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Abstract 

 Logistic regression model is a branch of the generalized linear models and is 

widely used in many areas of scientific research. The logit link function and the binary 

dependent variable of interest make the logistic regression model distinct from linear 

regression model.  

The conclusion drawn from a fitted logistic regression model could be incorrect or 

misleading when the covariates can not explain and /or predict the response variable 

accurately based on the fitted model---that is, lack-of-fit is present in the fitted logistic 

regression model.     

The current goodness-of-fit tests can be roughly categorized into four types. (1) 

The tests are based on covariate patterns, e.g., Pearson’s Chi-square test, Deviance D 

test, and  Osius and Rojek’s normal approximation test.  (2) Hosmer-Lemeshow’s Ĉ and 

Hosmer-Lemeshow’s Ĥ tests are based on the estimated probabilities. (3) Score tests 

are based on the comparison of two models, where the assumed logistic regression 

model is embedded into a more general parametric family of models, e.g., Stukel’s 

Score test and Tsiatis’s test. (4) Smoothed residual tests include le Cessie and van 

Howelingen’s test and Hosmer and Lemeshow’s test. All of them have advantages and 

disadvantages.  

In this dissertation, we proposed a partition logistic regression model which can 

be viewed as a generalized logistic regression model, since it includes the logistic 

regression model as a special case. This partition model is used to construct goodness-

of-fit test for a logistic regression model which can also identify the nature of lack-of-fit is 

due to the tail or middle part of the probabilities of success.  Several simulation results 

showed that the proposed test performs as well as or better than many of the known 

tests. 
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Abstract 

Logistic regression model is a branch of the generalized linear models and is 

widely used in many areas of scientific research. The logit link function and the binary 

dependent variable of interest make the logistic regression model distinct from the linear 

regression model.  

The conclusion drawn from a fitted logistic regression model could be incorrect or 

misleading when the covariates can not explain and /or predict the response variable 

accurately based on the fitted model---that is, lack-of-fit is present in the fitted logistic 

regression model.     

The current goodness-of-fit tests can be roughly categorized into four types. (1) 

The tests are based on covariate patterns, e.g., Pearson’s Chi-square test, Deviance D 

test, and  Osius and Rojek’s normal approximation test.  (2) Hosmer-Lemeshow’s Ĉ and 

Hosmer-Lemeshow’s Ĥ tests are based on the estimated probabilities. (3) Score tests 

are based on the comparison of two models, where the assumed logistic regression 

model is embedded into a more general parametric family of models, e.g., Stukel’s 

Score test and Tsiatis’s test. (4) Smoothed residual tests include le Cessie and van 

Howelingen’s test and Hosmer and Lemeshow’s test. All of them have advantages and 

disadvantages.  

In this dissertation, we proposed a partition logistic regression model which can 

be viewed as a generalized logistic regression model, since it includes the logistic 

regression model as a special case. This partition model is used to construct goodness-

of-fit test for a logistic regression model which can also identify the nature of lack-of-fit is 

due to the tail or middle part of the probabilities of success.  Several simulation results 

showed that the proposed test performs as well as or better than many of the known 

tests. 
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CHAPTER 1 - Introduction 

 

 

 

 

1.1 Basic Concepts on Logistic Regression Model 

 

 

Generalized linear model (GLZ) is a useful generalization of the general linear 

model. In a GLZ, the dependent or outcome variable y is assumed to be generated from 

a particular probability distribution function from the exponential family. Generalized 

linear models are defined by three components: 

1. Random Components:  the probability distribution function f for the dependent 

    variable y=(y1, y2,…,yn)’  is from an exponential family of distributions.  

2. Systematic component: a linear predictor η = X β, where the matrix X contains  

    columns of explanatory variables which is called the design matrix, β are the  

    unknown parameters and  η=(η1, η2,… ηn).  

3. A link function g such that E(y|X) = µ = g-1(η), which provides the link   

              between the linear predictor and the mean of the probability distribution  

               function f of y (McCullagh and Nelder 1989, Agresti 1990). Let E(yi|xi) = µi,  

               i=1,2,…N. then xi is the i
th row of X; the explanatory variables associated with  

               the ith response yi  vector  of  independent variables.  
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           Generally, the exponential family of distributions for the dependent variables y 

are the probability distributions, parameterized by θ and φ with density functions 

expressed in the form: 

                                    

),(
)(

)(

),;(
φ

φ
θθ

φθ
yc

a

by

eyf
+







 −

=                       (1.1) 

θ is related to the mean of the distribution with ( ) ( )θµ '| byE ==x . Φ is the 

dispersion parameter, typically is known and is usually related to the variance of the 

distribution and ( ) ( ) ( )φθ abyVar ''| =x . The functions a, b, and c, are known.  

The generalized linear models can be summarized in the following table with the 

following commonly used link functions (McCullagh and Nelder, 1989). 
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            Table 1-1 Link Functions for the Generalized Linear Models 

Distribution Name Link Function Mean Function 

Normal Identity       µβ =x  βµ x=  

Exponential 

Gamma 

Inverse 1−= µβx  
1)( −= βµ x  

Poisson Log )ln( µβ =x  )exp( βµ x=  

Binomial 

Multinomial 

Logit )
1

ln(
µ

µ
β

−
=x  

)exp(1

)exp(

β
β

µ
x

x

+
=  

 

 When each of the response variable of y is a binary or dichotomous outcome 

(taking on only values 0 and 1), the distribution function is generally chosen to be the 

Bernoulli distribution. There are several link functions for the Bernoulli data. They are 

probit link, log-log link and complementary log-log link, and logit link function. In the 

generalized linear models, the logistic link function is most widely used and the model 

with this type of link function is called logistic regression model (Nelder and Wedderburn 

1972) which was first suggested by Berkson (1944), who showed the model could be 
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fitted by using iteratively weighted least squares. The logistic regression model is used 

in social and scientific fields (Dreisitl et al. 2005, Tan et al. 2004, Bedrick and Hill 1996). 

In some cases, the response variable y may have more than two outcomes (Tabachnick 

and Fidell 1996). 

In order to simplify the notation, we denote the quantity )()|( xx π=yE as the 

conditional mean of y given x in the logistic regression model which is also the 

probability of taking the value 1. Thus, the probability of y taking the value 0 is 1- )(xπ .  

 The logit transformation is central to the formulation of the logistic regression 

model. It is assumed that the log of the odds 
)(1

)(

x

x

π
π
−

 is linearly related to the 

covariates, that is,  

                            βπ
π

π
xx

x

x
==









−
))((log

)(1

)(
log it                         (1.2)  

The logit, η = xβ , may be continuous, and may range from -∞ to +∞.  

The logit transformation leads to the following form of the probability of success: 

                                       β

β

π
x

x

x
e

e

+
=

1
)(                                       (1.3) 

Two requirements for logistic regression are that the observations are 

independent and binary, and that the logit of unknown binomial probabilities is linearly 

related to the covariates. Table1-2 gives a comparison of the standard linear regression 

model with the logistic regression model.  
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    Table 1-2  A Comparison of Linear & Logistic Regression Models  

 Linear regression  Logistic regression 

Model pp xxyE βββ +++= ...)( 110  ppxxxit βββπ +++= ...))((log 110  

Response  Continuous variable Binary variable  

Covariates Continuous/or discrete Continuous/or discrete 

Meaning of 

coefficient 

Amount of expected 

change in the response y 

per unit change in 

covariates 

    Amount of change of log 

odds per unit change in the 

covariates 

  Link function Identity Logit 

Distribution 

assumptions 

Response variables  

are independent and with 

constant variance 

 

Response variables are 

independent and each has a 

Bernoulli distribution with 

probability of event dependent 

of the covariates  

   

 

When the response is binary, the linear regression model  

           βαπ ')()|( xxx +==yE                               (1.4) 

is also called linear probability model (Agresti 1990). This model belongs to generalized 

linear model with identity link function. The probability )(xπ is assumed to fall between 0 

and 1 over a finite range of x values. However, some of estimated probabilities will fall 

outside the range of 0 and 1 with this model structure.  

 O-Ring failure data (Appendix A) will be used to illustrate that logistic regression 

model is more suitable to explain the probability of the event than linear probability 
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model.  The space shuttle Challenger accident occurred on January 28, 1986.  An O-

ring that was used to seal a joint of the booster rockets experienced thermal distress.  

The Rogers Commission appointed by President R. Reagan to find the cause of the 

accident, found that the O-ring may not be sealed properly at low temperature. The O-

ring failure data consist of 23 pre-accident launches of the space shuttle.  Dalal, 

Fowlkes, and Hoadley (1989) discovered that the O-ring sealing function under the 

lauching conditions is affected by the low temperatures by using the logistic regression 

model. This data set was also analyzed by Lavine (1991) and Martz and Zimmer (1992) 

using logistic regression model. The Challenger (space shuttle) was launched at 

different temperatures to study whether the explosion was due to low temperature 

condition. The launches are viewed as independent trials.  

The graph (Figure1-1) show that the likelihood of failure decreases when the 

temperature increases with the linear probability model and logistic regression model. 

For the logistic regression model, all the estimated probabilities fall between 0 and 1. 

However, for the linear probability model, some of estimated probabilities are less than 

0. Obviously, the logistic regression model makes more sense than the linear probability 

model does for this data set.  
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               Figure 1-1 Estimated Failure Probability from Logistic Regression Model and 

Probability Linear Model  

                                            

 

                                     

     The red dots are the estimate probabilities from the logistic regression model, 

and the blue triangles are the estimate probabilities from the linear probability model. 
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1.2 The Goodness-of Fit Test for Logistic Regression Model 

 

 

The goal of logistic regression models is used to model the probability of the 

occurrence of an event depending on the value of covariates x. The model is of the 

following form: 

                
)(

)(

1
)()|1Pr(

Xβ

Xβ

xx
e

e
y

+
=== π                               (1.4) 

 

In other words, we want to find a model that fits the observed data well. A model is said 

to fit poorly if the model’s residual variation is large and systematic (Hosmer et al, 1997). 

This is usually the case when the estimated values produced by the logistic regression 

model do not accurately reflect the observed values. There are many ways that cause 

the logistic regression model to fit the data inadequately, The most important of which 

involves the problem with the  linear component (Collett, 1991), such as, omission of 

higher order terms of covariates, or important covariates related to the response 

variables from the model. Influential observations and outliers can also lead to a poor fit.  

Goodness-of-fit or lack-of-fit tests are designed to determine formally the 

adequacy or inadequacy of the fitted logistic regression model. A poorly fitted model can 

give biased or invalid conclusions on the statistical inference based on the fitted model. 

Therefore, we must test the lack-of-fit of a model before we can use it to make statistic 

inferences. 
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Next, we will use a real data set to illustrate the importance of assessing the 

adequacy of a model. Vasoconstriction data is from Finney (1941) and Pregibon (1981). 

This data (Appendix B) consist of variables, the occurrence of vasoconstriction in the 

skin of the fingers, the rate and volume of air breathed.  The end point of each test with 

1 indicating that constriction occurred, 0 indicating that constriction did not occur. In this 

controlled experiment, 39 tests under various combinations of rate and volume of air 

inspired were obtained (Finney 1941). A logistic regression uses Volume and Rate of air 

breathed as covariates to explain and predict the probability of occurrence of 

vasoconstriction in the skin of the fingers.  

 

              Table 1-3 Information on Covariates from Logistic Regression 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 -9.5293 3.2331 8.6873 0.0032 

Rate 1 2.6490 0.9142 8.3966 0.0038 

Volume 1 3.8820 1.4286 7.3844 0.0066 

 

                                                               

                                   Table 1-4 Goodness-of-Fit Test  

Hosmer and Lemeshow Goodness-of-Fit Test 

Chi-Square Df Pr > ChiSq 

19.1837 8 0.0139 
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                       Table 1-5 Model Fit Statistics from Logistic Regression Model  

              Model     Fit        Statistics  

Criteria 

Intercept 

only 

Intercept and 

Covariates 

AIC 56.040 35.772 

SC 57.703 40.763 

-2 Log L 54.040 29.772 

 

 

From Table 1-3, we may conclude that these two predictors do have significant 

effects on the occurrence probability of the vasoconstriction in the skin of the fingers, 

and we get the following model  

volumeratexit *8820.3*6490.25293.9))((log ++−=π          (1.5) 

 The goodness-of-fit test result shown in Table 1-4 indicates the presence of lack-of-fit in 

model (1.5). Therefore, model (1.5) may not be reliable for us to predict the probability 

of occurrence of vasoconstriction. In order to get a suitable model, a higher order or 

interaction term may be needed, or latent predictors should be investigated in this 

experiment.  

               The natural log-transformation on Rate and Volume was used to search for an 

adequate model.  The Figure 1-2 is the plot on the log-transformed data.  
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          Figure 1-2 Three Dimensional Plot on Transformed Vasoconstriction Data  

              

  

The statistical inference on the model parameters for the log-transformation data 

shown in Table1-6 suggests the following model  

    )log(*1793.5)log(*5617.48754.2))((log volumeratexit ++−=π            (1.6) 

It fits the Vasoconstriction data better than model (1.5) based on the result of Hosmer 

and Lemeshow goodness-of-fit test (Table1-8).  

AIC and BIC are two useful criteria to select a better model. Akaike Information 

Criterion (AIC) is proposed by Hirotsuge Akaike (Akaike, 1974), which is usually 

considered as a good criterion to compare several models. kLAIC *2ln*2 +−= , where 

L  is the maximized value of the likelihood function, k is the number of the parameters in 

the model (Akaike, 1974). Bayesian Information Criterion (BIC) is another important 

criterion, which provides more parsimonious model than AIC does. BIC (Bayesian 

information criterion) is also called SIC or SC (Schwarz information criterion or Schwarz 
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criterion), because Schwarz (Schwarz 1978) gave a Bayesian argument on it. In the 

logistic regression model selection, )ln(ln*2 nkLBIC +−= , where L  is the maximized 

value of the likelihood function , K is the number of parameters in the model, and n is 

the sample size. The smaller the AIC and /or SC is, the better the model is. Model (1.6) 

is better than model (1.5) based on AIC and SC from Table 1-5 and Table1-7.   

 

                Table 1-6  Information on Covariates from Logistic Regression  

                             with Log-transformation 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 -2.8754 1.3208 4.7395 0.0295 

Log_Rate 1 4.5617 1.8380 6.1597 0.0131 

Log_Volume 1 5.1793 1.8648 7.7136 0.0055 

            

 

 

            Table 1-7 Model Fit Statistics from Logistic Regression with 

                              Log-transformation                               

              Model     Fit        Statistics  

Criteria 

Intercept 

only 

Intercept and 

Covariates 

AIC 56.040 35.227 

SC 57.703 40.218 

-2 Log L 54.040 29.227 

 



 13 

 

                     Table 1-8  Goodness-of-Fit Test with Log-transformation 

Hosmer and Lemeshow Goodness-of-Fit Test 

Chi-Square Df Pr > ChiSq 

11.0873 8 0.1986 

 

 

Unlike the linear regression model, R2  is not a suitable to measure the predictor 

power of the model in logistic regression, because we can't explain the variation in a 

binary dependent variable the same way as we do for continuous dependent variables.  

In many cases the R2  and /or pseudo R2  are small even when the model is adequate 

for the data (Hosmer and Lemeshow, 2000).  Pearson’s classical Chi-square test and 

Deviance test are well known, and they work very well when the covariates are 

categorical.  When one or more covariates are continuous, the disadvantages of 

Pearson chi-square test and Deviance test provide incorrect p-values.  

  Consequently, many goodness-of-fit tests of logistic regression model are 

developed. For example, the Ĉ  and Ĥ   tests proposed by Hosmer and Lemeshow 

(1980 and1982). Pulksteris and Robinson (2002) also proposed two test statistics 

dealing with the situation in which both discrete and continuous covariates are involved 

in the logistic regression model. However, their methods can not handle the situation 

when all the covariates are continuous.  Brown (1982), Tsiatis (1980) and Stukel (1988) 

proposed tests derived from score test, respectively. These score tests are mainly 

designed to test overall goodness-of-fit for the logistic regression model. Osius and 

Rojek (1992) proposed normal goodness-of-fit tests for multinomial models with many 
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degrees of freedom, which can be applied to the binary cases. This test can be viewed 

as an extension of Pearson Chi-square test.  le Cessie and van Houwelingen (1991) 

proposed a goodness-of-fit test based on the smoothing of the residuals techniques 

proposed by Copas (1983), Landwehr et al (1984), Fowlkes (1987) and Azzalini et al. 

(1989). Hosmer et al (1997) developed another smoothed residual test following the 

step of le Cessie and van Houwelingen (1991).  However, Hosmer et al. (1997) showed 

that smoothed residual tests are not very powerful compared with Stukel’s test and 

Hosmer-Lemeshow’s Ĉ  test.   

In spite of the fact that many goodness-of-fit tests have been proposed by 

researchers in recent decades, none of them can be considered as the universal best 

one in assessing the adequacy or inadequacy of the logistic regression model. Each 

proposed test has its advantages or disadvantages.  

In this dissertation, we proposed a new goodness-of-fit test for the logistic 

regression. The proposed test is expected to perform as well as or better than the 

known tests. The proposed test can identify the nature of the lack-of-fit. The proposed 

partition logistic regression model can be used as a generalized logistic regression 

model to improve the fit of a standard logistic regression model. 

The rest of the chapters are organized as follows. Chapter 2 reviews several 

primary overall goodness-of-fit tests including their theoretical developments, 

advantages and drawbacks. Chapter 3 presents the proposed method, and applications 

of the proposed test to several real data sets, to illustrate the performance of the 

proposed test. Chapter 4 gives several simulations studies under different setting to 

evaluate and compare the proposed tests with other known tests.  Chapter 5 and 
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Chapter 6 summarize the finding obtained in this research and some possible 

extensions of the present work in a future study.                                                                                       
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CHAPTER 2 - Literature Review 

 

  

Many methods on assessing the goodness-of-fit for logistic regression models have 

been developed recently (Evans and Li 2005). The current methods can be roughly 

categorized into four types. (1) The tests are based on covariate patterns, which 

includes Pearson’s Chi-square 
2

χ  test (Pearson 1900), Deviance D test, and  Osius 

and Rojek’s normal approximation test (Osius and Rojek 1992).  (2) Hosmer and 

Lemeshow’s Ĉ  and Hosmer and Lemeshow’s Ĥ tests ( Hosmer and Lemeshow 1980) 

use grouping of event estimated probability from the assumed model. (3) Score tests 

are based on the comparison of two models, where the assumed logistic regression 

model is embedded in a more general parametric family of models (Prentice 1976). The 

score tests contains Brown’s Score test (Brown 1982), Stukel’s Score test (Stukel 1988) 

and Tsiatis’s test (Tsiatis 1980). (4) Smoothed residual tests include le Cessie and van 

Howelingen’s lcT̂  test  (Cessie and Howelingen 1991) and Hosmer and Lemeshow’s 

rcT̂ test (Hosmer et al. 1997). These two methods have similar performances, Hosmer et 

al (1997) indicate they are not better than Stukel’s scroe test, Ĉ  test, and Ĥ test.   

In this dissertation, six well known goodness-of-fit tests for logistic regression model 

will be compared with the proposed test. The six tests are the Pearson Chi-square 
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2

χ test  (Pearson 1900), Deviance D test, Hosmer and Lemeshow’s Ĉ test, Hosmer and 

Lemeshow’s Ĥ test (Hosmer and Lemeshow 1980), the Osius and Rojek normal 

approximation test (Osius and Rojek 1988) and Stukel’s score test (Stukel 1988) . The 

first three methods are adopted in several commercial statistical packages such as, 

SAS, SPSS, GLIM, S-plus/R. The Hosmer and Lemeshow’s Ĉ , the Osius and Rojek 

normal approximation test and Stukel’s score test are considered as better methods for 

overall assessment of goodness-of-fit tests when continuous covariates are present in 

the  model. They are recommended by several researchers (Hosmer and Lemeshow 

2000).  
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2.1 Pearson Chi-square 
2

χ  Test and Deviance D Test  

 

 

In logistic regression, there are several goodness-of-fit tests obtained by 

comparing the overall difference between the observed and fitted values. Among these 

tests Pearson Chi-Square 
2

χ  and Deviance D test statistic are used most often among. 

Pearson chi-square
2

χ  goodness-of-fit test was proposed by Karl Pearson (Pearson 

1900). This method made a revolutionary impact on the categorical data analysis. We 

will first define the items needed to describe these two tests. 

Suppose that ),( ii yx , ni ,..2,1=  are independent pairs of observations obtained from 

n subjects.  For the ith subject, the response iy  is a Bernoulli variable with probability 

success iπ  and ix  is a single set of values of independent (predictor or explanatory) 

variables called covariates associated with the ith response yi. The logit of the logistic 

regression model is the linear predictor:  

,,...2,1,...)( 110 nixxx ippii =+++= βββη                                        (2.1) 

where )|1Pr()( xy ==xπ is the conditional probability that y is 1 given x, and 

)|0Pr()(1 xyx ==−π  is the conditional probability that y is 0 given x. 
)(1

)(

x

x

π
π
−

 is called 

the odds associated with the set of covariate x in the logistic regression model. 

The likelihood function for the pair ),( ii yx  is  

                         ii y

i

y

i xx
−− 1)](1[)( ππ                                                  (2.2) 
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The likelihood function and log-likelihood function of  ),( ii yx , ni ,..2,1=  are 

respectively, 

           ∏
=

−−=
n

i

y

i

y

i
ii xxL

1

1)](1[)()( ππβ                                              (2.3) 

      ))}(1log()1()(log{)(
1

iiii

n

i

xyxyLogL ππβ −−+=∑
=

                      (2.4) 

The value of β , β̂  that maximizes the equation (2.3)  or (2.4) is called the maximum 

likelihood estimate of β . The estimated probability )(ˆ
ixπ   and estimated logit )(ˆ

ixη   are 

obtained by the maximum log likelihood method. Thus, )(ˆ
ixπ is the maximum likelihood 

estimate of )( ixπ , and )(ˆ
ixη is the maximum likelihood estimate of the linear predictor 

)( ixη .   

 Suppose the fitted model has p-dimensional covariates ),...,,( 21 pxxx=x .   A 

single covariate pattern is defined as a single set of values of the covariates used in the 

model. For example, if two covariates, gender (Female and Male) and class (Freshmen, 

Sophomore, Junior, Senior) are used in a data set, then the maximum number of 

distinct covariate patterns is eight.  There are essentially two types of covariate 

patterns. Type one pattern, there are no tied covariates which indicates that each 

subject has a unique set of covariate values, and the number of covariate patterns J is 

equal to the number of subjects, i.e., J=n.  This is very common, when only continuous 

covariates are involved in the logistic regression model. The data set is considered to 

be sparse in this situation (Kuss 2002). For the type two pattern, some subjects have 

tied covariates, that is, they have the same covariate values, making the number of 

covariate patterns less than the number of subjects, i.e., J<n. In the type two pattern, let 
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the total number of successes ( y=1) be 1n and the total number of  failures (y=0 ) be 

0n , and it follows that nnn =+ 01  .  Suppose mj subjects in the j
th covariate pattern have 

the same covariate values xj, then, nm
J

j

j =∑
=1

.  Let the 1jy  denote the number of 

successes in the jth group with jth covariate pattern. It follows that∑
=

=
J

j

j ny
1

11 . Similarly, let 

the 0jy denote the number of failures observed by subjects in the jth group with jth 

covariate pattern. It follows that∑
=

=
J

j

j ny
1

00 . Under type two covariate pattern, the binary 

outcomes can be represented by a J by 2 frequency table. The two columns of the table 

corresponding to the response variable, y=1,0 and the J rows corresponding to J 

possible covariate patterns.  

 Let jπ̂  be the maximum likelihood estimate of jπ  associated with the jth covariate 

pattern, then the expected number of success observed by the subject in the jth group 

with jth covariate pattern is  

                 )(ˆˆ 1 jjj xmy π=   

The likelihood function (2.3) and the log-likelihood function (2.4) can be written 

respectively as below for type two covariate pattern 

          ∏
=

−−









=

J

j

ym

j

y

j

j

j
jjj xx

y

m
L

1 1

11 ))(1())(()( ππβ                                      (2.5) 

))}(1log()()(log{log)( 11
1 1

jjjjj

J

j j

j
xymxy

y

m
LogL ππβ −−++





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



=∑

=

             (2.6)  

The Pearson residual (Hosmer and Lemeshow 1989) is defined as 
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))(ˆ1)((ˆ

))(ˆ(
))(ˆ,( 1

1

jjj

jjj

jj
xxm

xmy
xyr

ππ

π
π

−

−
=                                                 (2.7) 

 The Pearson Chi-Square test statistic is 2

1
1

2 ))(ˆ,( j

J

j

j xyr πχ ∑
=

=              (2.8) 

If the fitted model is correct, the sampling distribution of the Pearson chi-Square test 

statistic can be approximated by a Chi-Square distribution with degrees of freedom J-

(p+1), where p is the number of the parameters in the model. For the type one pattern 

case with J=n. Pearson’s chi-square (McCullagh and Nelder 1989) test statistic is not an 

applicable goodness-of-fit test, because the test statistic will not have a Chi-square 

distribution (Christensen 1997). This due to the fact that when mj=1, one subject for 

each covariate pattern, the Pearson residual does not asymptotically have a normal 

distribution for large n.  

The deviance as a measure of goodness-of-fit was first proposed by Nelder and 

Wedderburn (1972). The deviance residual for the jth covariate pattern is defined as 

(Hosmer and Lemeshow 1989) 

2/11
1

1
11 )]}

))(ˆ1(

)(
ln()()

)(ˆ
ln([2{))(ˆ,(

jj

jj

jj

jj

j

jjj
xm

ym
ym

xm

y
yxyd

ππ
π

−

−
−+±=            (2.9) 

 where the sign of the deviance residual is the same as that of ))(ˆ( 1 jjj xmy π− .The 

Deviance test statistic is    2

1
1 ))(ˆ,( j

J

j

j xydD π∑
=

=                                         (2.10) 

If the model is correct, the test statistic of Deviance has approximately a Chi-Square 

distribution with degree of freedom J-(p+1).   

Under the null model and Type one covariate pattern, the deviance residual is reduced 

to 
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Deviance residual measures the difference of the log likelihood between the 

assumed model and the saturated model.  yi1 has two values 0 and 1, which indicates 

that 11 log ii yy  and )1log()1( 11 ii yy −−  will be both 0. Then under Type one covariate 

pattern the test statistic of Deviance can be expressed as (Collett 1991) 

                              ))}(ˆ1log())(ˆ1()(ˆlog)(ˆ{2
1

ii

n

i

ii xxxxD ππππ −−+−= ∑
=

               (2.12)                                             

Note that the test statistic (2.12) of Deviance does not involve in the comparison of the 

observed and fitted frequency of success but involves a comparison of the log of the 

maximum likelihood of the saturated model and the assumed model.  

Hosmer and Lemeshow (Hosmer and Lemeshow 2000) reported that the p-

values of the Prearson Chi-square test and Deviance test are not correct under type 

one covariate pattern for which J=n. The major advantage of Deviance test and Pearson 

Chi-square is their elementary calculation of the test statistics and the associated p-

value. When the Pearson Chi-square 2χ  and Deviance D have different conclusions on 

the data set, extreme caution should be taken, because it may indicate the Chi-square 

distribution (df=J-(p+1)) may not approximate the sampling distribution of  Pearson Chi-

square  and Deviance test statistic (Collett 1991). 

Usually, the Deviance test is preferred to the Pearson Chi-square test for the 

following reasons. (1) The logistic regression model is fitted by the maximum likelihood 

method, and the maximum likelihood estimates of the success probabilities minimize 

the test statistic D (Collett 1991). (2) The Deviance test can be used to compare a 
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sequence of hierarchical logistic models, but the Pearson Chi-square test can not be 

used in this way (Collett 1991). 
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2.2 The Hosmer and Lemeshow Tests 

 

 

Hosmer and Lemeshow developed several different methods to test the lack-of-fit 

of a logistic regression model. We will only consider two widely known tests which group 

the subjects based on the estimated probabilities of success. The test statistic, Ĥ , is 

calculated based on the fixed and pre-determined cut-off points of the estimated 

probability of success (Hosmer and Lemeshow 1980). The test statistic, Ĉ , is calculated 

based on the percentiles of estimated probabilities (Lemeshow and Hosmer 1980). Only 

the test statistic Ĉ  method is well accepted and is included in several major statistical 

packages.  

The tests proposed by Hosmer and Lemeshow (Hosmer and Lemeshow 1980, 

Lemeshow and Hosmer1982) do not require the number of covariate patterns less than 

the total number of the subjects. 

2.2.1 Hosmer and Lemeshow’s Ĉ  

 

In this method, the subjects are grouped into g groups with each group 

containing n/10 subjects.  The number of groups g is about 10 and can be less than 

10, due to fewer subjects. Ideally, the first group contains 10/'
1 nn = subjects having the 

smallest estimated success probabilities obtained from the fitted assumed model. The 

second group contains 10/'
2 nn =  subjects having the second smallest estimated 

success probabilities, and so on. Let kπ  be the average estimated success probability 

based on the fitted model corresponding to the subjects in the kth group with y=1, and 
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let ko  be the number of subjects with y=1 in the kth group. We have a g by 2 frequency 

table with the two columns of the table corresponding to the two values of the 

response variable, y=1,0 and the g rows corresponding to the g groups. The formula of 

Hosmer and Lemeshow test statistic Ĉ is 

                ∑
= −

−
=

g

k kkk

kkk

n

no
C

1
'

2'

)1(

)(ˆ
ππ

π
                                   (2.13) 

where  nn
g

k

k =∑
=1

' , and '
kn  gk ,...2,1= ,  is the total subjects in the kth group. 

Under the null hypothesis, the test statistic, Ĉ , is approximately distributed as a 

Chi-square distribution with g-2 degrees of freedom (Lemeshow and Hosmer ,1980).  

The equation n=10*w does not always hold, where n is the total number of subjects 

and W is an arbitrary positive integer. There is a tendency to ensure that each group 

has fair number of subjects. The test statistic, Ĉ , may be sensitive to the cut-off points 

specified to form the groups. To illustrate the sentivitity of Ĉ ,  Hosmer et al.  (Hosmer et 

al. 1997) used 6 different packages to carry out lack-of-fit test on low birth weight data 

(Hosmer and Lemeshow 1989). The six different packages did produce the same fitted 

model with same coefficients; however, these different packages provided six different 

Ĉ  values associated with six different p-values. 
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                 Table 2-1 the Results of Hosmer-Lemeshow Ĉ Test  

                                  from Different Packages 

Package Ĉ  df p-value 

BMDPLR 18.11 8 0.02 

LOGXACT 13.08 8 0.109 

SAS 11.83 8 0.159 

STATA 12.59 8 0.127 

STATISTIX 12.11 8 0.147 

SYSTAT 14.70 8 0.065 

 

The above results are not surprising, since different statistical packages have 

their own algorithms to determine the cut-off points. Bertolini  et al. (2000) pointed out 

that the paradox of Hosmer and Lemshow’s goodness-of-fit test may occur when ties 

are present in the covariates. They also pointed out that Hosmer and Lemeshow 

goodness-of-fit test results may be inaccurate, when the number of covariate patterns is 

less than number of subjects. 

 

 

2.2.2 Hosmer and Lemeshow Ĥ  

 

This test was developed by Hosmer and Lemeshow(1980), in which the subjects 

are grouped into 10 groups if the estimated probabilities cover 0-1. The grouping 

method is described as the following: the subjects are in the first group whose estimated 

probabilities fall in the range from 0 to 0.1; the subjects are in the second group whose 
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estimated probabilities fall in the range from 0.1 to 0.2, other groups have the same 

grouping policy. The number of subjects is not always the same among groups. In many 

cases, the range of estimated probabilities can only cover a small subset of (0,1), which 

resulted in the group numbers less than 10.   

The Hosmer and Lemeshow Ĥ  test statistic can be obtained by computing the 

Pearson chi-square statistic from a g by 2 frequency table considered in the Ĉ  test. It 

has exactly the same form as Ĉ test: 

     ∑
= −

−
=

g

k kkk

kkk

n

no
H

1
'

2'

)1(

)(ˆ
ππ

π
                                             (2.14) 

where ko  , kπ  and  '
kn have the same definition as in (2.13). For large n, the distribution 

can be approximated by a Chi-square distribution with g-2 degrees of freedom under 

the null hypothesis. 

The simulation study conducted by Hosmer and Lemeshow (Lemeshow and 

Hosmer 1982) compare their Ĉ and Ĥ  tests. The results seem to suggest that the 

Ĥ test is more powerful than Ĉ test, and thus, Ĥ  test was the preferred test. However, 

additional study from Hosmer, Lemeshow, and Klar (1988) showed that Ĉ  test is better 

than Ĥ , especially when there are a lot of estimated probabilities that are less than 0.2 

(Hosmer and Lemeshow 2000). 

From (2.13) and (2.14), the Hosmer-Lemeshow’s Ĉ  and Ĥ  test can be 

considered as extensions of Pearson chi-square test on the basis of merging multiple 

covariate patterns into one group, which makes the distribution of the Pearson residuals 

approximately normal.  

 



 28 

 

2.3 Osius and Rojek Normal Approximation Test  

 

 

This method derived by Osius and Rojek (Osius and Rojek 1992), can be applied 

not only to binary cases but also to multinomial cases. The test statistic is obtained by 

modification of Pearson Chi-square test statistic, and it is approximately normally 

distributed when the number of subjects is large.  

The procedure to obtaine this test statistic is described for the type two covariate 

pattern (the number of covariate patterns are less than the number of subjects). Let the 

subjects have J covariate patterns, and let the estimated probability of the jth covariate 

pattern be jπ̂ based on the assumed model, j=1,2,…J, then the variance of number of 

successes in jth covariate pattern is )ˆ1(ˆ
jjjj mv ππ −= , where jm is the number of 

subjects in the jth  covariate pattern.  

For j=1,2,…J, let  
j

j

j
v

c
)ˆ21( π−

=  .  The  jv s are used as the weights to perform an 

ordinary linear regression of jc  (j=1,2,…J)  on  the covariates jx  (j=1,2,…J), and 

calculate the residual sum squares RSS.  In this ordinary weighted linear regression, 

total sample size equals to number of covariates patterns J instead of total subjects n. 

The test statistic z is denoted as 

                    
RSSA

pJ
z

+

−−−
=

)]1([ 2χ
                                                 (2.15) 



 29 

where )
1

(2
1

∑
=

−=
J

j jm
JA is the correction factor for the variance  and 2χ  is the Pearson 

Chi-square test statistic given in (2.8). The test statistic Z approximately follows the 

standard normal distribution when the sample size is large. 

This method is applicable to the type one covariate pattern (J=n) and the type 

two covariate pattern (J<n).  The correction factor A will be zero when J=n. The Pearson 

Chi-square can be inflated by the very small or large estimated probabilities (Windmeijer 

1990), thus the test statistic Z is affected by this characteristic as well. Windmeijer 

(Windmeijer 1990) suggested that the subjects with extreme estimated probabilities 

should be excluded in order to construct a suitable test statistic.  
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2.4 Stukel’s Score Test 

 

 

Stukel’s score test is based on the comparison between the assumed logistic 

regression model and a more general logistic regression model. This general logistic 

regression model has two additional parameters (Stukel 1988). Thus, this test is called 

a two degree-of-freedom test (Hosmer and Lemeshow, 2000). Each one of the two 

additional parameters independently affects the behavior of one of the tails of the 

probability of success curve.  

Let the assumed logistic regression model is the same as (1.3). Let the maximum 

likelihood estimates of )( ii xππ = and )( ii xηη = based on the assumed model be 

iπ̂ and )(ˆ
ixη ni ...,3,2,1= , respectively.  Two new covariates are created as follow: 

)5.0ˆ(*)(ˆ*5.01 ≥= iii Ixz πη  and )5.0ˆ(*)(ˆ*5.02 <−= iii Ixz πη , ni ...,3,2,1= , where I  is an 

indicator function.      

The generalized logistic regression model is obtained by adding the two 

covariates iz1  and iz2  in the logit of the assumed model. That is, 

                     iiii zzxit 2211)()(log ααηπ ++=                                 (2.16) 

The null hypothesis is expressed as :0H  021 ==αα .  If 21,αα are larger than 

zero, the estimated tail of the successes probabilities curve of model (2.16) converges 

to their respective asymptotes ( )1,0 == ππ more quickly than the assumed model (1.3), 

otherwise, estimated tail of successes probabilities curve reach its asymptote more 

slowly than that of assumed model.  If 21 αα = , the curve of estimated probabilities for 

the generalized logistic regression model will be symmetric about logit=0 and, 
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probability= 0.5. By this property, the nature of lack of fit on the assumed logistic 

regression model can be viewed by plotting of the fitted probability of success curve.       

 

                           Figure 2-1 the Plot of )(xπ  versus  )(xη for Stukel’s Model 

                                                           

 

 

 

In Figure 2-1, the Red dot line represents the assumed model with 021 ==αα  , 

the blue diamond line represents model (2.16) with 2.021 ==αα  and the green circle 

line represents the model (2.16) with 2.021 −==αα .  

Let )(Xl  be the maximum log-likelihood from the assumed model (1.3), and 

),( ZXl  be that from the generalized logistic regression model (2.16).  The test statistic 
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is )),(2()(2 ZXlXlST −−−=    Under H0, the test statistic ST  has a limiting chi-square 

distribution with 2 degrees of freedom as sample size increases to∞ . 

Hosmer and Lemeshow (1997) indicated that this method strictly speaking is not 

a goodness-of -fit test, since the test statistic is not based on the comparison of the 

observed and expected values. However, they do agree that this method in general is 

more powerful in detecting lack-of-fit than the known methods in many situations and it 

controls the type I error rate (Hosmer et al 1997).  
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2.5. An Illustrative Example 

 

 

The data are given in Appendix C on the survival of 33 leukemia patients, which 

were also analyzed by Feigl and Zelen (1965), Cook and Weisberg (1982) and John 

(1985) using the logistic regression model. In this data set, the binary response is 

survival status 52 weeks after the time of diagnosis. “1” is used to denote that the 

patient is alive, otherwise, “0” is used.  Two important covariates of interest are log 

transform of the white blood cell count and action of the presence or absence of certain 

morphological characteristic denoted by the two levels (AG+, AG-).  A logistic 

regression model with the follow function is fitted to the data:  

           )())(log())((log 210 AGcellxit βββπ ++=                (2.17) 

Estimates of the model parameters are given in Table 2-2, and the goodness-of-

fit test results from different methods are showed in Table 2-3.  

 

                          Table 2-2 Parameter Estimates of Leukemia Data  

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

Intercept 1 9.4001 4.2076 4.9911 0.0255 

Log(Cell) 1 -2.5653 1.0654 5.7981 0.0160 

AG 1 1.2622 0.5462 5.3409 0.0208 
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              Table 2-3 Result from Six Goodness-of-Fit Tests on Leukemia Data 

Test df statistic P-value 

HL Ĉ 9 8.0289 0.5312 

HL Ĥ 8 9.9491 0.2686 

Deviance 27 22.9544 0.6875 

 Pearson 27 19.74 0.8415 

Osius & Rojek  0.4357 0.6630 

Stukel Score 2 0.4158 0.8123 

 

From Table 2-3, these six different goodness-of-fit tests yield the same 

conclusion,   

             AGcellxit *2622.1))(log(*5653.24001.9))((log +−=π                   (2.18)             

  which suggests that model (2.18) fits the data adequately. Clearly, different tests have 

different p-values. Hosmer-Lemeshow’s Ĥ test yields the smallest p-value with 0.2686 

and the Pearson-chi-square test gives the largest p-value with 0.8415. It is worth noting 

that Hosmer-Lemeshow Ĉ  groups the data points into 11 groups instead of 10 groups 

in order to get equal number of subjects within each group using SAS software. The 

grouping scheme is showed as Table 2-4. 
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   Table 2-4 Group Scheme of Hosmer-Lemeshow ’ s Ĉ  test  with SAS Software 

                        on Leukemia Data                     

 Partition for the Hosmer and Lemeshow Test 

y = 1 y = 0  

Group 

 

Total 

Observed Expected Observed Expected 

1 3 0 0.03 3 2.97 

2 3 0 0.11 3 2.89 

3 3 0 0.15 3 2.85 

4 3 1 0.31 2 2.69 

5 3 0 0.42 3 2.58 

6 3 1 0.68 2 2.32 

7 3 1 0.87 2 2.13 

8 3 1 1.53 2 1.47 

9 3 3 1.91 0 1.09 

10 3 1 2.27 2 0.73 

11 3 3 2.72 0 0.28 
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CHAPTER 3 - The Proposed Method 

 

 

 

 

Hosmer and Lemeshow’s (1980) and Lemeshow and Hosmer (1982) proposed 

two goodness-of-fit tests: the Ĉ test and the Ĥ test based on the grouping of estimated 

probabilities obtained from the assumed logistic regression model. Hosmer and 

Lemeshow’s Ĉ  test which is based on the percentile grouping is better than Hosmer 

and Lemeshow’s Ĥ  test which is based on the predetermined cut-off point especially 

when many estimated probabilities are small. (Hosmer Lemeshow and Klar 1988). 

Stukel’s score test was based on the comparison between the assumed logistic 

regression model and a general logistic model with two additional parameters (Stukel, 

1988). But the power was not studied by Stukel. Hosmer and Lemshow (Hosmer and 

Lemshow, 2000) commented that Stukel’s test was a good overall assessment method, 

besides Hosmer and Lemeshow Ĉ test, and Ousis and Rojek approximately normal 

distribution test.  

Pulkstenis and Robinson (Pulkstenis and Robinson, 2002) proposed two 

goodness-of-fit tests, which are very similar to the Deviance and Pearson chi-square 

tests. Their different grouping method was based on covariate pattern: covariate 

patterns are determined only by the categorical covariates. Pulkstenis and Robinson’s 

methods are not applicable to the completely sparse data set in which each observation 
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has its own covariate pattern (2002), although they showed their proposed method is 

more powerful than Hosmer and Lemeshow’s Ĉ test under the type two covariate 

pattern.  

The known goodness-of-fit tests for logistic regression model are not perfect 

even though they might be adopted methods in commercial software. Bender and 

Grouven (1996) suggested that medical journals might publish papers about misleading 

results and misinterpretation of statistical inferences due to lack-of-fit of the logistic 

regressions. This motivates us to search for a better goodness-of-fit test to assess the 

adequacy of the logistic regression model in explaining and predicting the responses.   

We proposed a partition logistic regression model, which can be used to detect 

the overall lack-of-fit, between groups lack-of-fit and within groups lack-of-fit.  These 

concepts will be described in the later sections of the chapter. It is recommended that 

the overall goodness-of-fit test should be performed first, and if the null hypothesis is not 

rejected, we simply conclude that we fail to detect any lack of fit for the assumed model; 

otherwise, the between and within group goodness-of-fit test should be carried out in 

order to figure out which type of lack of fit is present in the assumed model. 
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  3.1 Description of the Proposed Test 

 

 

The response variable could be multinomial case or binary case in the logistic 

regression model. Here, we will consider only the binary case. Suppose we have n pairs 

of observations ),( ii yx , ni ,...,2,1= , where yi  follows a Bernoulli distribution and xi is a 

set of covariate value associated with yi. The assumed logistic regression model is 

            βπ '))((log ii xxit =   ni ,...,2,1= ,                                                    (3.1) 

where ),...,,,( 210
'

pββββ=β  denotes p+1 regression parameters and 

),...,,,1( 21
'

piiii xxx=x  represents a set of values of the p+1 covariates for the ith subject.  

The estimates of the parameters are obtained by the maximum likelihood method and 

denoted by )ˆ,...,ˆ,ˆ,ˆ(ˆ
210

'
pββββ=β  . The assumed model (3.1) may or may not fit the data 

very well. We say that lack-of-fit is present in the model (3.1) if the “true” unknown 

model for the data is 

            δβπ ''))((log iii wxxit +=  ni ,...,2,1= ,                                                 (3.2) 

Of course, δ'iw  is not known to us. We propose to approximate the true model by 

a partition (segmented) logistic regression model. The approximately true model is 

constructed as follow 

Partition the probability of success into M mutually disjoint intervals: 

         )2(,...,2,1),,( 1 ≥== − MMmS mmm ππ , where 1=Mπ , and 00 =π . 

Partition the data points },...,2,1),,{( niyxD ii ==  into M mutually disjoint groups: 

mmjmmjmjm SxnjyxD ∈== )(,,...,2,1),,{( π  )},...,2,1( Mm = , where mjx  is the jth set of 
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covariate value in the mth group. Of course, we do not know )( mjxπ  . Hence, we 

estimate )( mjxπ  by the maximum likelihood method from the assumed model (3.1).  

The following family of partition logistic regression model is used to approximate 

the unknown true model (3.2). 

     mmjmjmj zxxit αβπ ''))((log +=   Mm ,...,2,1= , mnj ,...,2,1=       (3.3) 

 where )),(( mmjmjmjmj DyxIxz ∈=  and nn
M

m

m =∑
=1

 

The '
mjx  in the definition of '

mjz  can be replaced by the vector whose components are 

squared or the cross products of the components of mjx  or any function of the 

components mjx . β and iα  are vectors of the regression coefficients of the components 

of '
mjx  and '

mjz , respectively. '
mjz  contains ‘1’ functioning as the covariates associated 

with the intercept for the mth group.   

       Let 
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 and Mm ,...,2,1=  

matrix Z consists of  '
mjz  defined similarly as matrix X.   Ideally, we want the column 

space of (XZ) to contain the column space of (XW), i.e., )()( XZCXWC ⊆ . Generally,  

(XZ) is not of full column rank. We assume that for sufficiently large M, the full model 

(3.3) should approximate the unknown true model (3.2), that is, )(XWC is approximately 

equal to )(XZC . Hence, in principal we would like to choose M as large as possible with 

the restriction that the group size is large enough to fit each sub-model of (3.3).  
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For the logistic regression model with only continuous covariates, M=2 or 3, 

seems to be sufficient for the data we have considered. If the model contains both 

continuous and categorical covariates, we partition each category group defined by the 

categorical variables into two to three subgroups.  

Let ),( ZXL and )(XL  be the maximum likelihood obtained from the partition 

model (3.3) and the assumed model (3.1), respectively. If the assumed model (3.1) is 

the true model--that is, 0=δ  in the true model (3.2), then )),(log2()(log2 ZXLXL −−−  

follows an asymptotic Chi-square distribution with degrees of freedom 

)()( XrankXZrankdf −= . This is an overall goodness-of-fit test for the assumed logistic 

regression model (3.1). 

Consider a partition model for which models from different groups apart from 

having different intercepts, they all have the same regression coefficients 

mmjmj uxxit += βπ '))((log      Mm ,...,2,1= , mnj ,...,2,1=             (3.4) 

Let ),( uXL  be the maximum likelihood of the model (3.4). Write the overall lack-

of-fit test statistic as 

    ),(log2()(log2 ZXLXL −−−  

)]},(log2),(log2[{)],(log2)(log2[ ZXLuXLuXLXL −−+−−=  

 We call the first term the log- likelihood of between-group lack-of-fit and the 

second term the log- likelihood of within-group lack-of-fit. If the assumed model is 

correct, then lack of these terms have approximately a Chi-square distribution with 

degrees of freedom )(),( XrankuXrankdf −=  and ),(),( ZXrankuXrankdf −= , 

respectively. If the overall lack-of-fit test is significant, we can carry out the between-

group and within-group lack-of-fit tests to determine whether the lack-of-fit is due to 
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between-group or within-group. For example, if the former is significant but the latter is 

not, we may conclude that the lack-of-fit may be due to difference of levels between 

groups and model (3.4) may be sufficient for fitting the data. However, if the latter is 

significant but the former is not, then it is an indication that model (3.4) is not sufficient 

to explain the data and we need a separate model for each group—that is, a partition 

model. 

The proposed method is applicable to the type one covariate pattern (J=n) and 

type two covariate pattern (J<n), and we will use several illustrative examples to show 

this point. Next, the known test and the proposed tests are summarized in the following 

table.  
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Table 3-1 Summary Table for Known and Proposed Tests 

Name of  the test Test Statistic Distribution df 

Pearson 2
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Normal 

 

Stukel’s Score )),(2()(2 ZXlXlST −−−=  Chi-Square          2 

New_Overall )),(2()(2 ZXlXl −−−  Chi-Square rank(XZ)-rank(X) 

New_Between )),(2()(2 uXlXl −−−  Chi-Square rank(X,u)-rank(X) 

New_Within )),(2(),(2 ZXluXl −−−  Chi-Square rank(X,Z)-rank(X,u) 
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3.2 The First Example 

 

 

The beetle data from Bliss (1935) gives the number of beetles killed after 5 hours 

exposure to gaseous carbon disulphide at 8 different concentrations. In this toxicological 

experiment, the concentrations were log-transformed. The data set is given in Appendix 

D. 

In this date set, there are 481 subjects, and 8 unique covariate patterns, that is, 

J<<n. The problem of interest is to fit a model treating the log dosage as an explanatory 

variable. The assumed model is of the form given below: 

ix10)
1

log( ββ
π

π
+=

−
    481,...,2,1=i                                        (3.5) 

 

Table 3-2 Results from the Known and Proposed Methods for Beetle Data 

Method df Statistic p-value AIC 

Deviance 6 11.2322 0.0815 376.471 (Assumed Model) 

Pearson 6 10.0253 0.1236 376.471 

Ĉ 6 10.0253 0.1236 376.471 

Ĥ 4 8.3506 0.0795 376.471 

O.S.  0.6918 0.4891 376.471 

ST. 2 8.1863 0.0167 372.284 (Full mode) 

New_overall 2 8.399 0.0150 372.072 (Full model) 

New_within 1 3.723 0.0537  

New_between 1 4.676 0.0306  

 

 

The two-group partition (by the median of the estimated probabilities) model was 

used. All tests (Table 3-2) except Stukel’s score test and the proposed method can not 

reject the null hypothesis that the assumed model fit and explain the data adequately.  

Pearson chi-square test and Hosmer and lemeshow’s Ĉ test have the same results. P-
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values from Deviance test and Pearson Chi-square test are close. P-value of Stukel’s 

test is less than 0.05, which indicates a better model is required for this data. The 

proposed overall goodness-of-fit test showed that the assumed model is not adequate 

for the beetle data. Between group and within group test results showed that the lack of 

fit was from between group and within group. 

       The 95% prediction intervals on the number of killed beetles were used to show the 

proposed partition logistic regression model does a better job in predicting the number 

of killed beetles than the assumed model does. 

 

 

            Table 3-3 Prediction interval of Number of Beetles Killed by CS2                                 

95% Confidence Interval for Number of Beetles Killed jjn π̂  # of Killed 

Assumed Model Proposed Model 

6 2.02 5.81 3.40 10.57 

13 6.96 13.61 8.52 15.81 

18 18.50 26.73 16.32 24.61 

28 30.36 37.25 20.82 33.10 

52 46.53 53.05 43.82 55.65 

53 50.72 55.12 52.18 56.77 

61 57.40 60.34 58.07 61.52 

60 57.63 59.34 57.71 59.91 

 

 

For the assumed model, five out of eight covariate patterns have the observed 

number of dead beetles falling outside the 95% confidence intervals. However, for the 

proposed method, only the last covariate pattern lies outside of 95% C.I. (Table3-3).   

The estimated probabilities from the assumed model and proposed model are 

showed in Figure3-1. The line connected blue triangles represents the proposed 

partition logistic regression model. The line connected the red asterisks represents the 

assumed model. The observed data are represented by green dots.  Figure3-1 indicates 

that the upper part of both models fit the data very well. The estimated probabilities of 
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the upper part of the assumed model and the full model of the proposed method are 

very similar. Figure3-1 also indicates that the proposed model seems to fit the data 

better than the assumed model when log(dosage)<1.8.  

 

       Figure 3-1   Plot of Estimated probabilities from the Assumed and  

      Proposed Models for the Beetle Data                

                      

 

 

 

 

         Prentice (1976) showed there is an asymmetric curve departure from the fitted 

model and suggested that a complementary log-log link function should be used in 

fitting this data. Stukel (1988) used one additional parameter to show that an 

asymmetric probability curve is more plausible.  
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3.3 The Second Example 

 

 

This data is from Milicer and Szczotka (1966) on the age of menarche in 3918 

Warsaw girls. The data are given in Appendix E and the observed probability versus 

age in Figure3-4.  The Warsaw girls are from 9.21 to 17.58. If she reached menarche,  

denote 1, otherwise, denote 0.   

 

Figure 3-2 the Observed Probability of Menstruating on Warsaw Girls 

       

                      

The problem of interest is to fit a model treating the age as the predictor variable 

and the status of menstruating (binary) as the response variable.  The assumed model 

is the following form: 

  ix10)
1

log( ββ
π

π
+=

−
      3918,...2,1=i                      (3.6) 

The results from the known methods are displayed in Table3-4. 
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             Table 3-4 Results from the Known for Warsaw Girls Data  

Method df Statistic p-value AIC 

Deviance 23 26.7035 0.2688 1643.305 

Pearson 23 21.8684 0.5282  

Ĉ 6 9.7756 0.1344  

Ĥ 8 8.4069 0.3948  

O.S.  0.0067 0.9884  

ST. 2 11.282 0.0035 1636.012 

 

From the Table3-4, the p-value of Stukel’s score test is less than 0.05 for the 

known tests, which indicates a better model is needed for this data set. Osius and 

Rojek’s approximate normality method provides a very big p-value.  Based on AIC 

value, it is possible to improve the fit by Stukel’s model.  

 

                               Figure 3-3 the Plot of Residual versus Age 
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The residual plot (Figure3-3) also shows that an improvement of fit over the 

assumed model is possible.  

For the proposed test, the following five different grouping schemes used to form 

the partition model are considered. For grouping scheme I, the data points are 

partitioned into two groups with boundary at 25th percentile of the estimated probabilities 

from fitting the assumed model. Grouping scheme II and III are constructed the similar 

way with boundary at 35th percentile and 50th percentile, respectively. For grouping 

scheme IV, the data points are partitioned into three groups by the group boundaries 

35th percentile and 65th percentile of the estimated probabilities from fitting the assumed 

model. Grouping scheme V is constructed the same way with boundaries at 25th 

percentile and 75th percentile. 

 In Table3-5, the p-values of all five overall proposed tests are less than 0.05,  

which indicates that lack-of-fit is present in the assumed model. The lack of fit may 

come from within group or between group or both with different grouping schemes. The 

proposed overall test is not sensitive to the grouping schemes. 
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Table 3-5 Results from Different Grouping Schemes of the Proposed Method 

grouping df Statistic p-value AIC 

I_overall 2 11.401 0.0033 1635.940 

I_bewteen 1 8.697 0.0032  

I_within 1 2.722 0.9897  

II_overall 2 10.807 0.004501 1636.498 

II_bewteen 1 1.134 0.2869  

II_within 1 9.673 0.00197  

III_overall 2 8.5943 0.0136 1638.710 

III_bewteen 1 3.827 0.05043  

III_within 1 4.768 0.02899  

IV_overall 4 11.795 0.0189 1639.510 

IV_bewteen 2 1.202 0.5483  

IV_within 2 10.597 0.005  

V_overall 4 12.949 0.0115 1638.356 

V_bewteen 2 9.726 0.0077  

V_within 2 3.223 0.1996  

 

 

The model with grouping scheme I has the smallest AIC value among the 

assumed model, Stukel’s model and the proposed partition models with different 

grouping schemes. The estimated probabilities from the assumed model and proposed 

model with grouping scheme I are in the Figure3-4. The line connected orange triangles 

represents the assumed logistic regression model. The line connected the blue circles 

represents the proposed model. The observed data are represented by asterisks. 

Figure3-4 shows that the upper parts of both models fit the data very well. The 

estimated probabilities upper part of the assumed model and full model of the proposed 

method are very close. The Figure3-4 also shows a slight improvement of model with 

grouping scheme I in fitting the lower part of the proposed model. From above, two-
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group partition model with grouping scheme I is more suitable for this data and the 

model obtained from Table3-6 is 

 

         




+−

+−
=

x

x
xit

*6185.47125.54

*5447.10488.20
))((log π     

1

1

Gx

Gx

∉

∈
           (3.6) 

      

      Table 3-6 the Parameter Estimates for Model with Grouping Scheme I  

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 

Standard 

Error 

Wald Chi-

Square Pr > ChiSq 

grp1 1 -20.0488 0.8424 566.4574 <.0001 

g1x1 1 1.5447 0.0639 583.9186 <.0001 

grp2 1 -54.7125 27.6778 3.9076 0.0481 

g2x1 1 4.6185 2.5265 3.3416 0.0675 

           

      

                          Table 3-7  Model Fit Statistics of Model 3.6 

Model Fit Statistics 

AIC 1635.940 

SC 1661.033 

-2 Log L 1627.940 

 

  

Stukel (1988) also showed the poor fit of the assumed model due to the deviation 

from the logistic curve on the lower tail. A probit link function provides a mild 

improvement on these data by Finney (1971) and Aranda-Ordaz (1981). The model with 

probit link (AIC 1639.489) is not better than partition models (Table 3-5) and Stukel’s 

general logistic regression model (Table 3-4). 



 51 

    

 

 

                         Figure 3-4 Probability versus Age on Warsaw Girl Data 

                               

       

 

 

From Table3-8, the 95% prediction interval for the observed counts indicates that 

an improvement over the assumed model made by the proposed partition model is 

possible, particularly on the lower tail. When the 95% critical limits do not include the 

observed count, the proposed partition model gives a much closer bound than the 

assumed model does.  
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Table 3-8 Observed Counts and Confidence Interval (Assumed Model and  

Proposed Method) for the Warsaw Girl Data  

95% Confidence Interval for Number of menstruating jjn π̂  # of 

menstruating Assumed Model Proposed Model (Grouping I) 

0 0.48 1.21 0 11.15 

0 1.46 2.91 0.002 4.6 

0 1.28 2.35 0.03 2.13 

2 2.54 4.40 0.34 3.4 

2 2.90 4.75 0.8 7.7 

5 4.30 6.65 5.02 8.10 

10 7.70 11.25 8.79 13.31 

17 12.05 16.65 13.46 19.13 

16 15.74 20.64 17.22 23.02 

29 20.68 25.81 22.15 27.80 

39 30.36 36.31 31.89 38.37 

51 42.98 49.62 44.39 51.30 

47 49.40 55.50 50.29 56.39 

67 63.44 69.79 63.87 70.08 

81 72.37 78.28 72.29 78.06 

88 89.69 95.62 89.90 94.56 

79 81.24 85.52 80.15 95.05 

90 85.08 88.59 84.31 88.01 

113 109.55 113.03 108.60 112.39 

95 95.78 98.07 95.04 97.62 

117 116.82 118.91 116.06 118.48 

107 107.74 109.16 107.17 108.87 

92 92.10 92.99 91.71 92.79 

112 112.41 113.20 112.04 113.03 

1049 1047.97 1048.65 1047.48 1048.51 
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3.4 The Third Example 

 

The data of this example are from two general social surveys carried out by the 

National Opinion Research Center, University of Chicago, Illinois, in 1974 and 1975. 

Part of these two surveys was concerned with the relationship of education and gender 

with the attitudes towards the role of women in society. Each respondent was asked if 

he or she agreed or disagreed with ‘Women should take care of running their homes 

and leave running the country up to men.’ The data were combined from two sets, since 

no individual was involved two surveys and short time interval between two surveys. 

Among 2927 participators, three did not give their education levels and fifty three were 

not sure whether they agreed or not the statement provided. The responses from 1305 

males and 1566 females were given by Haberman (1978) and showed in Appendix E. 

 The problem of interest is to fit a model treating the years of education and 

gender as the predictor variables and the attitude of the statement (binary) as the 

response variable, where “1” is used to denote the agreement on the statement in the 

survey.   The assumed model is of the following form: 

  22110)
1

log( ii xx βββ
π

π
++=

−
      2871,...2,1=i                      (3.6) 

 

Table 3-9 Results from the Known and Proposed Methods for Women’s Role Data 

Method df Statistic p-value AIC 

Deviance 38 64.0066 0.0052 3354.330 

Pearson 38 72.6678 0.0006 3354.330 

Ĉ 6 2.9756 0.8142 3354.330 

Ĥ 8 12.444 0.01345 3354.330 

O.S.  2.4770 0.0067 3354.330 

ST. 2 10.1506 0.0062 3348.179 

New_overall 6 15.5117 0.0166 3348.818 

New_within 3 5.3832 0.1458  

New_between 3 10.085 0.01786  
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In this example, four groups were used in the partition model, the data were 

partitioned into two groups by gender, and then each group was divided into two sub-

groups by the median of estimated probabilities. From Table3-9, all tests showed that 

the assumed model is not adequate for the data except Hosmer-Lemeshow’s Ĉ tests.  

The proposed test showed the presence of lack-of-fit between group. The proposed 

partition model and the Stukel’s model give similar AIC values.  

Collett (1991) showed the assumed model is not adequate to the data and 

suggested that two different logistic regression models for males and females, 

respectively, should be used to fit model: 

Males: .)(*2346.0098.2)
1

log( yearsedu−=
−π
π

 

Females: .)(*315.0003.3)
1

log( yearsedu−=
−π
π
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3.5 The Fourth Example 

 

 

 

The data (Appendix G) of this example was from Luigi Bocconi, a cura di R. 

Piccarreta (1993) The subjects of this example were randomly selected in Italian in 

order to study the relation between the annual income and whether one possesses a 

travel credit card. In this data set, the number of cases represents the number of 

subjects at the income level. If the subject has at least one travel credit card, the credit 

card was denoted as “1”, otherwise, “0”.   

     In this date set, there are total 100 subjects, and 31 unique covariate patterns, 

that is, J<n. The problem of interest is to fit a model treating the annual income (millions 

of Lira) as explanatory variable and credit card as a binary response variable. The 

assumed model is of the form given below: 

         ix10)
1

log( ββ
π

π
+=

−
    100,...,2,1=i                                        (3.7) 

 

 

                   Table 3-10 Results from the Known Tests for Credit Card Data 

Method df Statistic p-value AIC 

Deviance 29 45.9211 0.0239 100.963 

Pearson 29 41.0674 0.0679  

Ĉ 7 8.4355 0.2958  

Ĥ 8 17.9802 0.0214  

O.S.  1.6364 0.1018  

ST. 2 0.261 0.8776 104.702 

 

 

In this example, Stukel’s score test gives the largest p-value among six known 

tests. P-values of Deviance test and Hosmer-Lemeshow Ĥ test are less than 0.05, 
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which indicate the presence of lack-of-fit in the assumed model. Hosmer-Lemeshow Ĥ 

test and Hosmer-Lemeshow Ĉ test give contradicting conclusion, Hosmer-Lemeshow Ĉ 

test indicates the absence of lack-of-fit in the assumed model. The p-value of Pearson 

chi-square is just a little bit lager than 0.05.        

Since different conclusions are obtained from different tests, it is worthy to 

investigate the nature of lack-of-fit. There are three parts—upper tail (above 75th 

percentile of estimated probabilities from the assumed model), middle part (between 

25th percentile and 75th percentile) and lower tail (below 25th percentile of the estimated 

probabilities from the assumed model) will be considered. The data are partitioned into 

three groups as below: 
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First, we will detect whether the lack-of-fit occurs at the lower tail, middle part or 

upper tail of )(ˆ xπ  by fitting respectively the following two-group partition models: 
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                          Table 3-11 Goodness-of-fit Test Based on Model (3.8) 

                

 

 

 

 

 

 

 

 

Model df Test statistic  p-value 

Model 1 of 3.8 (without second order) 2 0.998 0.6071 

Model 1 0f 3.8 (with second order) 3 2.508 0.4738 

Model 2 0f 3.8 (without second order) 2 6.152 0.04614 

Model 2 of 3.8(with second order) 3 13.376 0.00389 

Model 3 of 3.8 (without second order) 2 4.838 0.089 
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The parameter estimates of model 3.8 under different cases considered is shown 

in the Table 3-12. 

 

                             Table 3-12 Parameter Estimates of Model (3.8)  

 Parameter Estimate  Std.err p-value 

Intercept -3.6308 0.9793 0.0002 

X 0.0544 0.0164 0.0009 

grp1 4.5688 7.8076 0.5584 

 

G1  

(lower tail) 

X_low -0.2194 0.2648 0.4073 

Intercept -3.6308 0.9793 0.0002 

X 0.0544 0.0164 0.0009 

grp1 -137.6 180.9 0.4468 

X_low 9.6927 12.3771 0.4336 

G1 

(lower tail) 

X_low*x_low -0.1721 0.2115 0.4158 

Intercept -3.3142 -0.8143 <.0001 

X 0.0423 0.0122 0.0005 

grp2 -6.6457 1.8299 0.0003 

G2  

(middle 

part) 

 X_middle 0.1178 0.0346 0.0007 

Intercept -3.3142 -0.8143 <.0001 

X 0.0423 0.0122 0.0005 

grp2 17.3259 9.5534 0.0697 

X_mid -0.8878 0.4096 0.0302 

G2 

(middle 

part) 

X_mid*X_mid 0.0101 0.0042 0.0165 

Intercept -4.9787 1.0884 <.0001 

X 0.0877 0.0226 0.0001 

grp3 -5.0788 2.7945 0.0691 

 

G3 

(upper tail) 

X_upper 0.0612 0.0316 0.0529 
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From Table 3-11, for model 2 of 3.8 with first order, the test statistic of the 

proposed method is 6.512 with 2 degrees of freedom and gives the p-value=0.04614, 

which indicates that a better model is needed for this data set. For model 2 of 3.8 with 

first and second order, the test statistic of the proposed method is 13.376 with 3 

degrees of freedom and gives the p-value=0.00389, which indicates that the assumed 

model is not adequate for this data set.  

 

          Table 3-13 Model Fit Statistics from Two Cases of Model (3.8) i=2 

Criteria With first order 

With first and 

second order 

AIC 98.811 93.587 

SC 109.232 106.883 

-2 Log L 90.811 83.587 

 

 

From Table 3-13, we may conclude model 2 of 3.8 with first and second order is 

more suitable than the model without second order, since the model with first and 

second order has the smaller AIC and SC.  

                        Second, the two three-group partition models will be used to detect further 

on the lack-of-fit and model building. The three-group partition models are expressed 

as: 
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We are interested in testing H0: 02 =α  versus Ha: 02 ≠α . The test statistic was 

calculated from model 3.9 and model 1 of 3.8 with second order is 13.499 along with 

df=3, which yield the p-value=0.0367. We can conclude that the lack-of-fit occurs in the 

middle part. Similarly, for the testing on H0: 01 =α  versus Ha: 01 ≠α , the test statistic was 

calculated from model 3.9 and model 2 of 3.8 with second order is 2.631 with df=3, 

which yield the p-value=0.4521.  Thus, we can conclude that the lack-of-fit occurs in the 

middle part.   

 

                        Table 3-14 Parameter Estimates of Model (3.9)                            

Parameter Estimate 

Standard 

Error 

Wald 

Chi-Square Pr > ChiSq 

grp1 -137.6 180.9 0.5787 0.4468 

X_low 9.6927 12.3771 0.6133 0.4336 

X_low*x_low -0.1721 0.2115 0.6620 0.4158 

grp2 17.3262 9.5535 3.2892 0.0697 

X_mid -0.8878 0.4096 4.6986 0.0302 

X_mid*X_mid 0.0101 0.00420 5.7478 0.0165 

grp3 -5.0788 2.7945 3.3031 0.0691 

X_upper 0.0612 0.0316 3.7470 0.0529 

 

          
For the model 3.10, here is a note:  

 

WARNING: There is possibly a quasi-complete separation of data points. 

The maximum likelihood estimate may not exist. 

WARNING: The LOGISTIC procedure continues in spite of the above 

warning. Results shown are based on the last maximum likelihood 

iteration. Validity of the model fit is questionable. 

Thus, we can declare that the model 3.10 is not applicable for this data set.  
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From first and second step, we may claim that the final model is model 2 of (3.8) 

with first and second order:  
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CHAPTER 4 - Simulation Study 

 

 

 

 

In this chapter, four different simulation studies were conducted to evaluate the 

adequacy of the proposed null distributions in approximating the sampling distribution of 

our test statistics when the assumed model is the correct model and to compare the 

power of the proposed test with six known tests to detect a variety of departures from 

the true models. The six known goodness-of-fit test statistics used to compared with the 

proposed test statistic in  the simulation study  are  Pearson Chi-square statistic, 2χ ; 

Deviance test statistic, D; Hosmer and Lemeshow’s decile of risk statistic, that is the 

test statistic Ĉ  with 10 groups; Hosmer and Lemeshow’s predetermined cutoff point 

statistic, Ĥ , with up to 10 groups; the Osius and Rojek normal approximation test 

statistic, ZOR; and Stukel’s score test statistic, ST . All simulations were performed on a 

Dell Inspiron 6000 PC using SAS Version 9.1. 

In this Chapter, all simulation studies considered here will include type one 

covariate pattern (J=n) to examine the performance of the proposed test, since the 

standard goodness-of-fit tests are unsatisfactory for this covariate pattern. Further more, 

data with type one covariate pattern are frequently seen in application.  The covariates 

in the first, third, and the fourth simulation study are continuous, and the covariates in 

the second simulation are a mixture of continuous and categorical covariates. 



 62 

4.1 The First Simulation Study 

 

 

In this section, we will use a simple logistic regression model as our assumed 

model in which only one predictor variable is used. We will first check whether the 

proposed model controls the type I error rate, when the data are generated from the 

following logistic model 

                     110)
1

log( xββ
π

π
+=

−
                                      (4.1) 

where 3.00 −=β and 3.11 =β , 

  In this simulation study, 1000 random samples of size n=100, 200 or 500 were 

respectively generated from the above model with covariate x independently generated 

from an uniform distribution over the interval (-2,2). The response variable y associated 

with the covariate x was generated as follow: A random variable u is generated from a 

uniform distribution over the interval (0,1). The response y associated with x was 

assigned a value 1, if ux ≥)(π , and 0 otherwise.   

The proposed 2-group partition test with cut-off point set at 50th  percentile, 3-

groups partition test with cut-off points set at 25th  percentile and 75th  percentile, and 

the six known tests mentioned above were applied to the random samples generated 

from model (4.1) at significance level set at 1.0,05.0=α . The observed rejection rates 

are presented in Table 4-1, where Ĉ is the Hosmer and Lemeshow’s Ĉ test; Ĥ is the 

Hosmer and Lemeshow’s Ĥ test; D is the Deviance test; P is the Pearson Chi-square 

test; O.S. is the Osius and Rojek’s normal approximately normal test; ST is the Stukel’s 
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score test; New2 is the proposed method with 2 groups; New3 is the proposed method 

with 3 groups.  

                  Table 4-1 Observed Type I Error Rate for Simulation Study one                                    

Sample 
Size Method  α=0.05 α=0.10 
   Ĉ 0.037 0.082 
   Ĥ 0.043 0.079 
  D 0.05 0.031 

100 P 0.014 0.023 
  O.S.  0.06 0.098 
  ST. 0.054 0.102 
  New2 0.063 0.104 
 New3 0.06 0.101 
   Ĉ 0.036 0.087 
   Ĥ 0.052 0.092 
  D 0.006 0.029 

200 P 0.008 0.016 
  O.S.  0.041 0.084 
  ST. 0.047 0.102 
  New2 0.052 0.104 
 New3 0.06 0.102 
   Ĉ 0.036 0.086 
   Ĥ 0.052 0.085 
  D 0.006 0.041 

500 P 0.008 0.006 
  O.S.  0.041 0.078 
  ST. 0.047 0.106 
  New2 0.052 0.101 
 New3 0.055 0.105 

 
 

Given the specified significance level α and sample size n, the 95% likely interval 

for type I error rate is: 

(
n

)1(
*96.1

αα
α

−
− ,

n

)1(
*96.1

αα
α

−
+ ) 

 

 



 64 

            Table 4-2 the 95% Confidence Interval for the Type I Error Rate 

Sample size 
Lower limit Upper limit 

α=0.05 0.0365 0.0635 

α=0.10 0.0814 0.1186 

   

Based on the Table 4-2, the type I error rates of Stukel’s score test and the 

proposed tests all fall within 95% confidence interval, under different sample size and 

different significance levels. Type I error rates of Pearson Chi-square test are less than 

lower limit of 95% confidence interval. Some type I error rates of Deviance test, 

Hosmer-Lemeshow’s tests and Osius and Rojek’s test fall outside 95% confidence 

interval.  

Next, the random samples were generated from the following model: 

                 2
12110)

1
log( xx βββ

π
π

++=
−

                                          (4.2) 

 where 2β  takes on the values 0, 0.2, 0.4, 0.6, and 0.8, respectively. The proposed 2- 

group and 3-group partition tests and the six known texts were applied to the random 

samples generated from (4.2) to test the goodness-of-fit of the assumed model (4.1) at 

level of significance 05.0=α . The rejection rates of these tests were presented in Table 

4-3 and graphically in Figure 4-1 to 4-3.  
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          Table 4-3 Rejection Rates for the Known and Proposed Tests for Study One  

size β2  Ĉ  Ĥ D P O.S.  ST. New2 New3 
  0 0.037 0.043 0.005 0.014 0.061 0.054 0.063 0.06 
  0.2 0.06 0.057 0.007 0.014 0.104 0.106 0.11 0.1 

100 0.4 0.119 0.143 0.012 0.012 0.13 0.292 0.272 0.239 
  0.6 0.271 0.328 0.057 0.003 0.097 0.604 0.55 0.498 
  0.8 0.519 0.595 0.138 0 0.089 0.876 0.829 0.778 
  0 0.036 0.052 0.006 0.008 0.041 0.047 0.052 0.06 
  0.2 0.101 0.085 0.01 0.006 0.091 0.171 0.163 0.13 

200 0.4 0.273 0.301 0.027 0.004 0.114 0.556 0.517 0.448 
  0.6 0.646 0.682 0.137 0 0.116 0.903 0.872 0.808 
  0.8 0.896 0.919 0.383 0 0.397 0.991 0.986 0.969 
  0 0.045 0.039 0.011 0 0.035 0.042 0.047 0.055 
  0.2 0.172 0.152 0.019 0.007 0.117 0.345 0.332 0.265 

500 0.4 0.716 0.709 0.081 0.001 0.125 0.914 0.887 0.836 
  0.6 0.984 0.985 0.453 0 0.261 0.999 0.998 0.996 
  0.8 1 1 0.849 0 0.904 1 1 1 

 

       

 

                  Figure 4-1 Plots of Rejection Rate for Study One (n=100)  

       

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8

beta2 

R
e
je
c
ti
o
n
 R

a
te
   
m

 Ĉ

 Ĥ

D

P

O.S. 

ST.

New2

New3

 

  

 



 66 

 

                 Figure 4-2 Plots of Rejection Rate for Study One (n=200) 
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             Figure 4-3 Plots of Rejection Rate for Study One (n=500) 
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The simulation results suggest that, the rejection rates of the Pearson Chi-square 

test and Osius and Rojek normal approximate test decrease as the assumed model 

departs further away from the true linear logistic regression model when n=100. When 

sample size are 200 and 500, the rejection rates of all tests except the Pearson chi-

square test increase as the departure of the assumed model from the true model 

increases (Figure 4-2, 4-3). The Hosemer and Lemshow Ĉ and Ĥ tests have similar 

power functions for different level of sample sizes. The proposed (two-group and three-

group) partition tests and Stukel ’s score test have nearly the same rejection rate with 

the latter having slightly higher power when the assumed model departs from the true 

model. With the exception of Pearson square test, the performances of all tests improve 

when sample size increases. For example, when 4.02 =β , the proposed test, Stukel’s 

score test, Hosmer-Lemeshow  Ĉ test,  Hosmer-Lemeshow Ĥ test,  Deviance test have 

61.5, 62.2, 59.7, 56.5, 6.9 per cent more chance of rejecting the assumed model when 

n=500 than that when n=100. The simulation results investigated by Hosmer , Hosmer, 

le Cessie and Lemeshow (1997) indicated that all of the overall goodness-of-fit tests are 

not powerful for small to moderate sample sizes (n<400). Table 4-3 and Figure 4-1, 4-2 

and 4-3 showed that Stukel’s score test is more powerful than the other tests, followed 

by the new proposed method, and the Hosemer and Lemshow Ĉ and Ĥ tests. Pearson 

Chi-square test has very poor performance, the rejection rate remains at very low level 

regardless of how big the sample size is and how far the assumed model is away from 

the true model.  
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 4.2 The Second Simulation Study 

 

 

In this section, we will use a mixture logistic regression model as our assumed 

model in which one predictor is a continuous variable and the other is a categorical 

variable. We will first check whether the proposed method controls the type I error rate, 

when the data are generated from the following logistic regression model 

 

       dx 2110)
1

log( βββ
π

π
++=

−
                                       (4.3) 

where 25.00 −=β , 6.01 =β  and  3.02 =β , x1 and d are defined as below 

In this simulation study, 1000 random samples of size n=100,200,500 were 

respectively generated from model (4.3) with covariate x1 independently generated from 

an uniform distribution over the interval (-3,3), and the covariate d independently 

generated from a Bernoulli distribution with probability 0.5. The response variable y 

associated with the covariate x1 and d was generated as follow. A random variable u is 

generated from a uniform distribution over the interval (0,1). The response y was 

assigned a value 1, if ux ≥)(π , and 0 otherwise.  

The proposed 4-group partition test partitions each of the two categorical group 

defined by d into two groups at cut off points set at the 50th percentiles. The six known 

tests mentioned before were applied to the random samples generated from model (4.3) 

at the level of significance 1.0,05.0=α . The observed rejection rates are presented in 

Table4-4, where Ĉ is the  Hosmer and Lemeshow’s Ĉ test; Ĥ is the Hosmer and 

Lemeshow’s Ĥ test;  D is the Deviance test; P is the Pearson Chi-square test; O.S. is 
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the Osius and Rojek’s normal approximately normal test; ST. is the Stukel’s score test, 

New is the proposed test with 4 groups. 

 

                 Table 4-4 Observed Type I Error Rate for Simulation Study Two 

Sample Size Methods α=0.05 α=0.10 
   Ĉ 0.04 0.089 
   Ĥ 0.042 0.09 
  D 0.221 0.454 

100 P 0.003 0.006 
  O.S.  0.154 0.212 
  ST. 0.064 0.138 
  New 0.065 0.128 
   Ĉ 0.047 0.106 
   Ĥ 0.063 0.107 
  D 0.492 0.731 

200 P 0 0 
  O.S.  0.093 0.134 
  ST. 0.064 0.109 
  New 0.064 0.126 
   Ĉ 0.059 0.119 
   Ĥ 0.062 0.119 
  D 0.929 0.981 

500 P 0 0 
  O.S.  0.037 0.079 
  ST. 0.06 0.106 
  New 0.052 0.11 

 

  

    In this simulation study, the Deviance test can not control type I error rate. 

When the assumed model is correct model, the chance of rejecting the null hypothesis 

increases as the sample size gets larger and larger, which indicate that the large 

sample size does not help Deviance test to control type I error rate. In addition, all type I 

error rates of Deviance test are larger than the upper bound of 95% confidence interval.  

Type I error rates of Pearson Chi-square test are smaller than the lower bound of 95% 

confidence interval under different sample sizes, even zero per cent chance to reject  
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null hypothesis when the assumed model is true with n=200, 500. The ability of 

controlling type I error rate of Osius and Rojek’s normal approximation test can be 

improved by larger sample size, for example, under the null hypothesis using α=0.05, it 

has 3.7 per cent to reject the null hypothesis when n=500 instead of 15.4 per cent when 

n=100. Type I error rate of Osius and Rojek’s normal approximately normal test are 

greater than the upper bound of 95% confidence interval under α=0.05 n=100, α=0.05 

n=200, α=0.10 n=100. Based on Table 4-2, almost all type I error rates of Hosmer and 

Lemeshow’s Ĉ test, Hosmer and Lemeshow’s Ĥ, Stukel’s score test and the proposed 

test fall within 95% confidence interval, under different sample size and different 

significance levels.  

Next, the random samples were generated from the following model  

                   dxdx 132110)
1

log( ββββ
π

π
+++=

−
                      (4.4)  

where 3β  takes on the values 0, 0.1, 0.2, …, 0.8, respectively. The proposed 4-group 

partition test and the six known tests were applied to the random sample generated 

from (4.4) to test the goodness-of-fit of the assumed model (4.3) at the level of 

significance 05.0=α . The rejection rates of these tests were presented in Table 4-5 and 

graphically shown in Figure 4-4 to 4-6.   
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Table 4-5 Rejection Rates for the Known and Proposed Tests for Study Two 

Sample 
Size β3  Ĉ  Ĥ D P O.S.  ST. New 
  0 0.04 0.042 0.221 0.003 0.154 0.064 0.065 
  0.1 0.044 0.054 0.132 0.003 0.114 0.072 0.088 
  0.2 0.045 0.05 0.066 0.005 0.088 0.076 0.099 
  0.3 0.045 0.045 0.05 0.01 0.08 0.074 0.125 

100 0.4 0.046 0.048 0.031 0.017 0.072 0.071 0.156 
  0.5 0.048 0.044 0.018 0.025 0.07 0.081 0.21 
  0.6 0.056 0.05 0.008 0.031 0.071 0.09 0.261 
  0.7 0.06 0.045 0.001 0.037 0.073 0.093 0.301 
  0.8 0.068 0.055 0 0.046 0.081 0.096 0.381 
  0 0.047 0.063 0.492 0 0.093 0.064 0.064 
  0.1 0.049 0.051 0.329 0 0.076 0.061 0.079 
  0.2 0.047 0.046 0.183 0.003 0.074 0.067 0.117 
  0.3 0.052 0.054 0.089 0.005 0.058 0.07 0.174 

200 0.4 0.05 0.058 0.055 0.007 0.056 0.076 0.232 
  0.5 0.058 0.06 0.036 0.011 0.069 0.079 0.333 
  0.6 0.061 0.056 0.024 0.016 0.072 0.088 0.422 
  0.7 0.066 0.059 0.013 0.022 0.079 0.082 0.537 
  0.8 0.073 0.065 0.01 0.025 0.089 0.082 0.623 
  0 0.059 0.062 0.929 0 0.037 0.06 0.052 
  0.1 0.067 0.064 0.787 0 0.033 0.061 0.068 
  0.2 0.08 0.063 0.529 0 0.036 0.074 0.147 
  0.3 0.078 0.076 0.304 0 0.033 0.077 0.324 

500 0.4 0.081 0.075 0.16 0 0.04 0.076 0.546 
  0.5 0.087 0.103 0.063 0.002 0.053 0.09 0.738 
  0.6 0.092 0.1 0.026 0.004 0.063 0.099 0.861 
  0.7 0.093 0.094 0.014 0.005 0.075 0.114 0.941 
  0.8 0.1 0.099 0.008 0.014 0.092 0.143 0.979 
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                       Figure 4-4 Plots of Rejection Rate for Study Two (n=100) 
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                  Figure 4-5 Plots of Rejection Rate for Study Two (n=200) 
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             Figure 4-6 Plots of Rejection Rate for Study Two (n=500) 
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This simulation study results suggest that, the power of Deviance test is getting 

poorer and poorer when the assumed model departures further and further from the true 

model. For Pearson Chi-square test, bigger sample size and further departure from true 

model can not enhance its power to detect the lack of fit. This simulation study showed 

that the Deviance test and Pearson chi-square test are not applicable to the type one 

covariate pattern (J=n). For Osius and Rojek’s normal approximation test, larger sample 

sizes improve the ability to control the type one error rate. However, neither larger 

sample sizes nor further departure from the true model can improve the power of 

detecting lack-of-fit. Stukel’s score test and Hosmer and Lemeshow’s Ĉ and Ĥ tests 

have very similar performance: They control type I error rate, but the power of detecting 

lack of fit can not be improved much by larger sample size and further departure away 

from the true model. The proposed test has the best performance among these tests at 
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different sample sizes and degree of departure from the true model. The ability of 

controlling type I error rate and power of detecting lack of fit are improved by increasing 

the sample sizes. In summary, the proposed method is the best test in this simulation 

study. 
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4.3 The Third Simulation Study 

 

 

In this section, we will use a more complicated logistic regression model than the 

previous two in which three predictor variables used in the model. We will first check 

whether the proposed test controls the type I error rate, when the data are generated 

from the following logistic regression model   

               3322110)
1

log( xxx ββββ
π

π
+++=

−
                                       (4.5) 

where 3.10 −=β , 26.01 =β , 26.02 =β , 23.03 =β  

In this simulation study, 1000 random samples of size n=100,200,500 were 

respectively generated from model (4.5) with covariate x1 independently generated from 

an uniform distribution over the interval (-2,2), the covariate x2 independently generated 

from the standard normal distribution with mean 0 and standard deviation 1, and the 

covariate x3 independently generated from the Chi-square distribution with degrees of 

freedom 4.  The response variable y associated with the covariate x1, x2 and x3 was 

generated as follow: A random variable u is generated from a uniform distribution over 

the interval (0,1). The response y was assigned a value 1, if u≥)(xπ , and 0 otherwise.   

The proposed 2-group partition test with cut-off point set at 50th percentile of the 

estimated probability from the assumed model and the six known tests mentioned 

before were applied to the random samples generated from model (4.5) at level of 

significance 1.0,05.0=α . The observed rejection rates are presented in Table 4-6, where 

the same labels used to identifying various tests in section 4.2 are used here.  
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                  Table 4-6 Observed Type I Error Rate for Simulation Study Three 

Sample 
Size Methods α=0.05 α=0.10 
   Ĉ 0.04 0.095 
   Ĥ 0.072 0.119 
  D 0.537 0.771 

100 P 0.006 0.007 
  O.S.  0.436 0.478 
  ST. 0.087 0.146 
  New 0.064 0.127 
   Ĉ 0.041 0.089 
   Ĥ 0.054 0.096 
  D 0.894 0.972 

200 P 0.001 0.004 
  O.S.  0.288 0.351 
  ST. 0.066 0.119 
  New 0.061 0.128 
   Ĉ 0.044 0.095 
   Ĥ 0.074 0.116 
  D 1 1 

500 P 0.001 0.001 
  O.S.  0.139 0.189 
  ST. 0.052 0.105 
  New 0.055 0.108 

 

 

From Table 4-6, when the assumed model is the correct model, the Deviance 

test can not control type I error rate with these three different sample sizes, and the 

rejection rate increases as the sample size increases. For example, when n=500, there 

are 100 per cent chance to reject the null hypothesis with α=0.05 and α=0.10. The 

larger sample sizes help Osius and Rojek’s approximately normal test to reduce the 

rejection rate under the null hypothesis. Unfortunately, Osius and Rojek’s approximately 

normal test can not control the type I error rate in this simulation study. Type I error 

rates of Pearson Chi-square test are less than the lower bound of 95% confidence 
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interval (Table 4-2) with different level of significance level and sample sizes.  Type I 

error rate of Hosmer and Lemeshow’s Ĥ test, Hosemer-Lemeshow’s Ĉ, Stukel’s score 

test and proposed test are very close to or fall within 95% confidence interval when 

sample sizes are 100, 200 and 500.  

Next, the random samples were generated by the following model:  

             32143322110)
1

log( xxxxxx βββββ
π

π
++++=

−
                      (4.6)  

where 4β  takes the values 0, 0.2, 0.4,0.6, 0.8, respectively. The proposed 2-group 

partition test and the six known tests were applied to the random sample generated  

from (4.6) to test the goodness-of-fit of the assumed model (4.5) at the level of 

significance 05.0=α . The rejection rates of these tests were presented in the Table 4-7 

and graphically in Figure 4-4 to 4-6.   

 

     Table 4-7 Rejection Rates for the Known and Proposed Tests for Study Three 

Sample 
Size β Ĉ Ĥ D P O.S. ST. New 
 0 0.04 0.072 0.537 0.006 0.436 0.087 0.064 
 0.2 0.051 0.097 0.669 0.001 0.628 0.135 0.239 

100 0.4 0.092 0.156 0.792 0.003 0.785 0.217 0.483 
 0.6 0.154 0.196 0.865 0.002 0.844 0.279 0.607 
 0.8 0.186 0.232 0.901 0 0.88 0.337 0.673 
 0 0.041 0.054 0.894 0.001 0.288 0.066 0.061 
 0.2 0.074 0.12 0.959 0.002 0.633 0.128 0.354 

200 0.4 0.146 0.209 0.984 0.004 0.799 0.242 0.638 
 0.6 0.203 0.251 0.995 0.002 0.874 0.324 0.75 
 0.8 0.251 0.284 0.997 0 0.916 0.379 0.81 
 0 0.044 0.074 1 0.001 0.139 0.052 0.055 
 0.2 0.085 0.181 1 0.001 0.573 0.178 0.642 

500 0.4 0.178 0.285 1 0 0.819 0.336 0.885 
 0.6 0.267 0.347 1 0 0.905 0.386 0.905 
 0.8 0.308 0.373 1 0 0.932 0.439 0.906 
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                 Figure 4-7 Plots of Rejection Rate for Study Three (n=100) 
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                  Figure 4-8 Plots of Rejection Rate for Study Three (n=200) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8

beta2 

R
e
je
c
ti
o
n
 R

a
te

   
m

 Ĉ

 Ĥ

D

P

O.S. 

ST.

New

 



 79 

 

 

              Figure 4-9 Plots of Rejection Rate for Study Three (n=500) 
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The simulation results suggest that the power of detecting lack of fit for Pearson 

Chi-square test is poor for different sample sizes and degree of departure from the true 

model. Since Deviance test has very high type I error rate, it is not necessary to 

compare its power with other tests. Once again, this simulation study gives a strong 

evidence that the Pearson Chi-square test and Deviance test are not applicable to the 

Type one covariate pattern (J=n). Osius and Rojek’s approximately normal test is 

powerful to reject the null hypothesis when the assume model is not correct one. In this 

simulation study, the rejection rate of Stukel’s score test, Hosmer- Lemeshow Ĥ and Ĉ 

tests are almost same or nearly close when the assumed model is not the true model. 

The proposed test is the best test among the seven tests because it controls the type 

one error rate and has strong power to reject the assumed model when it is not true 

one. In addition, the power increases when the sample size increases. 
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                               4.4 The Fourth Simulation Study 

 

 

In the previous three simulation studies, the terms omitted from the generating 

model are associated with the covariates in the assumed model. In this simulation 

study, the covariate in the assumed model is not related to the added terms in the 

generating model.  

The null hypothesis is that the following model adequately fits the data. 

                    110)
1

log( xββ
π

π
+=

−
                                      (4.7) 

where 3.00 −=β , 3.11 =β , )6,6(~1 −ux  

Let the generating model be  

 

                       22110)
1

log( xx βββ
π

π
++=

−
                                 (4.8) 

Where  )5.0(~2 Bernullix  and 2β   takes on the values 0, 2,…, 10. 

 In this simulation study, 1000 random samples of size n=100,200,500 were 

respectively generated from model (4.5) with covariate x1 independently generated from 

a uniform distribution over the interval (-6, 6), the covariate x2 independently generated 

from the Bernoulli distribution with probability 0.5. The response variable y associated 

with the covariate x1, x2 was generated the same way as in the previous simulation 

studies.  

The proposed 2-group partition test with cut-off point set at the 50th percentile of 

the estimated probability from the assumed model and the six known tests mentioned 

before were applied to the random samples generated from assumed model (4.7) at 
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level of significance 1.0,05.0=α . The observed rejection rates are presented in Table 4-

7, the labels of various tests are same as those used in the previous simulation studies.  

 

             Table 4-8 Observed Type I Error Rate for Simulation Study Four 

Sample 
Size Method  α=0.05 α=0.10 
   Ĉ 0.04 0.067 
   Ĥ 0.041 0.096 
  D 0 0 

100 P 0.082 0.093 
  O.S.  0.002 0.004 
  ST. 0.081 0.154 
  New 0.063 0.131 
   Ĉ 0.078 0.099 
   Ĥ 0.036 0.085 
  D 0 0 

200 P 0.14 0.15 
  O.S.  0.005 0.007 
  ST. 0.064 0.128 
  New 0.058 0.106 
   Ĉ 0.087 0.107 
   Ĥ 0.057 0.118 
  D 0 0 

500 P 0.193 0.204 
  O.S.  0.006 0.01 
  ST. 0.073 0.12 
  New 0.067 0.116 

 

The results in Table 4-8 indicate that under the null hypothesis, the rejection rate 

of Pearson Chi-square test increases as the sample size increases which indicate it can 

not control type I error rate. Type I error rates of Chi-square test are greater than the 

upper bound of 95% confidence interval (Table 4-2) when n=200 and n=500. The 

rejection rate of deviance test is 0 per cent when the null hypothesis is true regardless 

of the sample size and level of significance. The type I error rates of Stukel’s score test 

are higher than the nominal value except n=200 and α=0.05.  All type I error rates of 

Osius and Rojek’s approximately normal test are lower than the lower bound of 95% 

confidence interval in this simulation study. All the type I error rates of the proposed test  
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and Hosmer-Lemeshow’s Ĥ test lie within the 95% of confidence interval or very close 

to the limits. 

 

  Table 4-9 Rejection Rates for the Known and Proposed Tests for Study Four 

size β4  Ĉ  Ĥ D P O.S.  ST. New 
  0 0.053 0.041 0 0.082 0.002 0.081 0.063 
 2 0.044 0.036 0 0.084 0.002 0.095 0.066 

100  4 0.023 0.052 0 0.041 0.001 0.154 0.079 
  6 0.028 0.096 0 0.009 0 0.237 0.164 
  8 0.08 0.194 0 0.002 0.002 0.41 0.395 
  10 0.126 0.289 0 0.001 0.016 0.559 0.544 
  0 0.078 0.036 0 0.141 0.005 0.064 0.058 
 2 0.037 0.037 0 0.123 0.001 0.08 0.055 

200  4 0.02 0.065 0 0.042 0 0.16 0.079 
  6 0.072 0.169 0 0.011 0.001 0.4 0.275 
  8 0.21 0.389 0 0 0.037 0.732 0.692 
  10 0.397 0.6 0 0 0.19 0.876 0.842 
  0 0.087 0.057 0 0.193 0.006 0.073 0.067 
 2 0.037 0.055 0 0.136 0.004 0.084 0.057 

500  4 0.05 0.148 0 0.029 0.001 0.309 0.166 
  6 0.309 0.447 0 0.001 0.002 0.787 0.646 
  8 0.76 0.858 0 0 0.475 0.986 0.982 
  10 0.943 0.969 0 0 0.881 0.999 0.998 

 

              Figure 4-10 Plots of Rejection Rate for Study Four (n=100) 
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             Figure 4-11  Plots of Rejection Rate for Study Four (n=200) 
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              Figure 4-12 Plots of Rejection Rate for Study Four (n=500) 
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The results in Table 4-9 indicate that the power of Pearson chi-square test 

Deviance test are poor. In addition, their power of detecting lack of fit can not be 
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improved by larger sample sizes or further departure from the true model. The Osius 

and Rojek’s approximately normal test has poor power of detecting the lack of fit, when 

n=100 and n=200. The power is improved by the larger sample size and further 

departure from the true model. The performance of Hosmer-Lemeshow Ĥ test is better 

than that of Hosmer-Lemeshow’s Ĉ test. Hosmer-Lemeshow Ĥ test control type I error 

rate well and has a higher power of detecting the lack of fit when n=100, n=200 and 500 

under the alternative hypothesis. Stukel’s score test followed by the proposed test has 

the highest power of detecting the lack of fit under the alternative model. The proposed 

method had good performance in this simulation in controlling type I error rate well and 

in detecting lack-of-fit when it is present in the assumed model.  
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4.5 Summary on Simulation Studies 

 

 

These four simulations cover four different situations. These four different 

simulation studies provide evidence again that the goodness-of-fit tests of Pearson chi-

square and deviance are not suitable when the number of unique covariate patterns is 

equal or almost equal to the number of subjects.  

Hosmer-Lemeshow Ĥ test and proposed test always control type I error rate well 

in these four studies. Hosmer-Lemeshow Ĉ test and Stukel’s score test control type I 

error in the first three simulation studies; in the fourth study, they can not control type I 

error rate when α=0.05 and n=500.  The Osius and Rojek’s approximately normal test 

controls type I error rate in the first simulation study. In the other three studies, the 

ability of controlling type I error rate of the Osius and Rojek’s approximately normal test 

is affected by the sample size and the degree of departure from the true model. 

 The first and forth simulations involve a simple logistic regression model 

(assumed model has only one predictor variable).  When the assumed model is a 

simple model, Stukel’s score has higher power of detecting lack of fit than others. The 

order of power is, Stukel>porposed test>Hosmer-Lemeshow tests> Osius and Rojek’s 

approximately normal test. Hosmer-Lemeshow Ĉ test is better than Hosmer-Lemeshow 

Ĥ test in the first simulation; however, Hosmer-Lemeshow Ĥ test is better than Hosmer-

Lemeshow Ĉ test in the fourth simulation.  

The second and third simulations considered multiple logistic regression model 

(assumed model has more than one predictor variables). The proposed test performs 

best among all tests considered. It controls type I error rate well and has higher power 

to detect lack-of-fit.   
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4.6 Convergence Problem in the Simulation Studies 

 

 

The parameters of logistic regression models are estimated by the maximum 

likelihood method. The log-likelihood is a strictly concave function and the maximum 

likelihood estimates of the parameters exist and are unique (Wedderburn 1976). Two 

general iterative algorithms are usually used to obtain the maximum likelihood estimates 

and are available in SAS for a logistic regression model: the Newton-Raphson algorithm 

and the Fisher-scoring algorithm. The Fisher-scoring algorithm is the default method in 

SAS PROC LOGISTIC, which is equivalent to fitting the model by iteratively reweighed 

least squares. Same parameter estimates and a slightly different estimated covariance 

matrices are given by these two algorithms, the reason is that the Fisher-scoring 

algorithm is based on the expected information matrix and the Newton-Raphson 

algorithm is based on the observed information matrix.   

Let the first derivatives and second derivatives of the log likelihood function be, 

respectively  
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Then the iterative equation of the Newton-Raphson algorithm and Fisher-Scoring 

algorithm are, respectively, 

                   )()( )()(1)()1( tttt βUβIββ −+ −=  

                  )()]([ )()(1)()1( tttt E βUβIββ −+ +=  
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 For large iteration t and jth (j=1, 2,…,p) parameter , the convergence satisfies, 

                           j

t

jj

t

j c ββββ ˆˆ )()1( −≤−+          for some c>0 

             

For the logistic regression, fortunately, its log likelihood is globally concave, 

which indicate it has at most one maximum (Amemiya,1985). In fact, convergence 

works most of the time, but not every time. If the Hessian matrix (the partial second 

derivatives) is singular or near singular, a convergence problem occurs, the estimated 

logistic regression model is questionable and not reliable (Sherrod 2003). When the 

convergence problem occurs, Tian and Liu (2006) believe that there exists not only a 

numerical problem but also an indication that the model is not suitable for fitting the 

data.  

Albert and Anderson (1984) and Santner and Duffy (1985) pointed out the 

existence of maximum likelihood estimates for the logistic model depends on how the 

sample points are distributed.  The existence of data separation will lead to failure to 

converge (Prusseeuw and Christmann, 2003, Altman, Gill and McDonald, 2004). Data 

separation can be categorized into three types: complete separation, quasi-complete 

separation, and overlap. The data are completely separated, if there exists a vector b 

that allocates the observations to their two response groups in the following manner: 

 If  b’xi > 0 then yi = 1,  

If b’xi < 0 then yi = 0. 

Under this case, the maximum likelihood estimate for any covariates and covariate 

patterns does not exist (in another words, the likelihood equation does not have a finite 
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solution). The data is quasi-completely separated, if there exists a coefficient vector b 

such that  

               If  b’xi ≥  0 then yi = 1,  

              If b’xi < 0 then yi = 0. 

Under this case, the maximum likelihood estimate also does not exist. Under the case 

of quasi-complete separation, as the number of iterations increases, the log-likelihood 

does not reach to 0 as in the complete separation case and the dispersion matrix is 

unbounded.  Complete separation and quasi-complete separation also lead to 

convergence failure with other link function for binary response variable, such probit 

link, log-log link. The data which are not of complete or quasi-complete separation type 

is called overlap data. The maximum likelihood estimate exists and is unique for overlap 

data.  

  The empirical method of Albert and Anderson (1984) is built in the PROC 

LOGISTIC in SAS. It can help us detect the complete separation and quasi-complete 

separation data. Albert and Anderson (1984) gave the following three steps in detecting 

data separation: 

1. If the convergence criteria is satisfied with eight iteration, one declares 

that there is no problem. 

2. After eight iterations, the probability of observed response predicted for 

the ith subject is obtained by  

                           ]ˆ)12[(1

1
ˆ

iiy
i

e
y

xβ−+
=  

If the predicted probability is 1 for all subjects after the 8th iteration, we declare that 

complete separation occurs and stop the iteration.   
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3.            If the observed probabilities for some subjects are large than 0.95, then 

examine estimate standard errors for that iteration. If they exceed some specified value, 

we declare that quasi-complete separation occurs and stop the iteration. 

 

 

 The following example illustrates that the Newton-- Raphson algorithm fail to 

converge for a complete separation data with eleven separation data points (Table 4-

10). y is the response variable and x1 and x2 are two covariates. 

 

                                 Table 4-10 Complete Separation Data              

obs x1  x2 x22 b'x y 
1 15 56 26 30 0 
2 16 62 28 34 0 
3 17 70 30 40 0 
4 18 65 32 33 0 
5 19 44 34 10 0 
6 20 30 36 -6 1 
7 21 30 38 -8 1 
8 22 26 40 -14 1 
9 23 35 42 -7 1 
10 24 41 44 -3 1 
11 25 39 46 -7 1 

 

                   

 Figure 4-13 shows that the vector b=(4,-2,1)’ completely separates the data 

points into two response groups; that is, all observations with the same response lie on 

the same side of the line x22=2x1-4. 
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        Figure 4-13 Scatter Plot Sample Points with Complete Separation Data 

                  

 The iterative history of fitting a logistic regression model on the above data is 

shown in the Table 4-10. Notice that the Log-likelihood decreases as the iteration 

increases. The estimated covariance matrices for iterations 0, 5, 15, and 25 are shown 

in the Table 4-11 which indicates that the likely larger variance of pseudo-estimates 

may occur with the number of iteration increases. 
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                          Table 4-11 Partial Logistic Iteration Steps Printout  

Iteration History For Parameter Estimates 

Iter Ridge LogLikelihood Intercept X1 X3 

0 0 -1.8635644 3.1567224 -0.342496 0.0771645 

1 0 -1.0049775 6.0528044 -0.56796 0.1163513 

2 0 -0.5248162 9.2794008 -0.832715 0.172829 

3 0 -0.2087828 11.199218 -1.124201 0.2791172 

4 0 -0.0759306 12.549511 -1.419777 0.400694 

5 0 -0.0279972 14.076113 -1.720906 0.5193476 

6 0 -0.0103793 15.755734 -2.028493 0.6368277 

7 0 -0.0038496 17.541144 -2.341719 0.7541899 

8 0 -0.0014261 19.397439 -2.659346 0.8718078 

9 0 -0.0005275 21.300264 -2.980215 0.9897722 

10 0 -0.0001949 23.233159 -3.303393 1.108065 

11 0 -0.0000719 25.185276 -3.628187 1.2266328 

12 0 -0.0000265 27.149593 -3.954098 1.3454174 

13 0 -9.7666E-6 29.121624 -4.280775 1.4643671 

14 0 -3.5969E-6 31.09852 -4.607978 1.58344 

15 0 -1.3243E-6 33.078479 -4.935542 1.7026037 

16 0 -4.8745E-7 35.060364 -5.263352 1.8218338 

17 0 -1.7939E-7 37.043459 -5.591331 1.941112 

18 0 -6.6014E-8 39.027313 -5.919427 2.0604251 

19 0 -2.429E-8 41.011641 -6.247603 2.1797634 

20 0 -8.937E-9 42.996265 -6.575835 2.2991199 

21 0 -3.2881E-9 44.981071 -6.904105 2.4184894 

22 0 -1.2097E-9 46.965989 -7.232402 2.5378684 

23 0 -4.45E-10 48.950975 -7.560718 2.6572541 

24 0 -1.637E-10 50.936002 -7.889046 2.7766446 

25 0 -6.023E-11 52.921053 -8.217383 2.8960387 

    

      

     WARNING: Convergence not attained in 25 iterations. 

     WARNING: The procedure is continuing but the validity of the model fit is questionable. 

     WARNING: The specified model did not converge. 

     WARNING: Iteration limit exceeded. 
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                          Table 4-12 Dispersion Matrices on the Selected Iterations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complete separation and quasi-complete separation often occur in small sparse 

data set. The complete separation and quasi-complete separation data belong to sparse 

data where each covariate pattern has very few subjects (Derr 2000, Kuss 2002). In 

simulation studies, we did encounter the non-convergence problem. For example, in the 

 Estimated Covariance Matrix 

Iter=0    Loglikelhood=-1.8635644 

 Intercept X1 X2 

Intercept 136.81 -4.88128 -0.88115 

X1 -4.88128 0.18724 0.02601 

X2 -0.88115 0.02601 0.008331 

Iter=5    Loglikelhood=-0.0279972 

Intercept 9143.30 -351.02 -54.06806 

X1 -351.02 15.69193 0.95600 

X2 -54.06806 0.95600 0.90934 

      Iter=15    Loglikelhood=-1.3243E-6 

Intercept 162328548 -6318660 -910109 

X1 -6318660 295466 10448.52 

X2 -910109 10448.52 18198.23 

Iter=25    Loglikelhood=-6.023E-11 

Intercept -5.72E-13 5.075E-11 -3.55E-10 

X1 6.023E-11 1.2061E-9 2.3201E-9 

X2 1.2061E-9 2.4307E-8 4.6367E-8 
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first simulation, if we use n=50 with 1000 replications, non-convergence exist in 17 

replications; if we use n=100, the non-convergence problem does not occur any more. 

The smaller the data set, the higher the chance of occurrence of complete separation or 

quasi-complete separation.  
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CHAPTER 5 - Summary 

 

 

 

 

Most known tests perform well in detecting the overall lack of fit for the type two 

covariate pattern (J<<n).  However, for the type one covariate pattern (J=n), Pearson 

Chi-square test and Deviance test perform poorly for which they either can not control 

type I error or have weak power in detecting the lack-of-fit of the assumed model. 

Hosmer-Lemeshow tests are recommended to solve this problem by combining multiple 

unique covariate patterns into one group. For the simple logistic regression model in the 

first simulation study,  our work confirm that all tests with the exception of Pearson-

square test and Deviance test have good performance. For the simple logistic 

regression model in the fourth simulation study, the proposed partition test, Stukel’s 

score test and Hosmer-Lemeshow’s tests have similar performance as in the first 

simulation study. Osius and Rojek’s approximately normal test can not control the type I 

error rate with small data set. Stukel’s score test is a little bit better than the proposed 

test for the simple logistic regression model.  

For the multiple logistic regression model (the second and third simulation 

studies), the proposed method has good control of the Type I error rate, and it has 

higher power in detecting lack-of-fit than the known tests mentioned earlier under 
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various settings considered. The proposed method is more sensitive than other known 

tests in detecting the departure of the assumed model from the true model.  

The proposed test has the best overall performance. It seems to perform well 

with overall steady rejection rate, with the type I rates lying within 95% confidence 

interval in all situations considered. For J=n and multiple logistic regression, the result of 

other known tests seemed not reliable, they are unable to control type I error rate or 

have poor power in detecting lack-of-fit.  

  In chapter 3, the illustrative examples showed that the proposed method 

performs fairly well in detecting overall lack-of-fit.  If the overall goodness-of-fit test is 

significant, we can also determine the nature of lack-of-fit, for example, checking which 

part of the model of )(xπ  fitting the data inadequately. This could be useful for the 

researchers who want to build a better model and want to know which parts of his/her 

model fit the data and which parts do not. In this dissertation we also propose a forward 

stepwise procedure to build a partition logistic regression model, which can improve the 

fit of the standard logistic regression model. 

The proposed method has some weakness, although it is generally performs 

better than other known tests. There may be converge problem with the number of 

partition groups increases.  If the assumed model is totally incorrect and there is huge 

difference in the success probabilities between the assumed and the true model, the 

partition method may not produce a model that fits better than the assumed model.  
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CHAPTER 6 - Extension and Future Study 

  

 

In the near future, we will try to do the following: 

 

(1) Extend the proposed idea of testing goodness-of-fit to other generalized 

linear models, such as, log-linear models, or multinomial logistic regression 

models.  

(2) Prove that the sampling distribution of the proposed test statistics can be 

approximated by a chi-square distribution with appropriate degrees of 

freedom when the sample size is large. 

(3) Extend the proposed idea of testing goodness-of-fit to correlated data sets 

for logistic regression and other generalized linear models, such as, log-

linear models, multinomial logistic regression models.  
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Appendix A - Data on O-Ring Failure 

              

   

 

Case Flight Failure Success Temperature 

     

1 14 1 0 53 

2 9 1 0 57 

3 23 1 0 58 

4 10 1 0 63 

5 1 0 1 66 

6 5 0 1 67 

7 13 0 1 67 

8 15 0 1 67 

9 4 0 1 68 

10 3 0 1 69 

11 8 0 1 70 

12 17 0 1 70 

13 2 1 0 70 

14 11 1 0 70 

15 6 0 1 72 

16 7 0 1 73 

17 16 0 1 75 

18 21 1 0 75 

19 19 0 1 76 

20 22 0 1 76 

21 12 0 1 78 

22 20 0 1 79 

23 18 0 1 81 
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Appendix B - Data on Vasoconstriction 

Constriction Volume Rate 

1 0.825 3.7 

1 1.09 3.5 

1 2.5 1.25 

1 1.5 0.75 

1 3.2 0.8 

1 3.5 0.7 

0 0.75 0.6 

0 1.7 1.1 

0 0.75 0.9 

0 0.45 0.9 

0 0.57 0.8 

0 2.75 0.55 

0 3 0.6 

1 2.33 1.4 

1 3.75 0.75 

1 1.64 2.3 

1 1.6 3.2 

1 1.415 0.85 

0 1.06 1.7 

1 1.8 1.8 

0 2 0.4 

0 1.36 0.95 

0 1.35 1.35 

0 1.36 1.5 

1 1.78 1.6 
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0 1.5 0.6 

1 1.5 1.8 

0 1.9 0.95 

1 0.95 1.9 

0 0.4 1.6 

1 0.75 2.7 

0 0.03 2.35 

0 1.83 1.1 

1 2.2 1.1 

1 2 1.2 

1 3.33 0.8 

0 1.9 0.95 

0 1.9 0.75 

1 1.625 1.3 
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Appendix C -  Data on Leukemia Survival  

Survival Cell count Log (cell count) AG 

1 2,300 3.36 + 

1 750 2.87 + 

1 4,300 3.63 + 

1 2,600 3.41 + 

0 6,000 3.78 + 

1 10,500 4.02 + 

1 10,000 4 + 

0 17,000 4.23 + 

0 5,400 3.73 + 

1 7,000 3.84 + 

1 9,400 3.97 + 

0 32,000 4.51 + 

0 35,000 4.54 + 

0 52,000 4.71 + 

0 100,000 5 + 

0 100,000 5 + 

1 100,000 5 + 

1 4,400 3.63 _ 

1 3,000 3.48 _ 

0 4,000 3.6 _ 

0 1,500 3.18 _ 

0 9,000 3.95 _ 

0 5,300 3.72 _ 

0 10,000 4 _ 

0 19,000 4.28 _ 

0 27,000 4.43 _ 

0 28,000 4.45 _ 
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0 31,000 4.49 _ 

0 26,000 4.41 _ 

0 21,000 4.32 _ 

0 79,000 4.89 _ 

0 100,000 5 _ 

0 100,000 5 _ 
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Appendix D - Beetle Data Set 

                        

Concentration Killed Exposed 

1.6907 6 59 

1.7242 13 60 

1.7552 18 62 

1.7842 28 56 

1.8113 52 63 

1.8369 53 59 

1.861 61 62 

1.8839 60 60 
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Appendix E - Warsaw Girl Data 

Age 
Number of 

Menstruating 
Number of 
Interviewed 

9.21 0 376 
10.21 0 200 
10.58 0 93 
10.83 2 120 
11.08 2 90 
11.33 5 88 
11.58 10 105 
11.83 17 111 
12.08 16 100 
12.33 29 93 
12.58 39 100 
12.83 51 108 
13.08 47 99 
13.33 67 106 
13.58 81 105 
13.83 88 117 
14.08 79 98 
14.33 90 97 
14.58 113 120 
14.83 95 102 
15.08 117 122 
15.33 107 111 
15.58 92 94 
15.83 112 114 
17.58 1049 1049 
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Appendix F - Data set For Illustrative Example 3                      

  

year Gender agree disgree year Gender agree disgree 
0 1 4 2 0 2 4 2 
1 1 2 0 1 2 1 0 
2 1 4 0 2 2 0 0 
3 1 6 3 3 2 6 1 
4 1 5 5 4 2 10 0 
5 1 13 7 5 2 14 7 
6 1 25 9 6 2 17 5 
7 1 27 15 7 2 26 16 
8 1 75 49 8 2 91 36 
9 1 29 29 9 2 30 35 
10 1 32 45 10 2 55 67 
11 1 36 59 11 2 50 62 
12 1 115 245 12 2 190 403 
13 1 31 70 13 2 17 92 
14 1 28 79 14 2 18 81 
15 1 9 23 15 2 7 34 
16 1 15 110 16 2 13 115 
17 1 3 29 17 2 3 28 
18 1 1 28 18 2 0 21 
19 1 2 13 19 2 1 2 
20 1 3 20 20 2 2 4 

 

 

 

Note: gender “1” denote the male and “2” denote the female. 
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Appendix G - Data set for Illustrative Example 4 

     Income(Millions of Lira) Number of Cases  Credit Cards 
24 1 0 
27 1 0 
28 5 2 
29 3 0 
30 9 1 
31 5 1 
32 8 0 
33 1 0 
34 7 1 
35 1 1 
38 3 1 
39 2 0 
40 5 0 
41 2 0 
42 2 0 
45 1 1 
48 1 0 
49 1 0 
50 10 2 
52 1 0 
59 1 0 
60 5 2 
65 6 6 
68 3 3 
70 5 3 
79 1 0 
80 1 0 
84 1 0 
94 1 0 
120 6 6 
130 1 1 
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Appendix H - SAS Program Code for Simulation 

Study 

 

/*********************************************************************** 

The following SAS code was used in the first simulation study and it was used to detect 

the Type I error rate at the level of significance 0.05 with sample size 200. The SAS code for 

other cases in the first simulation study and the second, third, and fourth simulation study are 

omitted due to similarities. 

*********************************************************************/ 

 

options nodate pageno=1 linesize=80 pagesize=60;   
options nonotes nosource;             /*output format*/ 
 
                                                                  
/* define macro LOFtest*/ 
 
%macro LOFtest (howmany, quantile, condition);   
%do iter = 1 %to &howmany;  
 
data set1;                     /* create covariates*/     
do i =1 to 200; 
beta0=-0.3; beta1=1.3;beta2=0; 
x1=-2+4*ranuni(&iter+100); 
x2=x1*x1; 
output; end; run; 
 
data set2; set set1;           /*create the true  
                                probability*/ 
p=(exp(beta0+beta1*x1+beta2*x2))/(1+exp(beta0+beta1*x1+beta 
2*x2)); 
do i =1 to 200; 
yy=ranuni(&iter+100); 
end; output; run; 
 
data set3 ;set set2;           /*create the response 
                                 variable*/ 
if p>=yy then y=1; 
if p<yy then y=0; 
keep   y x1 ;run; 
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proc logistic data=set3 desc;   /*fit the assumed model*/ 
model y=x1/scale=none aggregate lackfit; 
output out=pha p=phat ; 
ods output FitStatistics=rLL2; 
ods output GlobalTests=dfr; 
ods output LackFitChiSq=HL; 
ods output goodnessoffit= pearchi; 
ods listing exclude all; 
run; 
 
 
 data HL1; set HL;                 /*hosmer-lemeshow’s c     
                                   hat method*/ 
 
 rename  chisq= statistic   probchisq=pvalue;run; 
 data HL2; set HL1; 
  cri=cinv(&quantile, df); 
 if &condition then reject=1; 
else reject=0;  
pvalue=1-probchi(statistic, df); 
keep statistic  df  pvalue  reject;  
run; 
proc append base=HLall data=HL2  force; run; 
 
data hlhat;set pha;       /*hosmer-lemeshow h hat method*/ 
qhat=1-phat; 
if (phat ge 0.0 and phat le 0.1) then decile='D01'; 
if (phat ge 0.1 and phat le 0.2) then decile='D02'; 
if (phat ge 0.2 and phat le 0.3) then decile='D03'; 
if (phat ge 0.3 and phat le 0.4) then decile='D04'; 
if (phat ge 0.4 and phat le 0.5) then decile='D05'; 
if (phat ge 0.5 and phat le 0.6) then decile='D06'; 
if (phat ge 0.6 and phat le 0.7) then decile='D07'; 
if (phat ge 0.7 and phat le 0.8) then decile='D08'; 
if (phat ge 0.8 and phat le 0.9) then decile='D09'; 
if (phat ge 0.9 and phat le 1.0) then decile='D10'; 
run; 
 
proc sort data=hlhat; by decile; run; 
 
proc summary data=hlhat; 
by decile; var y phat qhat; 
output out=hlhat1 sum=ysm phatsum qhatsum n; 
run; 
 
data hlhat2; set hlhat1; 
yysum=_freq_-ysm; 



 115 

o1=(ysm-phatsum)**2/phatsum; 
o2=(yysum-qhatsum)**2/qhatsum; run; 
proc summary data=hlhat2; 
var o1 o2; 
output out=hlhat3 sum= o1sum o2sum n;run; 
 
data hlhat4; set hlhat3; 
df=_freq_-2; 
statistic=o1sum+o2sum; 
if statistic>cinv(&quantile, df) then reject=1; 
else reject=0; 
pvalue=1-probchi(statistic, df); 
run; 
data HLhat5; set hlhat4; 
keep statistic df  pvalue reject;run; 
 
proc append base=Hhatall data=HLhat5 force; run; 
 
 
data Deviance; set pearchi;   /*Deviance test*/ 
rename chisq=statistic; 
run; 
data definal; set deviance; 
_obs_=_n_; 
if _obs_='2'  then delete; 
cri=cinv(&quantile, df); 
if &condition then reject=1; 
else reject=0;  
pvalue=1-probchi(statistic, df); 
keep statistic df pvalue reject; run; 
proc append base=Deall data=definal force; run; 
 
 
data pefinal; set deviance;     /*pearson chisquare*/ 
_obs_=_n_; 
if _obs_='1'  then delete; 
cri=cinv(&quantile, df); 
if &condition then reject=1; 
else reject=0;  
pvalue=1-probchi(statistic, df); 
keep statistic df pvalue reject; run; 
proc append base=PEall data=pefinal force; run; 
 
 
data pearchis; set pearchi;       /*OS method*/ 
_obs_=_n_; 
if _obs_='1'  then delete; 
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keep chisq  df; run; 
run; 
 
data os1; set pha; 
v=phat*(1-phat); 
c=(1-2*phat)/v; run; 
proc reg data=os1; 
model c=x1; 
output out=os2 r=res; 
run; 
data os3; set os2; 
rss=v*res**2; run; 
proc means data=os3; 
var rss; output out=os4 mean=rssi n=m; run; 
data os5; set os4; 
rsstot=rssi*m; run; 
data os6; merge os5 pearchis;run; 
data os7; set os6; 
z=(chisq-df)/sqrt(rsstot); 
statistic=abs(z); 
df=0; 
pvalue=2*(1-probnorm(statistic)); 
if pvalue< 1-&quantile  then reject=1; 
else reject=0; 
keep statistic df  pvalue reject ; 
run; 
proc append base=OSall data=OS7  force; run; 
 
  
data reduce;                /*stukel method*/ 
merge rLL2 dfr; 
keep criterion  interceptandcovariates df; 
rename interceptandcovariates=r2ll df=rdf ; 
run;  
data reduce1; set reduce; 
obs=_n_; 
if obs<3 then delete;run; 
 
data phat ; set pha; 
g=log(phat/(1-phat)); 
if phat>=0.5 then z1=0.5*g*g; 
else z1=0; 
if phat<0.5 then z2=-0.5*g*g; 
else z2=0; 
run; 
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proc logistic data=phat desc; 
model y=x1 z1 z2 /scale=none aggregate; 
ods output FitStatistics=fLL2s; 
ods output GlobalTests=dffs;  
ods listing exclude all; 
run; 
 
data fulls;  
merge fLL2s dffs; 
keep criterion  interceptandcovariates df; 
rename interceptandcovariates=f2ll df=fdf ; 
run;  
 
data full1s;set fulls; 
obs=_n_; 
if obs<3 then delete; run;  
data finalST; merge reduce1 full1s; 
statistic=r2ll-f2ll; df=2;  
 cri=cinv(&quantile, df); 
if  &condition then reject=1; 
else reject=0; 
pvalue=1-probchi(statistic, df); 
keep statistic  df pvalue reject;  
run; 
 
proc append base=STall data=finalST force; run; 
 
 
proc summary data=pha;   /*proposed method*/ 
var phat; output out=medout median=mdphat;run; 
proc print data=medout; run; 
 
data medp; set medout; 
mdphat=mdphat; 
do i=1 to 200; 
output; end;run; 
 
data medpall; merge medp pha;run; 
 
data ready; set medpall; 
if  phat<=mdphat then g1x1=x1; 
else g1x1=0; 
if  phat<=mdphat then grp1=1; 
else grp1=0; 
 
if phat>  mdphat  then g2x1=x1 ; 
else g2x1=0;  
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if  phat>mdphat then grp2=1; 
else grp2=0;run; 
 
 
proc logistic data=ready desc;        /*the proposed 
                                       method*/ 
model y=grp1 grp2  g1x1 g2x1  / noint scale=none aggregate 
lackfit; 
ods output FitStatistics=fLL2; 
ods output GlobalTests=dff; 
ods listing exclude all; 
run; 
 
data full;  
merge fLL2 dff; 
keep criterion withcovariates df; 
rename withcovariates=f2ll df=fdf ; 
run;  
 
data full1;set full; 
obs=_n_; 
if obs<3 then delete; run;  
data finalYL; merge reduce1 full1; 
statistic=r2ll-f2ll; df=fdf-rdf-1;  
 cri=cinv(&quantile, df); 
if  &condition then reject=1; 
else reject=0; 
pvalue=1-probchi(statistic, df); 
keep statistic  df pvalue reject;  
run; 
 
proc append base=YLall data=finalYL force; run; 
 
 
 
%end; %mend LOFtest;       /* end macro LOG test*/     
 
%LOFtest (1000, 0.95, statistic>cri);   /* test lack of 
                                        fit*/ 
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/*another macro to find the reject rate*/ 
 
%macro prob (inputname, outputname);                          
proc means data=&inputname noprint; 
var statistic df pvalue reject; 
output out =&outputname mean=N=&inputname std=ss1 dd1 pp1  
rr1; run; 
 
proc print data=&outputname; run; 
%mend prob; 
 
 
%prob (HLall, out1)      /* call macro prob for results */ 
%prob(Hhatall, out2) 
%prob (Deall, out3) 
%prob(Peall, out4) 
%prob (OSall, out5) 
%prob (Stall, out6) 
%prob (YLall, out7) 
 
 
 

 


