On goodness-of-fit of logistic regression model

dc.contributor.authorLiu, Ying
dc.date.accessioned2007-12-19T20:15:57Z
dc.date.available2007-12-19T20:15:57Z
dc.date.graduationmonthDecember
dc.date.issued2007-12-19T20:15:57Z
dc.date.published2007
dc.description.abstractLogistic regression model is a branch of the generalized linear models and is widely used in many areas of scientific research. The logit link function and the binary dependent variable of interest make the logistic regression model distinct from linear regression model. The conclusion drawn from a fitted logistic regression model could be incorrect or misleading when the covariates can not explain and /or predict the response variable accurately based on the fitted model- that is, lack-of-fit is present in the fitted logistic regression model. The current goodness-of-fit tests can be roughly categorized into four types. (1) The tests are based on covariate patterns, e.g., Pearson's Chi-square test, Deviance D test, and Osius and Rojek's normal approximation test. (2) Hosmer-Lemeshow's C and Hosmer-Lemeshow's H tests are based on the estimated probabilities. (3) Score tests are based on the comparison of two models, where the assumed logistic regression model is embedded into a more general parametric family of models, e.g., Stukel's Score test and Tsiatis's test. (4) Smoothed residual tests include le Cessie and van Howelingen's test and Hosmer and Lemeshow's test. All of them have advantages and disadvantages. In this dissertation, we proposed a partition logistic regression model which can be viewed as a generalized logistic regression model, since it includes the logistic regression model as a special case. This partition model is used to construct goodness-of- fit test for a logistic regression model which can also identify the nature of lack-of-fit is due to the tail or middle part of the probabilities of success. Several simulation results showed that the proposed test performs as well as or better than many of the known tests.
dc.description.advisorShie-Shien Yang
dc.description.degreeDoctor of Philosophy
dc.description.departmentDepartment of Statistics
dc.description.levelDoctoral
dc.identifier.urihttp://hdl.handle.net/2097/530
dc.language.isoen_US
dc.publisherKansas State University
dc.rights© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectLogistic Regression
dc.subjectGoodness-of-Fit
dc.subject.umiStatistics (0463)
dc.titleOn goodness-of-fit of logistic regression model
dc.typeDissertation

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
YingLiu2007.pdf
Size:
882.58 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: