Structural damage detection using ambient vibrations

dc.contributor.authorTadros, Nader Nabil Aziz
dc.date.accessioned2014-08-04T21:24:07Z
dc.date.available2014-08-04T21:24:07Z
dc.date.graduationmonthAugusten_US
dc.date.issued2014-08-04
dc.date.published2014en_US
dc.description.abstractThe objective of this research is to use structure ambient random vibration response to detect damage level and location. The use of ambient vibration is advantageous because excitation is caused by service conditions such as normal vehicle traffic on a highway bridge, train passage on a railroad bridge, or wind loads on a tall building. This eliminates the need to apply a special impact or dynamic load, or interrupt traffic on a bridge in regular service. This research developed an approach in which free vibration of a structure is extracted from the response of this structure to a random excitation in the time domain (acceleration versus time) by averaging out the random component of the response. The result is the free vibration that includes all modes based on the sampling rate on time. Then this free vibration is transferred to the frequency domain using a Fast Fourier Transform (FFT). Variations in frequency response are a function of structural stiffness and member end-conditions. Such variations are used as a measure to identify the change in the structural dynamic properties, and ultimately detect damage. A physical model consisting of a 20 × 20 × 1670 -mm long steel square tube was used to validate this approach. The beam was tested under difference supports conditions varying from a single- to three-span continuous configuration. Random excitation was applied to the beam, and the dynamic response was measured by an accelerometer placed at various locations on the span. A numerical model was constructed in ABAQUS and the dynamic response was obtained from the finite element model subjected to similar excitation as in the physical model. Numerical results were correlated against results from the physical model, and comparison was made between the different span/support configurations. A subsequent step would be to induce damage that simulates loss of stiffness or cracking condition of the beam cross section, and that would be reflected as a change in the frequency and other dynamic properties of the structure. The approach achieved good results for a structure with a limited number of degrees of freedom. Further research is needed for structures with a larger number of degrees of freedom and structures with damage in symmetrical locations relative to the accelerometer position.en_US
dc.description.advisorHani G. Melhemen_US
dc.description.degreeMaster of Scienceen_US
dc.description.departmentDepartment of Civil Engineeringen_US
dc.description.levelMastersen_US
dc.description.sponsorshipDepartment Of Civil Engineering - Kansas State Universityen_US
dc.identifier.urihttp://hdl.handle.net/2097/18178
dc.language.isoen_USen_US
dc.publisherKansas State Universityen
dc.subjectStructural damage detection using ambient vibrationsen_US
dc.subjectNondestructive testingen_US
dc.subjectAbaqus stepsen_US
dc.subjectFourier transformationen_US
dc.subjectMulti-degree of freedom systemsen_US
dc.subjectStructural evaluationen_US
dc.subject.umiCivil Engineering (0543)en_US
dc.subject.umiEngineering (0537)en_US
dc.subject.umiMechanical Engineering (0548)en_US
dc.titleStructural damage detection using ambient vibrationsen_US
dc.typeThesisen_US

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
NaderTadros2014.pdf
Size:
6.43 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.62 KB
Format:
Item-specific license agreed upon to submission
Description: