Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield

dc.citationPeralta, N.R.; Assefa, Y.; Du, J.; Barden, C.J.; Ciampitti, I.A. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield. Remote Sens. 2016, 8, 848.
dc.citation.doi10.3390/rs8100848en_US
dc.citation.issn2072-4292en_US
dc.citation.issue11en_US
dc.citation.jtitleRemote Sensingen_US
dc.citation.volume8en_US
dc.contributor.authorPeralta, Nahuel R.
dc.contributor.authorYared, Assefa
dc.contributor.authorDu, Juan
dc.contributor.authorBarden, Charles J.
dc.contributor.authorCiampitti, Ignacio A.
dc.contributor.authoreidciampittien_US
dc.contributor.authoreidcbardenen_US
dc.date.accessioned2016-11-11T23:06:48Z
dc.date.available2016-11-11T23:06:48Z
dc.date.issued2016
dc.date.published2016en_US
dc.descriptionCitation: Peralta, N.R.; Assefa, Y.; Du, J.; Barden, C.J.; Ciampitti, I.A. Mid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yield. Remote Sens. 2016, 8, 848.
dc.description.abstractThis technical note presents the first Sentinel-2 data service platform for obtaining atmospherically-corrected images and generating the corresponding value-added products for any land surface on Earth (http://s2.boku.eodc.eu/). Using the European Space Agency’s (ESA) Sen2Cor algorithm, the platform processes ESA’s Level-1C top-of-atmosphere reflectance to atmospherically-corrected bottom-of-atmosphere (BoA) reflectance (Level-2A). The processing runs on-demand, with a global coverage, on the Earth Observation Data Centre (EODC), which is a public-private collaborative IT infrastructure in Vienna (Austria) for archiving, processing, and distributing Earth observation (EO) data (http://www.eodc.eu). Using the data service platform, users can submit processing requests and access the results via a user-friendly web page or using a dedicated application programming interface (API). Building on the processed Level-2A data, the platform also creates value-added products with a particular focus on agricultural vegetation monitoring, such as leaf area index (LAI) and broadband hemispherical-directional reflectance factor (HDRF). An analysis of the performance of the data service platform, along with processing capacity, is presented. Some preliminary consistency checks of the algorithm implementation are included to demonstrate the expected product quality. In particular, Sentinel-2 data were compared to atmospherically-corrected Landsat-8 data for six test sites achieving a R2 = 0.90 and Root Mean Square Error (RMSE) = 0.031. LAI was validated for one test site using ground estimations. Results show a very good agreement (R2 = 0.83) and a RMSE of 0.32 m2/m2 (12% of mean value).en_US
dc.description.versionArticle: Version of Record
dc.identifier.urihttp://hdl.handle.net/2097/34479
dc.language.isoen_USen_US
dc.relation.urihttp://dx.doi.org/10.3390/rs8100848en_US
dc.rightsAttribution 4.0 International (CC BY 4.0)en_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectHigh-Resolution Satellite Imageryen_US
dc.subjectForecasting Corn Yieldsen_US
dc.subjectSpatial Econometricen_US
dc.subjectWithin-Field Variabilityen_US
dc.titleMid-Season High-Resolution Satellite Imagery for Forecasting Site-Specific Corn Yielden_US
dc.typeTexten_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
remotesensing-08-00848-v2.pdf
Size:
3.76 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: