗u
∗
muj∗(Lj) .

Remark 6.1.8. This should look familiar. Indeed, as in remark I.4.3 of [13], if B is a scheme

and Bi ⊆ B are subschemes and we take Bi = Qcoh(Bi) for all i ∈ J , then u∗iuj∗(Lj) is in
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Qcoh(Bj ∩Bi) over the intersection of Bi and Bj, and u∗ium∗u
∗
muj∗(Lj) the restriction sheaf

on Bi ∩Bj ∩Bm.

The previous discussion can be summarized nicely with the following framework. Again,

we are considering abelian categories A, and B =
∏
w∈I
Bw. An endofunctor G : B → B is a

collection of components G = (Gw1,w2), where Gw1,w2 : Bw2 → Bw1 .

Definition 6.1.9. A gluing data for (Bw)w∈I is a comonad (G, ε, µ) on B such that

1. G is additive and left exact;

2. for each w ∈ I the morphism εwGw,w → IdBw induced by ε is an isomorphism.

The category BG of coalgebras of the comonad G is regered to as the category glued from

the Bw along the endofunctor G.

Definition 6.1.10. A localization data for (Bw)w∈I is an abelian category A and a collection

of exact functors u∗w : A → Bw, such that u∗w has a right adjoint uw∗, and the adjunction

u∗w ◦ uw∗ → IdBw is an isomorphism.

Each localization data defines an adjoint pair (u∗, u∗) betwee A and B =
∏
w∈I

Bw, and

hence a comonad G. By Theorem 6.1.7 we have the following:

Corollary 6.1.11. If (A,Bw, u∗w) is a localization data, then G = (Gw1,w2), where Gw1,w2 =

u∗wuw∗, is a gluing data. The exact functor A → BG of Theorem 6.1.7 is an equivalence if

and only if the functor ⊕u∗w : A → ⊕Bw is faithful.

Remark 6.1.12. To make this construction a little more accessible, let us consider something

which may be more familiar. Recall that a functor between abelian categories u∗ : A → B

is called a Serre localization, or Serre quotient if B ' A/C, with C a Serre subcategory of

A. This is obtained if we have u∗ exact such that there exists a right adjoint u∗ such that

u∗ ◦ u∗ ' IdB. Suppose {u∗w : A → Bw} is a finite set of such localizations and we set

Gw1,w2 = u∗w1
◦ uw2∗ : Bw2 → Bw1 , then their collection G = (Gw1,w2) form a comonad on the

category B =
∏
w∈I
Bw. The functor u∗ : A → B is faithful if and only if u∗w is faithful for
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all w, which is obtained if and only if ∩Cw is the zero category, for all the corresponding

Serre subcategories Cw ⊂ A. In this case the category BG of coalgebras of the comand

G is equivalent to the category A, by Theorem 6.1.7. Beware, this is not the case in our

construction.

6.2 β-Projective n-Space

Projective n-space over the field of complex numbers, PnC, typically has two presentations:

the first employing isomorphisms of the coordinate rings on the standard open affine cover

and showing that the cocycle condition on the intersections of elements of the cover is

satisfied. This second presentation takes the categorical approach outlined in the previous

section to construct the category of quasi-coherent sheaves over PnC as glued together from the

categories of quasi-coherent sheaves on the cover of open affines, exploiting the framework

outlined in the previous section. Yet another is the projective spectrum of graded polynomial

algebras. In this section we will construct the category which should be viewed as quasi-

coherent sheaves on the β-projective n-space.

6.2.1 Cocycle Gluing

To glue schemes {Xi}I together, we glue along open subschemes Xij ⊂ Xi, which are

isomorphic via morphisms φij : OXj |Xji ' OXi |Xij , wherein φii = idXi .

Definition 6.2.1. A collection of isomorphic subschemes (Xij, φij) of schemes {Xi}I are

said to satisfy the cocycle condition if:

φik|Xki∩Xkj = φij|Xji∩Xjk ◦ φjk|Xki∩Xkj , (6.2)

all restricted to Xij ∩Xkj ∩Xik.

Let k be an algebraically closed field of characteristic 0, and consider the polynomial

algebra k[x0, ..., xn], where we consider it as Γ = Zn+1-graded. Recall that for a 2-cocycle
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β : Γ × Γ → k× for Γ which is generated by elements ek = (0, ..., 1, ..., 0) ∈ Γ, the alge-

bra kβ[x1, ..., xn] is the algebra of non-commutative polynomials in n variables x1, ..., xn for

which xkxl = β(ek, el)xlxk. Notice this demands that β is a skew symmetric 2-cocycle,

i.e. β(a, b)−1 = β(b, a), which indeed exists in k×. Additionally, because xixkx
−1
i =

β(ek,−ei)xix−1
i xk = β(ei, ek)xkxix

−1
i , we must have that β(a, b) = β(b,−a) = β(b, a)−1

if β is a bicharacter (and thus a 2-cocycle). Also note that β(0, b) = β(b, 0) = β(0, 0) = 1

for all b ∈ Γ. Finally, associativity of multiplication demands

β(a, b)β(a+ b, c) = β(b, c)β(a, b+ c). (6.3)

Lemma 6.2.2. The multiplicitive subset Si = {1, x, x2, ...} ⊂ kβ[x0, ..., xn] is an Ore subset

of kβ[x0, ..., xn].

Proof. See Example 3.1.5.

Lemma 6.2.3. For each i ∈ {0, ..., n} there exists a 2-cocycle βi : Γ× Γ→ k× such that

ρi : (kβ[x1, ..., xn]S−1
i )0 ' kβi [x1/i, ..., xn/i]/(xi/i − 1),

xkx
−1
i 7→ xk/i,

with xk/i = xkx
−1
i .

Proof. The proof from lemma 4.3.3 [4] is elementary, but we include it here to familiarize us

with our setting. Observe, using the fact that β(a, b) = β(b,−a)

xk/ixl/i = xkx
−1
i xlx

−1
i

= β(ek,−ei)x−1
i xkxlx

−1
i

= β(ek,−ei)β(ek, el)x
−1
i xlxkx

−1
i

= β(ek,−ei)β(ek, el)β(−ei, el)xlx−1
i xkx

−1
i

= β(ek,−ei)β(ek, el)β(−ei, el)x̃lx̃k.
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Thus, setting βi(ek, el) := β(ek,−ei)β(ek, el)β(−ei, el), the result is obtained after verifying

that βi is indeed a 2-cocycle.

In light of the lemma, we will refer to (kβ[x1, ..., xn]S−1
i )0 as simply kβi [x1/i, ..., x̂i/i, ..., xn/i],

as it can be assumed xi/i = 1 is intuitive and to compact notation. These induce 2-cocycles

βi : Γi = Γ/Zei ' Zn−1 → k×. The natural question is then if, given a finite collection of

such cocycles, βi : Γi × Γi → k×, there exists another, β : Γ× Γ→ k× such that β|Γi = βi.

Proposition 6.2.4. For the collection of n+1 algebras kβi [x1/i, ..., xn/i] ' (kβ[x0, ..., xn]S−1
i )0

of homogeneous elements of degree zero in the localizations of kβ[x0, ..., xn] and isomorphisms

between them φij : kβj [x0/j, ..., xn/j]→ kβi [x0/i, ..., xn/i], with φij : xk/j 7→ xk/ix
−1
j/i, the cocycle

condition holds. That is,

φik|Xki∩Xkj = φij|Xji∩Xjk ◦ φjk|Xki∩Xkj .

Proof. The following diagram proves extremely helpful:

kβi [x0/i, ..., xn/i, x
−1
j/i, x

−1
k/i] kβj [x0/j, ..., xn/j, x

−1
i/j, x

−1
k/j]

kβk [x0/k, ..., xn/k, x
−1
j/k, x

−1
i/k],

φij

φik

φjk

Indeed, for xl/kxm/k ∈ kβk [x0/k, ..., xn/k, x
−1
i/k, x

−1
j/k] we have

xl/kxm/k = βk(el, em)xm/kxl/k = β(ei, el)β(el, em)β(m, i)xm/kxl/k.

Under the composition we have:

(φij ◦ φjk)(xl/kxm/k) = φij(xl/jx
−1
k/jxm/jx

−1
k/j)

= xl/ix
−1
j/ixj/ix

−1
k/ixm/ix

−1
j/ixj/ix

−1
k/i

= xl/ix
−1
k/ixm/ix

−1
k/i

= βi(em, ek)βi(el, em)βi(ek, el)xm/ix
−1
k/ixl/ix

−1
k/i.
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Expanding out the βi we obtain:

=β(ei, em)β(em, ek)β(ek, ei)β(ei, el)β(el, em)β(em, ei)β(ei, ek)β(ek, el)β(el, ei)xm/ix
−1
k/ixl/ix

−1
k/i

= β(em, ek)β(el, em)β(el, em)xm/ix
−1
k/ixl/ix

−1
k/i

= βk(el, em)xm/ix
−1
k/ixl/ix

−1
k/i

= βk(el, em)φik(xm/kxl/k).

6.2.2 A Global Cocycle

In this section we answer the question of when we can consider a collection of n + 1 2-

cocycle deformed polynomial algebras kβi [x0/i, ..., x̂i/i, ..., xn/i], with βiΓ×Γ→ k× a 2-cocycle

and β(ei, a) = 1 for all a ∈ Γ, to all be algebras of homogeneous elements of degree zero from

localizations from the same deformed polynomial algebra. This is done by constructing the

2-cocycle deformation that gives rise to each deformation of the algebras in the collection.

In the proof of Proposition 6.2.4 we followed the element xl/kxm/k through the equation

(6.2.1) defining the cocycle condition, seeing that for the cocycle condition to hold on a

collection {φij : kβj [x0/j, ..., x̂j/j, ..., xn/j] → kβi [x0/i, ..., x̂i/i, ..., xn/i] | i, j ∈ {0, ..., n}}, we

must have that

βi(em, ek)βi(el, em)βi(ek, el) = βk(el, em), (6.4)

for all i, k,m, l ∈ {0, ..., }. If we instead follow the element xi/kxj/k, we see

(φij ◦ φjk)(xi/kxj/k) = φij(xi/jx
−1
k/jxj/jx

−1
k/j)

= xi/ix
−1
j/ixj/ix

−1
k/ixj/ix

−1
k/i

= βi(ej, ek)xj/ix
−1
k/ix

−1
k/i

= φik(βk(ei, ej)xj/kxi/k).

Permuting through orders of i, j, k and choice of variables, we require, in addition to

(6.4), that βi(ej, ek) = βk(ei, ej) = βj(ek, ei). Note, this is also evident from the proof of
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Lemma 6.2.3 wherein we find βi(ej, ek) = β(ei, ej)β(ej, ek)β(ek, ei). This discussion and the

previous section establishes the following result.

Proposition 6.2.5. Suppose {βi : Zn × Zn → k× | i = 0, ..., n} is a collection of skew-

symmetric 2-cocycles satisfying βi(ei, a) = 1 sufficient to produce skew polynomial rings

kβi [x0/i, ..., x̂i/i, ..., xn/i]. Suppose also that for all i, j, k we have βi(ej, ek) = βk(ei, ej) =

βj(ek, ei). Define β : Zn+1×Zn+1 → k× on the generators of Zn+1 by a choice of factorization

in k× of βi(ej, ek) = β(ei, ej)β(ej, ek)β(ek, ei), with β(ei, ei) = 1. Then

1. β is a skew-symmetric 2-cocycle of Zn+1 acting on k[x0, ..., xn] and produces a de-

formation kβ[x0, ..., xn] such that (kβ[x0, ..., xn]S−1
i )0 ' kβi [x0/i, ..., x̂i/i, ..., xn/i] for all

i = 0, ..., n and Si = {1, xi, x2
i , ...}.

2. The morphisms (φij : (kβ[x0, ..., xn]S−1
j )0S̃

−1
i )0 → ((kβ[x0, ..., xn]S−1

i )0S̃
−1
j )0 satisfy the

cocycle condition of sheaves in 6.2.1

.

6.2.3 Categorical Proj Construction

Consider first the 1-dimensional, commutative case, as in example 6.1.5. Let x̃ be an au-

toequivalence of the category grZ k-vect. Then we can consider the category grZ k[x]-mod as

the category of modules of the monad constructed with this autoequivalence: Fx := 〈x̃, η, µ〉.

As per Defintion 6.1.3, the algebras of this monad are pairs (M,u) with M ∈ grZ k-vect and

u a collection of arrows {un | un : x̃(Mn)→Mn+1 for all n ∈ N} satisfying multiplicitive and

associative diagrams. Morphisms of these modules are k-linear homomorphisms f : M →M ′

in grZ k-vect such that the diagram

x̃(Mn) Mn+1

x̃(M ′
n) M ′

n+1

un

x̃f f

u′n

is commutative. Now, let T+ be the full subcategory of k-vect annihilated by x̃, and T−+

its Serre closure. The localization of the category grZ k[x]-mod by T−+ is constructed as the
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category with the same objects of grZ k[x]-mod, but with certain morphisms turned into

isomorphisms. Specifically, the structure morphisms un : x̃(Mn)→Mn+1 for all n ∈ Z.

We wish to compare grZ k[x]-mod/T−+ to the category (S−1
x k[x])0-mod. First consider the

natural inverse of the autoequivalence x̃, denoted x̃−1, with γ : x̃x̃−1 → Id, the adjunction

isomorphism. Then, our objects in grZ k[x]-mod/T−+ are pairs (V, v) with v = γV : x̃x̃−1V →

V. This sets up the following,

Proposition 6.2.6. k[x]-mod/T−+ ' (S−1
x k[x])0-mod ' k-vect, as category equivalences,

where Sx = {1, x, x2, ...}.

Proof. Let Φ : k[x]-mod/T−+ → (S−1
x k[x])0-mod by (M,m) 7→ (M0,m0), and define Ψ :

(S−1
x k[x])0-mod→ grΓk[x]-mod by sending (V, v) to (⊕x̃n(V ), vn), where vn = id ∀ n. Thus,

this is the freeaforgetful adjunction, and since vn = id, Ψ sends objects to k[x]-mod/T−+.

As Φ is forgetful, it is fully faithful, and all that needs to be shown is that each object

(V, v) ∈ (S−1
x k[x])0-mod is equivalent to Φ((M,m)) for some (M,m) ∈ k[x]-mod/T−+. Since

grΓ k[x]-mod is by definition the category of modules of the monad Fx on k-vect, andM0 ⊂M

by definition must be a k[x]0 = k-module, this is obvious.

Now we turn to the n-dimensional, non-commutative case. The work is much the same.

Consider J = {1, .., n} and {x̃i}i∈J a collection of automorphisms of the category k-vect.

Corresponding to our 2-cocycle β, let βij : x̃ix̃j ' x̃jx̃i be a family of natural isomorphisms,

x̃−1
i the right (and left) adjoint to x̃i, and γi : x̃ix̃

−1
i ' Id their adjunction morphism.

To accomodate β, we’ll be using a Γ := Zn+-grading, and it will be convenient to think of

x̃i = Θ(ei) for some Θ : Zn+ → Aut(k-vect) and ei = (0, ..., 0, 1, 0, ...0) ∈ Γ.

Lemma 6.2.7. Θ? =
⊕
z∈Zn+

Θ(z) is a monad on the category k-vect.

Proof. Obviously, Θ? is an endofunctor of k-vect. To make θ∗ a monad, we need to constructs

multiplication and unit transformations. Since Γ is a monoid generated by {ei | i = 0, ..., n},

we only need consider the generators. Define µ : Θ? ◦ Θ? ' Θ? element-wise by the family
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of natural isomorphisms Θ(ei) ◦Θ(ej) ' Θ(ei + ej), and η : Id→ Θ? by the mappings

ηM : M → θ∗(M) =
⊕
z∈Z

θ(z)(M)

m 7→ m ∈ θ(0)(M) ∈ θ∗(M).

The diagram

Θ? ◦Θ? ◦Θ? Θ? ◦Θ?

Θ? ◦Θ? Θ?

Θ?µ

µΘ? µ

µ

commutes via the natural isomorphism β : Θ? ' Θ?, where β is the collection of βji :

Θ(ej) ◦Θ(ei) ' Θ(ei) ◦Θ(ej) ' Θ(ei + ej).

In the following we will consider the concrete example of the categorical projective n-

space. Let Γ = Zn+1. As in the 1-dimensional, commutative case, associated to the monad

Θ∗, the category of Γ-graded algebras grΓ Θ?-mod is just the category grΓ kβ[x0, ...xn]-mod.

In terms of the monad Θ?, objects of grΓ Θ?-mod are pairs (M,m) with M ∈ k-vect and the

structure morphism a family mi,n : x̃i(Mn)→Mn+ei for n ∈ Γ.

We will call R = kβ[x0, ...xn] and R-mod= kβ[x0, ...xn]-mod. Now consider the local-

izations by the Ore sets Si = {xi, x2
i , ...}, which we denote by RS−1

i and are graded by

Z+× ...×Z+×Z×Z+× ...×Z+, with Z in the ith position. If we define êk := ek − ei, and

Γi :=
⊕
k∈J
〈êk〉 ' Zn, then Γi grade the so-called zero degree components of the localizations.

Denote Ri := kβi [x0/i, ..., xn/i] with xi/i = 1, then the Lemma 6.2.3 establishes an equivalence

between (RS−1
i )0 −mod and Ri −mod.

Similar to the commutative, 1-dimensional case we let Ti be the full subcategory of

grΓkβ[x0, ..., xn]-mod generated by modules M annihilated by the subfunctor x̃i of Θ? and

T−i be its Serre closure.

Lemma 6.2.8. grΓkβ[x0, ..., xn]-mod/T−i ' (kβ[x0, ..., xn]S−1
i )0-mod

Proof. This statement is equivalent to that of Lemma VII.2.4.3.4 of [5].
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Denote by Qi the canonical functor grΓ kβ[x0, ..., xn] → grΓ kβ[x0, ..., xn]-mod/T−i . This

equivalence is very fortuitous for us, since T−+ is a Serre subcategory of a category of modules

over a unital, associative ring, and moreover, is a Grothendieck category. From here, we get

that T−+ is thick, and thus it is localizing. The latter means that the canonical localization

functor has a (necessarily fully faithful) right adjoint.

Now, denote by Φi the composition of Qi with the equivalence grΓkβ[x0, ..., xn]-mod/T−i '

(kβ[x0, ..., xn]S−1
i )0-mod. Then {Φi} are a family of exact localizations with right adjoint

functors, and thus define a localization data on the category k-vect.

Finally, define T+ :=
⋂
i∈J

Ti ⊂ kβ[x0, ..., xn]-mod. By Lemma VII.2.4.3.3 of [5], since J is

finite, we get that T−+ =
⋂
i∈J

T−i , i.e. the Serre closure conicides with the (finite) intersection

of the Serre closures. Hence we have the result

grΓkβ[x0, ..., xn]-mod/T−+ ' Φ-mod, (6.5)

akin to the classical commutative definition Proj(R) = grΓR-mod/R+ for R a Γ-graded

commutative ring and R+ its irrelevant ideal.

Proposition 6.2.9. Given a collection of 2-cocycles {βi : Zn × Zn → k× | i = 0, ..., n}

satisfying the conditions of Proposition 6.2.5, there exists a deformed polynomial algebra

kβ[x0, ..., xn] such that kβ[x0, ..., xn]/T−+ gives the category of quasi-coherent sheaves on the

non-commutative projective space obtained by gluing together the corresponding kβi [x1, ..., xn].

Proof. This is a direct result of Proposition 6.2.5 and Lemma 6.2.8 above.

6.3 Modules of Shifted Differential Operators on the

Non-Commutative Pnβ

As we have just shown in propositions 6.2.9 and 6.2.5, there is no need to consider

an arbitrary finite collection of 2-cocycle deformations and the non-commutative projective

space obtained by gluing together the associated rings and categories of modules, we can
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simply assume that they are localizations of a suitable kβ[x0, ..., xn] and its own category of

modules. Furthermore, we showed in example 3.3 that for a bicharacter γ, Dq((RS
−1
i )Ŝ−1

j ) '

Dq(R)S−1
i Ŝ−1

j . Here we elect to proceed as in section [12], §2, primarily because we would like

to consider the category of modules for Pnβ in the full generality that we can manage, which

means considering a collection of (distinct) bicharacters with which to make the quantum

differential operators on our affine patches. However, for the sake of completeness, in [14]

it is shown that the action of k[Γ] on the ring kβ[x0, ..., xn] is differential, meaning, among

other things, that it is compatible with taking the homogeneous elements of degree 0 in the

localizations by Ore sets such as Si = {1, xi, x2
i , ...}, and thus the construction could be made

as in 6.2.9 above.

The aim is to construct the category of Lunts and Rosenberg’s quantum D-modules on

our non-commutative projective space Pnβ, which itself is glued together from affine patches

via kβi [x1, ..., xn], where the collection of 2-cocycles βi satisfy the cocycle condition 6.2.1. To

avoid confusion, let us refer to kβi [x1, ..., xn] as kβi [x0/i, ..., xn/i], since, from proposition 6.2.5

we know they can be thought of as the homogeneous elements of degree 0 in localizations of

an appropriate kβ[x0, ..., xn] anyway. Now, from proposition 3.2.2 we know that

(Dq(kβ[x0, ..., xn])S−1
i )0 ' (Dq(kβ[x0, ..., xn]S−1

i ))0

' Dq(kβi [x0/i, ..., xn/i])

We have to be careful with this statement: though our operators ∂β
a

i have a gradation, we

do not consider them when taking our homogeneous degree 0 localization. From here, we

employ Theorem 3.2.18 of [4] to obtain

Dq(kβi [x0/i, ..., xn/i])-mod ' Dq′(k[x0/i, ..., xn/i])-mod,

where on the right hand side our quantum differential operators are made with the bicharac-

ter γβi(a, b) := γ(a, b)β−1(a, b)β(b, a). Finally, let Ti be the full subcategory ofDq(kβ[x0, ..., xn])-

mod generated by modules M with xi ∈ ann(M), and T−i its Serre closure. Exactly as in
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Lemma 6.2.8, we have that

(Dq(kβ[x0, ..., xn])S−1
i )0-mod ' Dq(kβ[x0, ..., xn])-mod/T−i .

Thus, we have a family of exact localizations {u∗i : Dq(kβ[x0, ..., xn])-mod→ Dq′(k[x0/i, ..., xn/i])-mod},

with right adjoints, say, ui∗. Following 6.1.2, name u∗ : Dq(kβ[x0, ..., xn])-mod→
∏
Dq′(k[x0/i, ..., xn/i])-mod

and u∗ its right adjoint. Then (Gu, δu) = (u∗u∗, u
∗ηuu∗) is a comonad on the category∏

Dq′(k[x0/i, ..., xn/i])-mod.

Definition 6.3.1. A Dq-module on the β-projective space Pnβ is a coalgebra of the comonad

Gu. That is, it is a collection (L, ξ) = (Li, ξi), with modules Li ∈ Dq(kβ[x0, ..., xn]-mod/T−i
and

ξi : Li → u∗iu∗(L) = u∗i (
∏

uj∗(Lj)),

satisfying

Li u∗i (
∏

j,m∈J
uj∗(Lj))

∏
j,m∈J

u∗ium∗u
∗
muj∗(Lj).

We will denote the category Gu-coalg of these objects by DγPnβ -mod.

Following the discussion in remark 6.1.8, an object here is a collection of γ-quantum

D-modules on each affine patch which have been glued together on the triple intersections.
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