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Abstract

The objective of this research is to use structure ambient random vibration response to
detect damage level and location. The use of ambient vibration is advantageous because
excitation is caused by service conditions such as normal vehicle traffic on a highway bridge,
train passage on a railroad bridge, or wind loads on a tall building. This eliminates the need to

apply a special impact or dynamic load, or interrupt traffic on a bridge in regular service.

This research developed an approach in which free vibration of a structure is extracted
from the response of this structure to a random excitation in the time domain (acceleration versus
time) by averaging out the random component of the response. The result is the free vibration
that includes all modes based on the sampling rate on time. Then this free vibration is
transferred to the frequency domain using a Fast Fourier Transform (FFT). Variations in
frequency response are a function of structural stiffness and member end-conditions. Such
variations are used as a measure to identify the change in the structural dynamic properties, and

ultimately detect damage.

A physical model consisting of a 20 x 20 x 1670 -mm long steel square tube was used to
validate this approach. The beam was tested under difference supports conditions varying from a
single- to three-span continuous configuration. Random excitation was applied to the beam, and
the dynamic response was measured by an accelerometer placed at various locations on the span.
A numerical model was constructed in ABAQUS and the dynamic response was obtained from
the finite element model subjected to similar excitation as in the physical model. Numerical
results were correlated against results from the physical model, and comparison was made
between the different span/support configurations. A subsequent step would be to induce
damage that simulates loss of stiffness or cracking condition of the beam cross section, and that

would be reflected as a change in the frequency and other dynamic properties of the structure.

The approach achieved good results for a structure with a limited number of degrees of
freedom. Further research is needed for structures with a larger number of degrees of freedom

and structures with damage in symmetrical locations relative to the accelerometer position.
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Chapter 1 - INTRODUCTION

1.1 Introduction

Non-destructive testing (NDT) refers to a wide group of analysis techniques used in
science and industry to evaluate the properties of a material, component, or system without
causing damage. Nondestructive examination or evaluation (NDE), and nondestructive
inspection (NDI) are also commonly used to describe this technology. Because NDT does not
permanently alter the inspected article, it is a highly valuable technique that saves money and
time in product evaluation, troubleshooting, and research. © Common NDT methods
include ultrasonic, magnetic-particle, liquid penetrant, radiographic, remote visual inspection
(RV1), eddy-current testing, and low coherence interferometry. NDT is commonly used in Civil
and Structural Engineering, Mechanical Engineering, Electrical Engineering, Forensic
Engineering, Systems Engineering, Aeronautical Engineering, Medicine, and Art.

It is noted that the majority of the defects found in structures or machines are identified
by visual inspection; however, visual inspection cannot detect small or internal flaws. Flaws
found visually can be located near the fracture toughness or strength limit threshold of the
material, and visual inspection is unable to accurately assess residual capacity of the structure.
Therefore, NDE is a desirable method.

Generally, NDE methods can be categorized as active or passive; and surface, near
surface, or volumetric. Active techniques are those defined as introducing some form of energy
into or onto the specimen, and a change of the input energy is expected if a flow is presented.
Vibration analysis, ultrasonic, magnetics, and radiography are examples of this technique.
Passive techniques monitor the specimen without induced energy. Instead, the condition of the
specimen is evaluated under ambient loading and possibly with a visual enhancing liquid over
the surface. A defect is determined by any irregular response of the specimen. Visual
examination, acoustic emission, and noise analysis are examples of this techniques. As the name
implies, surface methods are those that are limited to detecting flaws in the specimen near or at
the surface (e.g. eddy current, magnetics, penetrant methods, etc.). Volumetric methods are
capable of finding voids and cracks throughout the thickness of the specimen. They include

vibration, ultrasonic, and radiography.
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Most active NDE methods are more elaborate processes of determining degradation of a
structure, and would require an added cost for equipment and training. The benefit of NDE is
superior information about the structure’s overall condition. If implemented in the design phase
of the system, proper NDE methods can increase the life of its components. NDE should reduce
the overall costs associated with the life of the structure by detecting flaws when they are small

thus limiting downtime for repair of larger problems.

1.2 Advantages and Applications of NDE on Structures

Many benefits are achieved when NDE is used on civil structures, especially when
accessibility limitations are present on structure elements, in addition to the capability of keeping
the tested location without any damage and the simplicity of processing the required tests
compared to other destructive tests. NDE could be used to temporarily or permanently evaluate
and monitor structures.

The following are some Non-destructive tests (NDTs) that are commonly used in
structural engineering practice:

e Schmidt Hammer to evaluate reinforced concrete strength.

e Concrete ultrasonic tester to measure crack depth.

e Ground penetrating radar for rebar detection.

e Digital coating thickness gauge to measure painting thickness of steel members

e Steel ultrasonic tester to measure steel member thickness and detect internal defects

in welded areas.

1.3 Objective of this Research
The objective of this research is to develop an approach in which free vibration of a
structure is extracted from response of structure to random excitation in the time domain
(acceleration versus time) by averaging out the random component of the response. The result is
the free vibration that includes all modes based on the sampling rate on time. Then this free
vibration is transferred to the frequency domain using a Fast Fourier Transform (FFT).
Variations in frequency response are a function of structural stiffness and member end-

conditions. Such variations are used as a measure to identify the change in the structural dynamic



properties, and ultimately detect damage. Bridges are the most common structures that will
benefit from this procedure due to their importance, traffic loads, and the required Structural
Health Monitoring (SHM) for their performance.

The main advantages of ambient vibration compared to other non-destructive testing
procedures are:

e No traffic disruption

e Utilization of vibration occurring on a bridge

e Limited preparation and testing time

e Lower cost and simple when equipment is available

e Using ordinary traffic

e Measuring the structure acceleration

e No need for specific loads

e Using dynamic data

e No damage is inflicted to the structure

The ultimate goal of this effort is to use the response of structure to a random excitation
results from traffic, wind, and/or earthquakes to evaluate and monitor the structure performance
by recording the structure vibration response due to the mentioned reasons and evaluate this
vibration signal to determine any changes in the structure performance due to aging, different

and repetitive loading conditions, the impact of climate and other environmental issues.



Chapter 2 - LITERATURE REVIEW - FREE VIBRATION FOR
MULTI-DEGREE OF FREEDOM SYSTEMS

Free vibration relates to the motion of a structure without any dynamic excitation,
external forces or support motion. It is initiated by distributing the structure from its equilibrium
position by some initial displacement and/or by imparting some initial velocities.

This chapter on free vibration of Multi-Degree of Freedom (MDF) is divided into two
parts. In Part (2.1), the notation of natural frequencies and natural modes of vibration of a
structure have been developed; These concepts play a central role in the dynamic and earthquake
analysis of linear systems.

Part (2.2) is a description of the use of these vibration properties to determine the free
vibration response of systems. Undamped systems are analyzed first, followed by a discussion
of the difference between the free vibration response of systems with classical damping and that
of systems with nonclassical damping. The analysis procedure is extended to systems with
classical damping, recognizing that such systems possess the same natural modes as the

undamped system.
2.1 Natural Vibration Frequencies and Modes

2.1.1 Systems without Damping

Free vibration of linear MDF systems is governed by
mii + cu + ku = p(t) (2.1)
where,
m : mass
i : acceleration
¢ : damping
u : velocity
k : stiffness
u : displacement
with p(t) = 0 for free vibration (no force). For systems without damping, Equation (2.1)

becomes



mi +ku =10 (2.2)
Equation (2.2) represents N homogeneous differential equations that are coupled through the
mass matrix, the stiffness matrix, or both matrices; N is the number of DOFs. It is desired to find
the solution u(t) of Equation (2.2) that satisfies the initial condition att=0:

u=u(0)&u= u(0) (2.3)

Figure (2.1) shows the free vibration of a two story shear frame. The story stiffness and lumped
masses at the floors are noted, and the free vibration is initiated by the deflection shown by curve
a in Figure (2.1b). The resulting motion u; of the two masses is plotted in Figure (2.1d) as a

function of time; T1 will be defined later.
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Figure 2.1 Free vibration of an undamped system due to arbitrary initial displacement: (a)
two-story frame; (b) deflected shapes at time instants a, b, and c; (c) modal coordinates gn
(); (d) displacement history. (Chopra, 2000)



Deflected shapes of the structure at selected time instants a, b, and c are also shown. The
displacement—time plot for the j floor starts with the initial conditions u;(0) and 1;(0); the
uj(0) are identified in Fig. 2.1b and ;(0) = 0 for both floors. The motion of each mass or floor is
not a single harmonic motion as in Single Degree of Freedom (SDF) systems, and the frequency
of the motion cannot be defined. Furthermore, the deflected shape (i.e., the ratio up/ uz)
varies with time, as evidenced by differing deflected shapes b and c, which also differ from the
initial deflected shape a.

An undamped structure would undergo simple harmonic motion without change of
deflected shape if free vibration is initiated by appropriate distribution of displacements in the
various DOFs. As shown in Fig. 2.2 and 2.3, two characteristic deflected shapes exist for this
two—-DOF system such that if it is displaced in one of these shapes and released, it will vibrate in
simple harmonic motion, maintaining the initial deflected shape. Both floors reach their extreme
displacements at the same time and pass through the equilibrium position at the same time. Each
characteristic deflected shape is called a natural mode of vibration of an MDF system.

Observe that the displacements of both floors are in the same direction in the first mode
but in opposite directions in the second mode. The point of zero displacement, called a node,

does not move at all (Fig. 2.3); as the mode number n increase, the number of nodes increases

accordingly.
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Figure 2.2 Free vibration of an undamped system in its first natural mode of vibration: (a)
two-story frame; (b) deflected shapes at time instants a, b, ¢, d, and e; (c) modal coordinate
g1(t); (d) displacement history. (Chopra, 2000)
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Figure 2.3 Free vibration of an undamped system in its second natural mode of vibration:
(a) two-story frame; (b) deflected shapes at the time instants a, b, ¢, d, and e; (c) modal

coordinate g(t); (d) displacement history. (Chopra, 2000)

A natural period of vibration T, of a MDF system is the time required for one cycle of
the simple harmonic motion in one of these natural modes. The corresponding natural circular

frequency of vibration is w,, and the natural cyclic frequency of vibration is f, ,

where
2

T,= — 2.4)
wTL
1

fo= T, (2.5)

Figures 2.2 and 2.3 show the two natural periods T, and natural frequencies w,, (h = 1, 2) of the
two story building vibrating in its natural modes @,, = (@, ©,,)". The smaller of the two
natural vibration frequencies is denoted by w,, and the larger natural vibration frequency is
donated by w,. Correspondingly, the longer of the two natural vibration periods is denoted by T

and the shorter one as T».



2.1.2 Natural Vibration Frequencies and Modes

This section introduces an eigenvalue problem whose solution gives the natural
frequencies and modes of a system. Free vibration of an undamped system is one of its natural
vibration modes (graphically displayed in Figure 2.2 and 2.3 for a two-DOF system), can be
described mathematically by
u(t) = qn (t) By (2.6)
where the deflected shape @,, does not vary with time. The time variation of the displacement is
described by the simple harmonic function
qn (t) = Ajcosw, t + B,sinw, t (2.7)
where A,, and B,, are constants of integration that can be determined from the initial conditions
that initiate the motion. Combining Equations (2.6) and (2.7) gives
u(t) = 0, (A4, cosw, t+ B, sinw, t) (2.8)
where w,, and @,, are unknown.
Substituting this form of u(t) in Equation (2.2) gives
[~wim®,+k®,]1q, () =0 (2.9)
This equation can be satisfied in one of two ways. Either gn (t) = 0, that implies that u(t) = 0 for
which there is no motion of the system (this is the so-called trivial solution), or the natural
frequencies w,, and modes @,, must satisfy the following algebraic equation:
k®,= wimo, (2.10)
which provides a useful condition. This algebraic equation is called the matrix eigenvalue
problem. When necessary it is called the real eigenvalue problem. The stiffness and mass
matrices k and m are known; the problem is to determine the scalar w? and vector @,,.

To indicate the formal solution to Equation (2.10), it is written as
[k — w2]0, =0 (2.11)
which can be interpreted as a set of N homogeneous algebraic equations for the N elements
@in =1,2,.....,N). This set always has the trivial solution @,, = 0, which is not useful because
it implies no motion. It has nontrivial solution if
detlk — w2] =0 (2.12)
When the determinate is expanded, a polynomial of order N in w2 is obtained. Equation (2.12) is
known as the characteristic equation or frequency equation. This equation has N real and

positive roots for w2 because m and k, the structure mass and stiffness matrices, are symmetric



and positive definite. The positive definite property of k is assured for all structures supported in
a way that prevents rigid-body motion. Such is the case for civil engineering structures of
interest, but not for unrestrained structures such as aircraft in flight. The positive definite
property of m is also assured because the lumped masses are nonzero in all DOFs retained in the
analysis after the DOFs with zero lumped mass have been eliminated by static condensation.

The N roots w? of Equation (2.12) determine the N natural frequencies w,, (n =1, 2, ..,
N) of vibration. These roots of the characteristic equation are also known as eigenvalues,
characteristic values, or normal values. When a natural frequency w, is known, Equation
(2.11) can be solved for the corresponding vector @,, to within a multiplicative constant. The
eigenvalue problem does not fix the absolute amplitude of the vectors @,,, only the shape of the
vector given by the relative values of the N displacements @;, (j =1, 2, ....., N). Corresponding
to the N natural vibration frequencies w,, of an N-DOF system, there are N independent vectors
@, which are known as natural modes of vibration, or natural mode shapes of vibration. These
vectors are also known as eigenvalues, characteristic vectors, or normal modes.

In summary, a vibrating system with N DOFs has N natural vibration frequencies w,
(n =1, 2, ...., N), arranged in sequence from smallest to largest (w; < w, < -+ < wy);
corresponding natural periods T, ; and natural modes @,,. The term natural is used to qualify
each of these vibration properties to emphasize the fact that these are natural properties of the
structure in free vibration, and they depend only on its mass and stiffness properties. The
subscript n denotes the mode number and the first mode (n = 1) is also known as the

fundamental mode.

2.1.3 Modal and Spectral Matrices
The N eigenvalues and N natural modes can be assembled compactly into matrices. Let
the natural mode @, corresponding the natural frequency w, have elements @;,, where j
indicates the DOFs. The N eigenvectors then can be displayed in a single square matrix, each

column of which is a natural mode:
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The matrix ¢ is called the modal matrix for the eigenvalue problem, Equation (2.10). The N
eigenvalues w2 can be assembled into a diagonal matrix Q?, which is known as the spectral

matrix of the eigenvalue problem, equation (2.10):

W
Each eigenvalue and eigenvector satisfies Equation (2.10), which can be written as the relation
k®,=mo, w? (2.13)
By using the modal and spectral matrices, all relations (n = 1,2, ..., N) can be assembled into a
single matrix equation:
kd = mpQ? (2.14)
Equation (2.14) provides a compact presentation of the equations relating all eigenvalues and

eigenvectors.

2.1.4 Orthogonality of Modes

The natural modes corresponding to different natural frequencies can be shown to satisfy
the following orthognality conditions. When w,, # w,,
oL k@, =0 (2.15)
I m@, =0 (2.16)
These important properties can be proven as follow: The n'" natural frequency and mode satisfy
Equation (2.10); premultiplying it by @7 , the transpose of @,. , gives
oL k @, = w2 @I me, (2.17)
Similarly, the r'" natural frequency and mode satisfy Equation (2.10); thus k @, = w? m @, .
Premultiplying by @7 gives
oL k @, = w? @l mo, (2.18)
The transpose of the matrix on the left side of Equation (2.17) will equal the transpose of the
matrix on the right side of the equation; thus
OL k @, = wi @l mo, (2.19)
wherein we have utilized the symmetry property of the mass and stiffness matrices. Subtracting

Equation (2.18) from Equation (2.19) gives

10



(w2 — )T me, =0 (2.20)
Equation (2.16) is true when w2 # w? which for systems with positive natural frequencies
implies that w,, # w,. Substituting (2.16) in (2.18) indicates that Equation (2.15) is true when
w, # w,. This completes a proof for the orthogonality relations of Equations (2.15) and (2.16).

We have established the orthogonality relations between modes with distinct frequencies
(ie., w, # w,). Ifthe frequency equation (2.10) has a j-fold multiple root (i.e., the system has
one frequency repeated j times) it is always possible to find j modes associated with this
frequency that satisfy Equations (2.15) and (2.16). If these j modes are included with the modes
corresponding to the other frequencies, a set of N modes is obtained which satisfies Equations
(2.15) and (2.16) for n # r.

The orthogonality of natural modes implies that the following square matrices are

diagonal:

K=0o"kd (2.21)
M=d¢"mod (2.22)
where the diagonal elements are

K,= 0L ko, (2.23)
M, = @5 m @y, (2.23)
Since m and k are positive definite, the diagonal elements of K and M are positive. They are
related by

K, = w2 M, (2.24)

This can be demonstrated from the definition of K, and My as follows: Substituting equation
(2.10) in (2.23) gives
K, = 05 (wim@,) = wf (@, mb,) = wf My (2.25)

2.1.5 Interpretation of Modal Orthogonality
In this section we developed physically motivated interpretations of the orthogonality
properties of natural modes. One implication of modal orthogonality is that the work done by
the n'"-mode inertia forces in going through the r'"-mode displacements is zero. To demonstrate

this result, consider a structure vibrating in the n'"" mode with displacements
un(t) = qn (t)¢n (2'26)

11



The corresponding accelerations are ii,,(t) = ¢, (t) @,, and the associated inertia forces are

(fdn= —m un(t) = —m@, q.n(t) (2.27)
Next, consider displacements of the structure in its r'" natural mode:
u, (6) = q, (©) @, (2.28)

The work done by the inertia forces of Equation (2.27) in going through the displacements of
Equation (2.28) is

(nur = =@ m@,) §u(t) G-(0) (2.29)
Which is zero because of the modal orthogonality relation of Equation (2.16). This completes
the proof.

Another implication of the modal orthogonality properties is that the work done by the
equivalent static forces associated with displacements in the n' mode in going through the r™"

mode displacements equal to zero. These forces are

Usdn =k uy (6) =k 0y g, (2) (2.30)
and the work they do in going through the displacements of Equation (2.28) is
(fn ur = (Bn k 3,)qn () g7 () (2.31)

which is zero because of the modal orthogonality relation of Equation (2.15). This completes the

proof.

2.1.6 Normalization of Modes

As mentioned earlier, the eigenvalue problem, Equation (2.10), determines the natural
modes to only within a multiplicative factor. If the vector @, is a natural mode, any vector
proportional to @,, is essentially the same natural mode because it also satisfies Equation (2.10).
Scale factor are sometimes applied to natural modes to standardize their elements associated with
various DOFs. This process is called normalization. Sometimes it is convenient to normalize
each mode so that its largest element is unity. Other times it may be advantageous to normalize
each mode so that the element corresponding to a particular DOF, say the top floor of a
multistory building, is unity. In theoretical discussions and computer programs it is common to
normalize modes so that the M, have unit values. In this case
M,=0Im@,=1 (2.32)
dPTmop=1 (2.33)

12



where | is the identity matrix with unit values along the main diagonal. Equations (2.32) and
(2.33) states that the natural modes are not only orthogonal but are normalized with respect to m.
They are then called a mass orthonormal set. When the modes are normalized in this manner,
equations (2.23) and (2.22) become

K,= 0L k@, = wiM, = w2 (2.34)
K=¢"kd= Q2 (2.35)

2.1.7 Modal Expansion of Displacement
Any set of N independent vectors can be used as a basis for representing any other vector
of order N. In the following sections the natural modes are used as such a basis. Thus, a modal

expansion of any displacement vector u has the form

N
u= Zq)r g = dg (2.36)

where qr are scalar multipliers called modal coordinates or normal coordinates and
q=14{q g, .. qn)'. When the @, are known, for a given u it is possible to evaluate the qr
by multiplying both sides of equation (2.36) by @7 m:

N

@rmu = Z(Q)Em@r) qr (2.37)

r=1
Because of the orthogonality relation of Equation (2.16), all terms in the summation above
vanish except the r = n term; thus
ormu= (87 m®,) qn (2.38)
The matrix products on both sides of this equation are scalars. Therefore,

pIfmu @I mu
= = 2.39
qTL @g‘l m @n Mn ( )

The modal expansion of the displacement vector u, equation (2.36), is employed in

Section (2.2.1) to obtain solutions for the free vibration response of undamped systems. It also
plays a central role in the analysis of forced vibration response and dynamic response of MDF

systems.

13



2.2 Free Vibration Response

2.2.1 Solution of Free Vibration Equation: Undamped Systems
This section revives discussion of the problem posed by Equations (2.2) and (2.3) and
find its solution. For the example structure of Figure (2.1a), such a solution was shown in Figure
(2.1b). The differential Equation (2.2) to be solved had led to the matrix eigenvalue problem of
Equation (2.10). Assuming that the eigenvalue problem has been solved for the natural
frequencies and modes, the general solution of Equation (2.2) is given by a superposition of the

response in individual modes given by Equation (2.8). Therefore

N
u(t) = Z ?@n (A cosw, t+ B,sinw, t) (2.40)

n=1
where A, and B, are 2N constants of integration. To determine these constants, we will also

need the equation for the velocity vector, which is

N
u(t) = Z Dp wyp (A, sinw, t+ B,cosw, t) (2.41)

n=1

Setting t = 0 in Equations (2.40) and (2.41) gives

u(0) = Z 0, A, (2.42)
(0) = Z 0., w, B, (2.43)

With the initial displacement «(0) and initial velocity 12(0) known, each of these two equation
sets represents N algebraic equations in the unknown A, and By, respectively. Simultaneous
solution of these equations is not necessary because they can be interpreted as a modal expansion

of the vectors u(0) and % (0). Following Equation (2.36), we can write

u(0) = " By 4n(0) (244
#(0) = > By (0) (245)

where, analogous to Equation (2.39), q,,(0) and g,, (0) are given by

14



@f m u(0)

q,(0) = L (2.46)
T .
4n(0) = w (2.47)

Equations (2.42), (2.43), (2.44) and (2.45) are equivalent, implying that A, = ¢,(0) and B,, =
d»(0)/w,. Substituting these in Equation (2.40) gives

N
1, (0
u(t) = Z D, [qn(O) coswy t + In( )sin Wy, t] (2.48)
n=1 @n
or, alternatively,
N
w(H) = ) By au(® (249)
n=1
where
1., (0
qn(t) = q(0) cosw, t + qr;)( )sin Wy t (2.50)
n

is the time variation of modal coordinates, which is analogous to the free vibration response of
SDF systems. Equation (2.48) is the solution of the free vibration problem. It provides the
displacement u as a function of time due to initial displacement u(0) and velocity (0).
Assuming that the natural frequencies w,, and modes @,, are available, the right hand side of
Equation (2.48) is known with q(0) and ¢(0) defined by Equations (2.46) and (2.47).

2.2.2 Free Vibration of Systems with Damping

When damping is included, the free vibration response of the system is governed by
Equation (2.1) with p(t) =0
mi+cu+ku=0 (2.51)
It is desired to find the solution u(t) of Equation (2.51) that satisfies the initial conditions
u=u(0)&u= u(0) (2.52)
at t = 0. A procedure to obtain the desired solution will be developed in Section (2.2.3) for
certain forms of damping that are reasonable models for many real structures. In this section the
solution is presented for a specific system that enables us to understand qualitatively the effects
of damping on the free vibration of MDF systems.
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For this purpose we express the displacement u in terms of the natural modes of the system

without damping; thus Equation (2.36) is substituted in Equation (2.51):

mog+cdpg+kdg=0 (2.53)
Premultiplying by ¢7 gives

MG+Cg+Kq=0 (2.54)
where the diagonal matrices M and K were defined in Equations (2.21), (2.22) and

C=¢"cod (2.55)

The square matrix C may or may not be diagonal, depending on the distribution of damping in
the system. If C is diagonal, Equation (2.54) represents N uncoupled differential equations in
modal coordinates gn , and the system is said to have classical damping because classical modal
analysis is applicable to such systems. These systems possess the same natural modes as those
of the undamped system. Systems with damping such that C is nondiagonal are said to have
nonclassical damping. These systems are not amenable to classical modal analysis, and they do

not possess the same natural modes as undamped system.

2.2.3 Solution of Free Vibration Equations: Classically Damped Systems
This section represents a formal solution for free vibration of systems with classical
damping due to initial displacements and/or initial velocities is presented. For this form of
damping the natural modes are unaffected by damping. Therefore, the natural frequencies and
modes of the system are first computed for the system without damping; the effect of damping
on the natural frequencies is considered in the same manner as for a SDF system. This becomes
apparent by dividing Equation (2.56) governing gn(t) by M to obtain Equation (2.57)

Mn qn + Cn Qn + Kn adn = 0 (2'56)
‘.jn+2€n Wy Qn+ (‘)121 qn =10 (2-57)
This equation is of the same form as Equation (2.58) when dividing Equation (2.51) by m
Uu+2&w,u+ w,%:O (2.58)
where w, = J/k/mand & = Zman

governing the free vibration of a SDF system with damping for which the solution is equation
(2.59)

u(0) + ¢ w, u(0) sinwp t (2.59)
Wp

u(t) = et [y(0)coswp t +
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where

Wp = Wy /1_8(2

Adapting this result, the solution for Equation (2.57) is given by
4n(0) + &, wy gy (0) s

Wyp

gn(t) = e $n@nt lqn(O) CoOSwy,p t + inw,pt (2.60)

where the nth natural frequency with damping is

Wpp = W1 — &
The displacement response of the system is then obtained by substituting Equation (2.60) for
gn(t) in Equation (2.49):

Qn(o) + En wn Qn(o) Sl

Wnp

N
u(t) = Z @, e Snwnt an(O) cos wyp t + nwypt (2.61)
n=1

This is the solution of the free vibration problem for a MDF system with classical damping. It
provides the displacement u as a function of time due to initial displacement u(0) and velocity
1(0). Assuming that the natural frequencies w, and modes @,, of the system without damping
are available together with the modal damping ratios &,,, the right hand side of Equation (2.61) is
known with ¢,,(0) and q,,(0) defined by Equations (2.46) and (2.47).

Damping influences the natural frequencies and periods of vibration of a MDF system.

Therefore the effect of damping on the natural frequencies and periods of a MDF system is
negligible for damping ratios &n below 20%, a range that includes most practical structures.
In a MDF system with classical damping undergoing free vibration in the nth natural mode, the
displacement amplitude at any DOF decreases with each vibration cycle. The rate of decay
depends on the damping ratio &, in that mode, in a manner similar to SDF systems. Thus the
ration of two response peaks separated by j cycles of vibration is related to the damping ratio
with appropriate change in notation.

Consequently, the damping ratio in a natural mode of a MDF system can be determined,
in principle, from a free vibration test following the procedure for a SDF system. In such a test
the structure would be deformed by pulling on it with a cable that is then suddenly released, thus
causing the structure to undergo free vibration about its static equilibrium position. A difficulty
in such tests is to apply the pull and release in such a way that the structure will vibrate in only

one of its natural modes. For this reason this test procedure is not an effective means to

17



determine damping except possibly for the fundamental mode. After the response contribution
of the higher modes have damped out, the free vibration is essentially in the fundamental mode,
and the damping ratio for this mode can be computed from the decay rate of vibration

amplitudes.

2.3 Applications of NDT to Special Structures Using Other Methods

A brief description of some applications is given below.

2.3.1 Damage Detection in Concrete by Fourier and Wavelet Analysis

Melhem and Kim (2003) investigated the effectiveness of vibration-based methods in
damage detection of a typical highway structure. Two types of full-scale concrete structures
subjected to fatigue loads are studied: (1) Portland cement concrete pavements on grade; and (2)
a simply supported prestressed concrete beams. Fast Fourier Transform (FFT) and Continuous
Wavelet Transform (CWT) are used in the analysis of the structures’ dynamic response to
impact, and results from both techniques are compared. Both FFT and CWT can identify which
frequency components exist in a signal. However, only the wavelet transform can show when a
particular frequency occurs. Results of this research are such that FFT can detect the progression
of damage in the beam but not in the slab. In contrast, the CWT analysis yielded a clear
difference between the initial and damaged states for both structures. These findings confirm the
conclusion of previous studies conducted on small-scale specimens that wavelet analysis has a
great potential in the damage detection of concrete. The study also demonstrates that the
approach is applicable to full-scale component of sizes similar or close to actual in-service

structures.

2.3.2 Structural Damage Detection using Signal Pattern-Recognition

Qiao et al. (2008) applied a signal-based pattern-recognition procedure for structural
damage detection with a limited number of input/output signals. The method is based on
extracting and selecting the sensitive features of the structure response to form a unique pattern
for any particular damage scenario, and recognizing the unknown damage pattern against the
known database to identify the damage location and level (severity). In this study, two types of
transformation algorithms are implemented separately for feature extraction: (1) Continuous
Wavelet Transform (CWT); and (2) Wavelet Packet Transform (WPT). Three pattern-matching
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algorithms are also implemented separately for pattern recognition: (1) correlation, (2) least
square distance, and (3) Cosh spectral distance. To demonstrate the validity and accuracy of the
procedure, experimental studies are conducted on a simple three story steel structure. The results
show that the features of the signal for different damage scenario can be uniquely identified by
these transformations, and correlation algorithms can best perform pattern recognition to identify
the unknown damage pattern. The proposed method can also be used to possibly detect the type

of damage.

2.3.3 Damage Detection on Bridge

Omenzetter et al. (2004) identified the unusual events in multi-channel bridges by
monitoring strain data using wavelet transform and outlier analysis. The strain data was
recorded during continuous, long-term operation of a multi-sensor SHM system installed on a
full-scale bridge. Outlier detection in multivariate data was to find and localize abnormal,
sudden events in the strain data and wavelet transform was used to separate the abrupt strain
changes from slowly varying ones. The method was successfully tested using known events
recorded during construction of the bridge and later effectively used for detection of anomalous
post-construction events.

Omenzetter and Brownjohn (2006) proposed and examined the application of concepts of
time series analysis to the processing of data from a continuously operating SHM system
installed in a major bridge structure. The recorded static strain data was modeled using ARIMA
models. The coefficients of the ARIMA models were identified on-line using an extended
Kalman filter. The method was first applied to strains recorded during bridge construction, when
structural changes corresponded to known significant events such as cable tensioning. Then the
method was used to analyze signals recorded during the post-construction period when the
bridge was in service. The results show that the method can provide information on structural
performance under normal environmental and operational conditions.

Ding and Li (2007) proposed an online structural health monitoring method for long-term
suspension bridge performance using wavelet packet transform (WPT). The method was based
on the wavelet packet energy spectrum (WPES) variation of structural ambient vibration

responses. As an example application, the WPES-based health monitoring system was used on
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the Runyang Suspension Bridge to monitor the responses of the bridge in real-time under various
types of environmental conditions and mobile loads. As for the vibration monitoring of the
bridge, a total of 27 uni-axial servo type accelerometers were installed at the nine sections of the
bridge deck. In each deck section, one lateral accelerometer directly recorded the lateral
response, and vertical acceleration of the deck section was obtained by averaging the
accelerations measured by the two vertical accelerometers located in the upriver and downriver
cross sections, respectively. The analysis showed that actual environmental conditions,
including temperature and traffic loadings, were in excellent agreement with the measured
WPES. Changes in environmental temperature had a long-term trend influence on the WPES,
while the effect of traffic loadings on the measured WPES of the bridge presented instantaneous
changes.

Zhang (2007) presented a statistical damage identification procedure for bridge health
monitoring. It was assumed that the structure, in both healthy and unknown conditions, was
continuously monitored and the dynamic responses under ambient excitations were available.
The damage features were extracted based on time series analysis combining auto-regressive and
auto-regressive with exogenous input prediction models. The structural condition was evaluated
in a stastical way based on the damage possibilities that were derived from a quite large number
of data samples to minimize the effect of the variability in data acquisition process and in
structural properties on the damage assessment. The validity of the proposed damage
identification procedure was demonstrated by numerical studies using a 3-span continuous girder
bridge under random ground excitations. Reasonable damage severities for beam structures as
well as realistic noise levels were simulated. The results show that the damage identification
procedure has great potential to detect structural damage at early stage, in which the structural
modal frequency changes are almost imperceptible.

2.3.4 Crack Detection on Beam and Plate
Wang and Deng (1999) detected the crack on beam and plate structures based on wavelet
analysis of spatially distributed structural response measurements. Simulated deflection signals
of a beam containing a transverse crack and the displacement response of a plate with a through-

thickness crack were used. Wavelet transforms were performed on these signals to obtain the
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wavelet coefficients along the span of the structures. The crack location was detected by
observing a sudden change, such as a spike, in the distribution of the wavelet coefficients. The
magnitude of the spike in the wavelet analysis was maximum when the measurement point was
next to the damage location.

Douka et al. (2003) identified the location and size of the crack in a cantilever beam
based on wavelet analysis. The fundamental vibration mode of a cracked cantilever beam was
analyzed using continuous wavelet transform. The location of the crack was determined by the
sudden change in the spatial variation of the transformed signal at the site of the crack. To
estimate the size of the crack, an intensity factor was defined which related the size of the crack
to the corresponding wavelet coefficients. It was shown that the intensity factor changed with
crack depth according to a second order polynomial law and therefor, it could be used as an
indicator for crack extent. The viability of the proposed method was investigated both
analytically and experimentally in a cantilever beam containing a transverse surface crack.
Douka et al. (2004) also applied the same method to detect the crack in plates.

Chang and Chen (2005) detected the locations and the sizes of multi-cracks in a beam by
spatial wavelet analysis. The crack type was open crack and was represented as a rotational
spring. Frist, the mode shapes of free vibration and natural frequencies of the multi-cracked
beam were obtained. Then the mode shapes were analyzed by wavelet transformation. The
positions of the cracks were observed as a sudden change in the plot of wavelet coefficients. The
natural frequencies were used to predict the depth of the cracks through the characteristic
equation. The limitation of this method is that there are two peaks near the boundaries in the
wavelet plot, and the crack cannot be detected when it is near the boundaries.

Poudel et al. (2007) employed high resolution images for damage detection on a simply
supported prismatic steel beam. A high-speed digital video camera was used to recode the free
vibration displacement of the beam which was excited by imposing an initial displacement near
the mid-span from the left support. The camera had a CMOS (complementary Metal Oxide
semiconductor) sensor with 1280 x 1024 resolution and a 10 bit A/D converter. Its frame rate
ranges was from 100 to 2000 frames/s. The displacement data with high spatial resolution were
then used to obtain the mode shapes and the mode shape difference function between the
reference and damage states of the structure. The spatial signal in terms of mode shape

difference function was decomposed by wavelet transformation to display the changes due to

21



cracking damage. The appropriate range of wavelet scale was determined by the spatial
frequency bandwidths of the mode shape difference functions. The maximum modulus and sign
change of phase angle in the wavelet coefficients indicated the changes at the damaged locations.

Yan et al. (2004) detected crack damage in a honeycomb sandwish plate by using two
structural vibration damage feature indexes: natural frequency and WPT energy index. The
finite element dynamic model of a honeycomb sandwish plate was presented using different
mesh division for the surface plate and the sandwich plate to accurately express the crack
damage status (locations, length and direction) of the plate. In order to acquire the experimental
dynamic response of the plate, two piezo-patches with the size of 25 x 15 x 0.28 mm were
bonded on the surface of the plate. One of them acted as an actuator and the other acted as a
sensor. The natural frequencies of the undamaged plate were experimentally measured to verify
the numerical model. Based on the dynamic model verified by the experiment, the damage
feather indexes for various crack damage status were numerically computed. Then the crack
damage status was determined by comparing the damage feature indexes obtained from the
numerical and experimental results. The authors found that using structural natural frequency
might not be suitable for detecting crack damage less than 10%, even up to 20%, of the total size
of a plate-like structure; however energy spectrum of wavelet transform signals of structural
dynamic response had higher sensitivity to crack damage, it could exhibit structural damage
status for a crack length close to 2% of the dimension of a plate-like structure. They also found
that structural damage information was often contained in some high order modes of a structure,
and more vibration modes should be included in a structural dynamic model for detection of a
small damage.

Biemans et al. (2001) applied the piezoceramic sensors for crack propagation monitoring
in aluminum plate specimens with a crack initiated by spark erosion. The plates were
instrumented with piezocerami devices bonded in a symmetrical configuration on both sides of
the crack. One of the piezoceramics was used as an actuator and excited by a sine sweep and
Gaussian white noise signals in order to exploit broadband excitation. The plates were subjected
to static and dynamic tensile loading. The growing crack was monitored by the remaining
piezoceramic sensors. The response strain data was analyzed using a number of time, frequency,
and wavelet domain statistical parameters. The results show that low frequency broadband

excitation offers a possible means of on-line detection of cracks in metallic structures.

22



2.3.5 Damage Detection on Mechanical Structure

Seibold and Weinert (1996) localized the cracks in rotating machinery based on time
domain analysis. A bank of extended Kalman filters (EKFs) was designed to localize a crack
based on measured displacements picked up during normal operation of the rotor. Each filter
was turned to a different damage hypothesis, i.e., in this case the specific crack location. By
calculating the probabilities of the different hypotheses, the crack could be localized and its
depth could be determined. The method was applied for the localization of a crack in a
simulated rotor on hinged supports and for the identification of the crack depth in a rotor test rig.

Li et al. (1998) applied neural networks to the detection of motor bearing conditions
based on the frequency features of bearing vibration. Five basic frequencies related to rolling
bearing dynamic movement were extracted by fast Fourier transform (FFT) technique. The basic
frequency amplitude vectors were constructed to represent different bearing vibrations. These
vectors were created from the power spectrum of the vibration signal and consisted of the five
basic frequencies with varying amplitudes based on the defect present. The network consisted of
five input measurements corresponding to the amplitudes of the five basic frequencies of interest,
ten hidden nodes, and three output fault detectors (bearing looseness, defects on the inner
raceway, and defects on the rolling elements). The network was tested using the data generated
by MOTORISM. The results show that neural network can be an effective agent in the detection
of various motor bearing faults through the measurement and the interpretation of motor bearing
vibration signals.

Kar and Mohanty (2006) applied the multi-resolution Fourier transform (MFT) of
vibration and current signals for gearbox health monitoring. One and two teeth were artificially
removed in one gear of the gearbox to stimulate actual fault condition. When the gearbox was
operated under several loads, the vibration signals were acquired from the tail-end bearing of the
gearbox, and simultaneously the current drawn by an induction motor is acquired and monitored.
MFT combined the characteristics of short-term Fourier transform (STFT) and wavelet transform
(WT) by convolving a moving window with the signal at a particular scale. Discrete wavelet
transform (DWT) with an orthogonal wavelet of ‘db8’ was used to scale the vibration and
current signals. Then a Hanning window with 256 data points and 50% overlap was applied to
the scaled signal to find the MFT coefficients. It was inferred that MFT coefficients of vibration

and current signals could predict a consistent trend in the energy level processed by the gear
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mesh frequencies with an increase in the severity of the defects, and hence could be a useful tool
in gearbox health monitoring.

Staszewski and Tomlinson (1994) applied the wavelet transform to the problem of the
detection of a broken tooth in a spur gear. The fault detection algorithm was based on pattern
recognition analysis. Features of the pattern were the modulus of the wavelet transform.
Spectral analysis and an orthogonal transform were used to compress feature elements. The
Statistical concept of similarity analysis was used to compare patterns obtained from the normal
(no fault) condition and not normal (fault) condition. It is shown that the Mahalanobis distance
between contours plots of the modulus of the wavelet transform can be used as a fault detection
symptom; it increases monotonously with the fault advancement. Visual inspection of the
modulus and phase of the wavelet transform were used to localize the fault.

Wang and McFadden (1995, 1996) used the wavelet transform to detect abnormal
transient generated by gear damage. The early damage to a gear tooth usually caused a variation
in the associated vibration signal over a short time, initially less than one tooth meshing period,
taking the form of modulated or unmodulated oscillation. In later stages, the duration of the
abnormal variation became longer, lasting more than one tooth meshing period. Other
distributed faults, such as eccentricity and wear, might cover the most part of the whole
revolution of the gear. Changes in the vibration signals therefore could be analyzed to provide
an indicator of gear condition. When the size and shape of a wavelet were exactly the same as a
section of a signal, the transform gave a maximum absolute value of wavelet coefficients.
Therefore, the abnormal signal caused by a gear fault could be displayed by the wavelet
transform, which could be regarded as a procedure for comparing the similarity of the signal and
the chosen wavelet.

Liao et al. (2004) developed a novel technique for monitoring the gearbox condition
based on the self-organizing feature maps (SOFM) network. Seven time-domain features
parameters, namely standard deviation, Kurtosis, root mean square value, absolute mean value,
crest factor, clearance factor, and impulse factor were extracted from industrial gearbox vibration
signals measured under different operating conditions. Trained with the SOFM network and
visualized using the U-matrix method, the feature data were mapped into a two-dimensional
space and formed clustering regions, each indicative of a specific gearbox work condition.

Therefore the gearbox operating condition with fatigue crack or a broken tooth compared with
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the normal condition was clearly identified. Furthermore, with the trajectory of the image points
for the feature data in two-dimensional space, the vibration of gearbox condition was observed
visually and the development of early-stage gearbox failure was monitored in time.

Ozturk and Yesilyurt (2008) presented the use of a scalogram and its mean frequency
variation for monitoring the progression of pitting failure in gear system. Real gear vibrations
were obtained from a test rig utilizing a two-stage industrial gearbox. Pits representing different
degrees of fault severity were simulated on a few tooth surfaces. The continuous wavelet
transform was used to obtain a scalogram and its mean frequency variation. It was found that the
presence of the seeded pits was not clearly revealed by the scalogram in the early phases of fault
progression. When the severity (or number) of pits was further increased, the scalogram
exhibited fault symptoms as an increase in energy density. In contrast, the mean frequency
variation showed the presence of the fault even when there was only a single pit. The resulting
fault displayed itself as a localized deviation which repeated itself every pinion rotation.
Increasing the number of pits caused correspondingly stronger fault symptoms and sharper fault

localization at the same gear positions.
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Chapter 3 - THEORETICAL BACKGROUND

3.1 Historical Overview

Vibration analysis has been used for many years, and in many ways. In ancient times
sounding of clay artifacts revealed cracks and voids (Heyns 1996). Shaking coconuts to test
ripeness is an example of vibration analysis without rigorous concern for instrumentation or
sensitivity.

Sir Isaac Newton, largely credited for explaining the basis of modern dynamics as we
know it today. His formulation of laws of motion were first stated in 1687 in his Philosophiae
Naturalis Principa Mathematica (Fertis 1995). Newton reached these conclusions by expanding
on work established by Galileo. Galileo had made careful observation of bodies in free fall,
motion on an inclined plane, and motion of the pendulum, but this work was hindered by the low
sensitivity of measuring devices (Meriam and Kraige 1997). In Galileo’s era, little precision was
developed for measuring time. Some original observation of the pendulum were tracked using
his own pulse as a timepiece (Ramirez 1985).

Currently, measuring time is conducted with much more precision. One second is
defined as 9,192,631,770 transition between two specified, hyperfine levels of a cesium 133
atom (Ramirez 1985). Science demands such precision when researching or observing motion.
Most applications of vibration analysis require precise measurement of time, and limited
influence from data acquisitioning hardware and software. This precision is needed for proper
correlation between data acquired and degradation to be established.

The fundamental behind using vibration analysis is that wearing — due to fatigue loading,
corrosion, crack growth, etc... - of a specimen will alter the specimen’s ability to impede motion
due to vibration signals. The state of the specimen — including supports, flaws, loading, and
internal stresses — at the time of applying a vibration wave — active excitement of specimen —
establishes a signature for the specimen. The signature reflects the natural frequency of a system
at time of analysis. The signature should not change unless the specimen’s parameter change.

Vibration could be obtained in a form of Time vs. Displacement, Velocity or
Acceleration. Nowadays, one of the most common ways to record the system vibration is by
using accelerometer that sending the recorded signals to a software over the base station in a

form of Time vs. Acceleration which is identified as Time Domain. Acceleration is preferred
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and used in spite of Displacement and Velocity because it is usually hard to determine a specific
datum for the displacement to be measured from and the acceleration is the second derivative
from the displacement and the first derivative from the velocity which gives a better resolution

when recording the vibration.

3.2 Time Domain

Time domainis the analysis of mathematical functions, physical signals or time
series of dynamic, economic or environmental data, with respect to time. In the time domain, the
signal or function's value is known for all real numbers, for the case of continuous time, or at
various separate instants in the case of discrete time. An oscilloscope is a tool commonly used to
visualize real-world signals in the time domain. A time-domain side shows how a signal changes
with time (Figure 3.1), whereas a frequency-domain side shows how much of the signal lies

within each given frequency band over a range of frequencies (Figure 3.2).

P(t) hn WA

LA
\ L'h‘s|;

I( L

Figure 3.1 Time Domain

,", A ;'\ “\/\Y;"y / \ ‘/‘5 SN A AN AN AA At AN NSNS e S s e s NN

The use of the contrasting termstime domain and frequency domain developed in
US communication engineering in the late 1940s, with the terms appearing together without
definition by 1949 (Lee et al 1949) when an analysis uses the second or one of its multiples as
a unit of measurement, then it is in the time domain. When analysis concerns the reciprocal units

such as Hertz, then it is in the frequency domain.

3.3 Frequency Domain

In engineering and statistics, the frequency domain refers to the analysis of mathematical

functions or signals with respect to frequency, rather than time (Broughton and Bryan 2008).
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Simply, atime-domain graph shows how a signal changes over time, whereas a frequency-
domain graph shows how much of the signal lies within each given frequency band over a range
of frequencies. A frequency-domain representation can also include information on
the phase shift that must be applied to each sinusoid in order to be able to recombine the

frequency components to recover the original time signal.

A given function or signal can be converted between the time and frequency domains
with a pair of mathematical operators called a transform. An example is the Fourier transform,
which converts the time function into a frequency domain function. The 'spectrum’ of frequency
components is the frequency domain representation of the signal. The inverse Fourier
transform converts the frequency domain function back to a time function. A spectrum

analyzer is the tool commonly used to visualize real-world signals in the frequency domain.

Signal processing also allows representations or transforms that result in a joint time-frequency
domain, with the instantaneous frequency being a key link between the time domain and the

frequency domain.

3.3.1 Magnitude and Phase

In using the Laplace, Z-, or Fourier transforms, the frequency spectrum is complex,
describing the magnitude and phase of a signal, or of the response of a system, as a function of
frequency. In many applications, phase information is not important. By discarding the phase
information it is possible to simplify the information in a frequency domain representation to
generate a frequency spectrum or spectral density. A spectrum analyzer is a device that displays

the spectrum, while the time domain frequency can be seen on an oscilloscope.

The power spectral density (PSD) is a frequency-domain description that can be applied
to a large class of signals that are neither periodic nor square-integral, to have a power spectral
density, a signal needs only to be the output of a wide-sense stationary random process.

3.3.2 Different Frequency Domains

Although "the™ frequency domain is spoken of in the singular, there are a number of

different mathematical transforms which are used to analyze time functions and are referred to as
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"frequency domain™ methods. These are the most common transforms, and the fields in which

they are used:

o [Fourier series — repetitive signals, oscillating systems
o Fourier transform — non-repetitive signals, transients
o Laplace transform — electronic circuits and control systems

o Z-transform — discrete signals, digital signal processing

More generally, one can speak of the transform domain with respect to any transform. The
above transforms can be interpreted as capturing some form of frequency, and hence the

transform domain is referred to as a frequency domain.

3.3.3 Discrete frequency domain

The Fourier transform of a periodic signal only has energy at a base frequency and its
harmonics. Another way of saying this is that a periodic signal can be analyzed using a discrete
frequency domain. Dually, a discrete-time signal gives rise to a periodic frequency spectrum.
Combining these two, if we start with a time signal which is both discrete and periodic, we get a
frequency spectrum which is both periodic and discrete. This is the usual context for a discrete

Fourier transform.
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Figure 3.2 Frequency Domain

For this research, to obtain the system frequency — the signature — which is identified as
Frequency Domain from Time Domain, Fourier Transform is the used transform that converts

the Time Domain to Frequency Domain and vice versa.
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Amplitude

Figure 3.3 Descriptive graph of difference between Time Domain and Frequency Domain

for a signal

3.4 Fourier Transforms
The Fourier transform (named after its discoverer, the French mathematician Jean-
Baptiste Joseph Fourier) is a frequently-based transform widely used in analysis of linear
systems. It decomposes a signal into sine waves of different frequencies which sum to the
original waveform, and also distinguishes such different frequency sine waves and their

respective amplitudes.

3.4.1 Fourier Series
A Fourier series is an expansion of a periodic function f(x) in terms of an infinite sum
of sines and cosines. Fourier series make use of the orthogonality relationships of
the sine and cosine functions.  The computation and study of Fourier series is known
as harmonic analysis and is extremely useful as a way to break up an arbitrary periodic function
into a set of simple terms that can be plugged in, solved individually, and then recombined to
obtain the solution to the original problem or an approximation to it to whatever accuracy is
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desired or practical. Examples of successive approximations to common functions using Fourier

series are illustrated in Figure 3.4.

Sofidadre Werk'e sawloath wave
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Figure 3.4 Successive approximations to common functions using Fourier series

In particular, since the superposition principle holds for solutions of a linear
homogeneous ordinary differential equation, if such an equation can be solved in the case of a
single sinusoid, the solution for an arbitrary function is immediately available by expressing the
original function as a Fourier series and then plugging in the solution for each sinusoidal
component. In some special cases where the Fourier series can be summed in closed form, this
technique can even yield analytic solutions. Any set of functions that form acomplete
orthogonal system have a corresponding generalized Fourier series analogous to the Fourier
series. For example, using orthogonality of the roots of a Bessel function of the first kind gives a
so-called Fourier-Bessel series.

The computation of the (usual) Fourier series is based on the integral identities

f sin (m x) sin (nx)dx = wo,,, (3.1)

—TT
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f cos (mx) cos(nx)dx = o, (3.2)

-1
T

f sin (mx) cos(nx)dx = 0 (3.3)
f sin(mx)dx =0 (3.4)
f cos(mx)dx =0 (3.5)

-7
for m, n # 0, where dmn is the Kronecker delta.

Using the method for a generalized Fourier series, the usual Fourier series involving sines and
cosines is obtained by taking fi(x)=cos xand f> (X)=sin x. Since these functions form

a complete orthogonal system over [-z,z], the Fourier series of a function f(x) is given by

fx)= % ap + Zancos (nx) + ansin(nx), (3.6)
Where,

ay = — ff (x) dx (3.7)
a, = % jf (x) cos(n x) dx (3.8)
b, = % ff (x) sin(n x) dx (3.9)

Andn =1, 2, 3, ... Note that the coefficient of the constant term aog has been written in a special
form compared to the general form for generalized in order to preserve symmetry with the
definitions of a,and by .

A Fourier series converges to the function £ (equal to the original function at points of continuity

or to the average of the two limits at points of discontinuity)
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j(% [xll,r,?— fx) + lim  f (x) ] for—-nm< xo< 7 (3.10)
f= 0 xX-xg
L% [ lim fx) + xl_I)ITIrl_ f (%) l forx, = —m,m

if the function satisfies so-called Dirichlet boundary conditions. Dini's test gives a condition for
the convergence of Fourier series.
As a result, near points of discontinuity, or "ringing" known as the Gibbs phenomenon, can

occur, as shown in Figure 3.5.

Fix)

Figure 3.5 Gibbs phenomenon

For a function f(x) periodic on an interval [-L,L] instead of [-z,x], a simple change of variables

can be used to transform the interval of integration from [-z,z] to [-L,L], let

- 3.11

X = I (3.11)
dx'

dx = —— (3.12)

Solving for x’ gives x '=Lx/z, and plugging this in gives

oo

. 1 - nmx' [ nmx’
fx)= §a0+ Zancos I + ansm - | (3.13)
n=1 n

=1

Therefore,

1 L
QG = 7 Jf (x") dx’ (3.14)
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L
a, = % J.f (x") cos (mzx )dx' (3.15)
-1

L
b, = % J.f (x") sin (?) dx’ (3.16)
-1

Similarly, the function is instead defined on the interval [0, 2L], the above equations simply

become
1 2L
Q= 7 j f (") dx' (3.17)
0
2L
1 nmx'
a, = - f f (") cos( >dx’ (3.18)
L L
0
2L
1 - [(nmx'
b, = - f f (x') sin <—> dx’ (3.19)
L L
0

In fact, for f(x) periodic with period 2L , any interval (Xo, Xo + 2L) can be used, with the choice
being one of convenience or personal preference (Arfken 1985, p. 769).

The coefficients for Fourier series expansions of a few common functions are given in Beyer
(1987, pp. 411-412) and Byerly (1959, p.51). One of the most common functions usually
analyzed by this technique is the square wave. The Fourier series for common functions are

summarized in the table below.

Table 3.1 Fourier series for common functions

Function J ) Fourier series
Fourier series--sawtooth wave | x / 2 = L Xy -sin()

. . X X N 4 o 1 - L
Fourier series--square wave |2 [H (3)-H [} - 1)] -1 - Eolias.. o sin(®)
Fourier series--triangle wave |7 ) 3y o LU sin (22)

n2 em=l3se. 2 L
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If a function is even so that f(x)=f(-x), then f(x)sin(nx) is odd. (This follows since sin
(nx) is odd and an even function times an odd function is an odd function.) Therefore, bn=0 for
all n. Similarly, if a function is odd so that f(x)=-f(-x), then f(x)cos(nx) is odd. (This follows

since cos (nx)isevenand aneven functiontimes anodd functionis anodd function.)

Therefore, an=o for all n.

The notion of a Fourier series can also be extended to complex coefficients. Consider a real-

valued function f (x). Write

f&)= i Ap ™

n=-—oo

Now examine

ff (x) eI dx

So

YA %}
(S o) o

-7 \n=—o
0 T
Z A, f el (n—m)x 4,
n=-—oo —TT
0 T

2 A, J{cos [(n—m)x ]|+ isin[(n — m)x]} dx

n=—oco —TT

s
1 .
_ —inx
A, = o jf(x)e dx
—TT

The coefficients can be expressed in terms of those in the Fourier series

A, = % f f (x)[cos(n x) —isin(n x)] dx
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( T
% ff (x) [cos(n x) + isin(|n| x)]dx n <0 (3.28)

T

1
:<2n ff(x)dx n=0
-1
1 s
7 ff (x) [cos(nx) —isin(|n| x)]dx n>0
LA
(1 :
> (an +iby) forn<O0 (3.29)
1
= 9 5 o forn=20
1
Lf(a"_ibn) forn>0
For a function periodic in [-L/2, L/2], these become
fx)= z Ay et Gmnx/L) (3.30)
n=-—co
L/2
1 .
A =7 f f (x) e7i@mnx/L) gy (3.31)
—-L/2

These equations are the basis for the extremely important Fourier transform, which is obtained

by transforming A, from a discrete variable to a continuous one as the length L — o

3.4.2 Continuous Fourier Transform

The Fourier transform is a generalization of the complex Fourier series in the limit as
L — . Replace the discrete An with the continuous F (k) dk while letting n/L — k. Then
change the sum to an integral, and the equations become

co

f(x)= j F (k) e?™kx df (3.32)
F (k) = j f (x) e=2™kx gx (3.33)
Here,
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F (k) =E[T(x)] (k) (3.34)

= f f (x) e~ 2mikx gy (3.35)
is called the forward (-i ) Fourier transform, and
FX)=FTX1K (3.36)
— f F (k) eZm'kx dk (3_37)

is called the inverse (+i) Fourier transform. The notation Ex [ f (x) ] (k) is introduced in Trott
(2004, p. xxxiv), and f (k) and f (x) are sometimes also used to denote the Fourier transform and
inverse Fourier transform, respectively (Krantz 1999, p. 202).

Note that some authors (especially physicists) prefer to write the transform in terms of angular
frequency w=2 mv instead of the oscillation frequency v. However, this destroys the symmetry,

resulting in the transform pair

H(w)=F[h(t)] (3.38)
- ] B (D) et dt (3:39)
h(y =F'[H(®)] (3.40)
— 1 [ iwt
= = j H () et do (341)
To restore the symmetry of the transforms, the convention
g(y) =F[F] (3.42)
C L (e
= m_[of(t)e Ytde (3.43)
f@© =F'lgml (3.44)
—Lf (y) e d (3.45)
- m_mg ye y .

is sometimes used (Mathews and Walker 1970, p. 102).

In general, the Fourier transform pair may be defined using two arbitrary constants a and b as
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F(w) = /% _f f (t)e@t dt (3.46)

F@o= |2
- (2m)1ta

f F (w)e Pt do (3.47)

Unfortunately, a number of other conventions are in widespread use. For example,(0,1) is used
in modern physics, (1,-1) is used in pure mathematics and systems engineering, (1,1) is used in
probability theory for the computation of the characteristic function, (-1,1) is used in classical
physics, and (0, -2x) is used in signal processing. In this work, following Bracewell (1999,
pp. 6-7), it is always assumed that a=0 and b=-2z unless otherwise stated. This choice often
results in greatly simplified transforms of common functions such as 1, cos (2zko X), etc.

Since any function can be split up into even and odd portions E(x) and O(x),

1
FG =3 1f @+f 01+ 5 [f ()~ f (-] (3.48)
=E (x)+0 (x), (3.49)

Fourier transform can always be expressed in terms of the Fourier cosine transform and Fourier

sine transform as

oo (0]

F lf 0] (k) = ] E (x) cos(2mkx)dx — i J 0 (x) sin(2mkx) dx (3.50)

— 00 — 00

A function f (x) has a forward and inverse Fourier transform such that

o)

( .
f ekax

f x)=1{-»
% [f (x0) + f (x2)] for f (x)discontinuous at x,

o)

f f (x)e2mikx dx] dk for f (x)continuous at x (3.51)

—00

provided that
1. ffoool f (x)| dx exists.

2. There are a finite number of discontinuities.
3. The function has bounded variation. A sufficient weaker condition is fulfillment of

the Lipschitz condition
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(Ramirez 1985, p.29). The smoother a function (i.e., the larger the number of
continuous derivatives), the more compact its Fourier transform.

The Fourier transform is linear, since if f (x) and g (x) have Fourier transforms F (k) and G (k) ,
then

f[af (xX)+bg x)]e 2™ dx =aqa f f (x)e 2™k dx + b f g (x)e 2mkx gy (3.52)

=aF (k) +b G (k). (3.53)

Therefore,
Flaf(X)+bgX)]=aF[f(X)+bF[g(X)] (3.54)
=aF (k) +b G (k). (3.55)

The Fourier transform is also symmetric since F (k) = Ex [f (x)] (k) implies F (-k) = Ex [ f (-x)] (k)
Let f+g denote the convolution, then the transforms of convolutions of functions have

particularly nice transforms,

F[f*q] =F[f]F[g] (5.56)
F[fg] =F[f]*F[g] (3.57)
FIFMOE@Q] =f*g (3.58)
FIF@f)* F()] =fg (3.59)

The first of these is derived as follows:

Flf*gl= f f e 2Tk £ (x") g (x — x")dxdx (3.60)
f f [e—zmkx’ f (xl)dxl][ e—2mik(x—x") g (x— x’)dx] (3.61)

= [je‘z’”"x’f(x')dx] [je‘z””‘x”g (x”)dx"] (3.62)

— F[fIF[g (3.63)

Wherex”’ =x—x".
There is also a somewhat surprising and extremely important relationship between

the autocorrelation and the Fourier transform known as the Wiener-Khinchin theorem. Let
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Fx [f(x)] () =F (k), and f denote the complex conjugate of f, then the Fourier transform of
the absolute square of F (k) is given by

£ IF (0)12] () = f 7 @f (@ +20dt (3.64)

The Fourier transform of a derivative 1~ (x) of a function f (x) is simply related to the transform of

the function f (x) itself. Consider

F P00 = [ £Goe da, (3.65)
Now use integration by parts

jvdu=[uv]—fudv (3.66)
With

du=f" (x)dx (3.67)
v = ek (3.68)
and

u =f(x) (3.69)
d v = -2mike?"* dx, (3.70)
then

Fx L0100 = [f (e 2™ ] - j f (x)(—2mike™2™** dx) (3.71)

The first term consists of an oscillating function times f (x). But if the function is bounded so
that

lim £ (x) = 0 (3.72)
X—>Too
(as any physically significant signal must be), then the term vanishes, leaving
E [ F (0]k) = 2mik f f (x)e=2mikx gy (3.73)
= 2mik¥E, [ f (x)](k). (3.74)
This process can be iterated for the n ™ derivative to yield
e [ ™ (0] = @rik)™ £, [ f ()] (). (3.75)
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The important modulation theorem of Fourier transforms allows Fx [ cos (2rmko x) f (x) ] (k) to be

expressed in terms of Fx [ f (x) ] (k) = F (k) as follows,

F, [cos2mkyx)f (x)] (k) = f f (x) cos(2mkyx)e 2™ dyx (3.76)
— % f f(x)eZm'kox e~ 2mikx +% J f(x)e—Znikoxe—Zﬂikxdx(3_77)
= % f f(x)e=2miltk=ko)x gy +% f f(x)e2milktkolx gy (3.78)
= % [F (k — ko) + F (k + ko). (3.79)

Since the derivative of the Fourier transform is given by

d r .
F'(k) = T Fy[f ]k) = ](—ZHix)f (x)e~2mMkx gy, (3.80)

it follows that

o)

F'(0)= -2mi f x f (x)dx. (3.81)

Iterating gives the general formula

Un = j x™ f (x)dx (3.82)
FM (0)

The variance of a Fourier transform is

af = ((xf— (xfN?), (3.84)

and it is true that

Oryg = 05 + 0y (3.85)
If f (X) has the Fourier transform Fx [ f (X) ] (k) = F (k), then the Fourier transform has the shift
property

f f (x _ xo)e—ZRikx dx = f f (x _ xo)e—zm(x—xo)k e —2mi(kxo) d(x _ xo) (3.86)
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= e~ 2mikxo | (k),
So f (X — Xo) has the Fourier transform
Fo[f (x—x)l(k) = e 2™ F (k).

(3.87)

(3.88)

If f (x) has a Fourier transform Ex [ f (x) ] (k) = F (k), then the Fourier transform obeys a

similarity theorem.

. 1 - k 1 k
—2mikx _ —2mi(ax)(7) —
ff(ax)e dx = Il ff(ax)e @ d(ax) = al F (a)'

So flax) has the Fourier transform

k
E [ f (a0)](k) = lal™* F (a)
The "equivalent width" of a Fourier transform is

LS @dx
¢ f(0)
_ F(0)
[T F (k)dk
The "autocorrelation width" is

o f®f dx
Wg= —FVF——=—
[f®F],
[ fdx [0 F dx
O ffdx

Where f ® g denotes the cross-correlation of f and g and £ is the complex conjugate.

Any operation on f (x) which leaves its area unchanged leaves F (0) unchanged, since

[r@ar=rl1r w1 ©=F©,

The following table summarized common Fourier transform pairs.
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Table 3.2 Common Fourier transform pairs

Function fx) F k) =%, [f ()] (k)
Fourier transform--1 1 4 (k)

Fourier transform--cosine cos (27 ky x) ; [6 (k= fy)+ 6 (k+ &)
Fourier transform--delta function o (x —xp) g2k

Fourier transform--exponential function | ™" ¥ L _;:;i'_at;

Fourier transform--Gaussian g \F g fa

Fourier transform--Heaviside step function | # (x) ; [ (k) - :]

Fourier transform--inverse function -PV - i[1-2H(-#)]

Fourier transform--Lorentzian function | oT g 2 ik R Tk

Fenr

Fourier transform--ramp function R (x) Rid Qrk) - ——

Andk

Fourier transform--sine sin (27 &y x) i[6 (k+kp) =6 (k=)

!
2

In two dimensions, the Fourier transform becomes

o o

F (x,y) = f f f (kx , ky)e—zm(kx x+ky ¥) 4 kydk, (3.96)
F (ky k) = f f f(x, ye2milxxtkyy)q gy (3.97)

Similarly, the n-dimensional Fourier transform can be defined for k, x € R™ by

F(x) = f .. (n) ... ff (k) e~ 2mikx gn g (3.98)
f (k) = j .. (n) ... jF(x) e2mikx gn g (3.99)
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As a brief, let f (x) be a given continuous signal in time domain. The continuous Fourier

transform of f (x) is defined by the equation:
F(k) = f f (x)e 2™k gy (3.100)

where i = V-1 and s is often called frequency variable. Given F (k ), we can go backwards and

get f (x) by using inverse continuous Fourier transform:

f(x) = f F (k)e?™kxdf (3.101)
Equation (3.100) and Equation (3.101) are called Fourier transform pairs. F ( k) is the Fourier
transform of f ( x ) and that f ( x ) is the inverse Fourier transform of F( k ). The only difference
between the forward and inverse Fourier transform is the sign above e, which makes it easy to go

back and forth between time domain and frequency domain.

3.4.3 Discrete Fourier Transform
The continuous Fourier transform is defined as
fw=F[£f(D] (v (3.102)

= j f (e 2™t gt (3.103)

Now consider generalization to the case of a discrete function, f (t) — f (t,) by letting
fi =f (ty), where t, = k A, with £ = 0, ..., N-1. Writing this out gives the discrete Fourier

transform E, = F, [{fi}¥z4] (n) as
N-1
E, = Z fie @~ 2mink/N (3.104)
k=0
The inverse transform f, = £, [{F,}NZ3] (k) is then
N-1
fe = %Z F, e2mink/N, (3.105)
n=0

Discrete Fourier transforms are extremely useful because they reveal periodicities in input data

as well as the relative strengths of any periodic components. There are a few subtleties in the
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interpretation of discrete Fourier transforms, however, In general, the discrete Fourier transform
of a real sequence of numbers will be a sequence of complex numbers of the same length. In
particular, if fx are real, then Fn.n and Fn are related by

Fy_n, = Fp (3.106)
Forn =0,1,......, N-1, where Z denotes the complex conjugate. This means that the component
Fo is always real for real data.

As a result of the above relation, a periodic function will contain transformed peaks in not one,
but two places. This happens because the periods of the input data become split into "positive”

and "negative" frequency complex components.

Ty (sin x) ()
0.4 Frsinf3 01/ 2 + sin x)(m)
4
0.4
3
0.3 -
0.2 ‘ -
0.1 f 1
J— _'_'_'_H-'JI " 1 — | n
-:I_,,.d'-cr 2 30 8|0 IIU Z0 30 40 110
-0.1 !

Figure 3.6 The real part, imaginary part, and complex part of the discrete Fourier

transforms of the two indicated functions

The plots above show the real part (red), imaginary part (blue), and complex modulus (green)
of the discrete Fourier transforms of the functions f (x) = sin x (left figure) and f (X) = sin x + sin
(3x)/2 (right figure) sampled 50 times over two periods. In the left figure, the symmetrical spikes
on the left and right side are the "positive” and "negative” frequency components of the single
sine wave. Similarly, in the right figure, there are two pairs of spikes, with the larger green
spikes corresponding to the lower-frequency stronger component sin x and the smaller green
spikes corresponding to the higher-frequency weaker component. A suitably scaled plot of
the complex modulus of a discrete Fourier transform is commonly known as a power spectrum.
The discrete Fourier transform is a special case of the Z-transform.

The discrete Fourier transform can be computed efficiently using a fast Fourier transform.
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In other words, The continuous Fourier transform is a continuous function of frequency
and is not suitable for computation with a digital signal processing (DSP). Discrete Fourier
transform (DFT) representation of the continuous time signal permits the computer analysis and
is used extensively in signal processing applications. The analog signal which consists of an
infinite number of contiguous points is sampled at regular intervals. The input to the DFT is a

sequence of sampled values rather than a continuous function of time f (t), so that

N-1
E, = Z f, e~ 2mink/N (3.107)
k=0
And,
N-1
fo = %z E, e2mink/N (3.108)
n=0

Equation (3.107) is called the DFT and the Equation (3.108) is called the inverse discrete Fourier
transform (IDFT). fx and Fn are the discrete sample values corresponding to f ( x ) and
F (k). The N in the DFT pair denotes the number of elements in the f or Fn sequence.

The discrete Fourier transform allows calculating the Fourier transform on a computer,
but it is not sufficient. The number of complex multiplications and additions required to
implement Equation (3.107) and (3.108) is proportional to N 2. For every Fy , it needs to use all
of f(0),..., f(N-1) and there are N Fn to calculate. For a large N, there computations can be

prohibitively time consuming, even for a high speed computer.

3.4.4 Fast Fourier Transform

The fast Fourier transform (FFT) is a discrete Fourier transform algorithm which reduces
the number of computations needed for N points from 2 N? to 2 N Ig N, where lg is the base-
2 logarithm. If the function to be transformed is not harmonically related to the sampling
frequency, the response of an FFT looks like a sinc function (although the integrated power is
still correct). Aliasing (also known as leakage) can be reduced by apodization using
an apodization function. However, aliasing reduction is at the expense of broadening the spectral
response.
FFTs were first discussed by Cooley and Tukey (1965), although Gauss had actually described
the critical factorization step as early as 1805 (Bergland 1969, Strang 1993). A discrete Fourier

transform can be computed using an FFT by means of the Danielson-Lanczos lemma if the
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number of points N is a power of two. If the number of points N is not a power of two, a
transform can be performed on sets of points corresponding to the prime factors of N which is
slightly degraded in speed. An efficient real Fourier transform algorithm or a fast Hartley
transform (Bracewell 1999) gives a further increase in speed by approximately a factor of two.
Base-4 and base-8 fast Fourier transforms use optimized code, and can be 20-30% faster than
base-2 fast Fourier transforms. Prime factorization is slow when the factors are large, but
discrete Fourier transforms can be made fast for N=2, 3, 4, 5, 7, 8, 11, 13, and 16 using
the Winograd transform algorithm (Press et al. 1992, pp. 412-413, Arndt).

Fast Fourier transform algorithms generally fall into two classes: decimation in time, and
decimation in frequency. The Cooley-Tukey FFT algorithm first rearranges the input elements
in bit-reversed order, then builds the output transform (decimation in time). The basic idea is to
break up a transform of length N into two transforms of length N/2 using the identity

N-1
a, e—Zmnk/N
n=0
N
7_1
— z Ao e—Zm(Zn)k/N
n=0
N
-1
-2mi(2n+1)k/N
+ Z Aon+1 € ( k/
n=0
N
71
—2mink/)
— arelven e 2
n=0
N
271 .
—omi —2mink/(5
+ e ka/Nz a,‘;dd g~ 2min /(2)’ (3_109)
n=0

sometimes called the Danielson-Lanczos lemma. The easiest way to visualize this procedure is
perhaps via the Fourier matrix.
The Sande-Tukey algorithm (Stoer and Bulirsch 1980) first transforms, then rearranges the

output values (decimation in frequency).
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Chapter 4 - APPROACH AND PROCEDURE

The general equation for any structural system ambient vibration signal in time domain
is:
ii(t) = Ce $®ntsin(wp t + @) + Particular Solution (4.1)
The first part of this equation (Ce $“n!sin(wp t + a) represents the free vibration of the
system embedded in the ambient vibration signal of the system, while the second part (Particular
Solution) represents the ambient part of this signal, the vibration noise.

The primary purpose of this approach is to extract the free vibration of the structure from
a random vibration response in the time domain (acceleration versus time) by averaging out the
random component of the response and eliminating the particular solution. The result is the free
vibration that includes all modes based on the sampling rate of time, which is then transferred to
the frequency domain using a Fast Fourier Transform (FFT). Variations in the frequency
response are function of the structural stiffness and member end-conditions. Such variations are

used to identify the change is the structural dynamic properties, and ultimately detect damage.

4.1 Procedure Followed
Figure 4.1 shows a sample of an ambient vibration signal as recorded for a physical

model experiment with magnification of the first part of that signal.

Acceleration

Time

Acceleration

Time

Figure 4.1 Sample of an ambient vibration signal as recorded for a physical model

experiment with magnification of the first part
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To simplify the formulation, the acceleration ii denoted as (u). The procedure required the

following steps:

1)

2)

3)

4)

600

400

200
Uo ¢

A trigger value for the initial acceleration (uo) and the time intervals (4T) is
carefully chosen so that the horizontal line will intersect as many points as
possible on the signal curve.

A horizontal line parallel to the time axis is extended from the initial acceleration
(uo) point until it intersects the curve. It is important to determine whether the
point of intersection is between two ascending or descending values.

From the point of intersection, the horizontal line is extended with a value equal
to AT1. (See Figure 4.2 that shows a case of an ascending point of intersection).
Wherever the length of 471 ends, a vertical line is extended (up or down) till it
intersects the signal curve at a point. The ordinate of this point becomes the next
acceleration value (u1). Interpolation is usually necessary to obtain an accurate

value between two ascending or descending points on the curve.
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Figure 4.2 A graph showing how to choose a trigger value for the initial acceleration (u)

and the time interval (4T) on the ambient vibration signal of Figure 4.1
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5) From the point of intersection described in Step 3, a horizontal line parallel to the
time axis is extended until it intersects the curve again (ascending if the first point
was on the ascending portion, or descending otherwise).

6) From the new point of Step 5, the horizontal line is extended with a value of 471
once again, and a new acceleration value (uz) is obtained as previously
accomplished in Step 4. (See Figure 4.3).

7) Steps 5 and 6 are sequentially repeated till the end of the curve is reached and the
final acceleration value (un) is recorded, where n is the last intersected point on
the curve for this iteration. (See Figure 4.3).

8) Steps 3 to 7 are repeated with different values of (47). These values will be
denoted as AT», ATs, ......... , ATm, Where ATo=2x AT1,AT3=3 %X AT1, ...., ATn
=m x ATy, with 4Ty, being the value of 4T in the last iteration.

Note: For the sake of computational effectiveness, the value of m is selected such that a
sufficient portion on the ambient vibration curve is included (rather than the entire ambient
vibration curve), as the free vibration curve is usually embeded in the first part of the ambient

vibration curve, and the rest mostly represents the damping part.
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Figure 4.3 Graph showing how to obtain different values for the acceleration by extending equal

time interval (47) untill the end of the ambient vibration signal
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4.2 Free Vibration
The procedure described in the preceding section is used to generate a curve that should
represent the free vibration of the system with time on the x-axis and acceleration on the y-axis,

i.e., in time domain. This process is illustrated in Figure 4.4.

1PMIC one

Acceleration

Time

l MATLAB CODE l

150 T T T T T T T T T

Acceleration (Averages)
== -
=
?\
-"""ﬁ:}""”""'
==
.......g_.....

A FA S A R
0 100 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)

Figure 4.4 Extracting the free vibration of a system from a response of this system to

random excitation

The first point on this curve is (471, U1) where ATz is as previously defined, and Uz is
the average of all acceleration values resulting from the use of 471 (Steps 3 through 6 in the
procedure described in Section 4.1). The second point on the free vibration curve is (472, Uy)
where AT> =2 x ATy, and U2 is the average of all acceleration values resulting from the use of

51



T>. The third point on the free vibration curve is (473, Us) where A73 =3 x ATy and Uz is the
average of all acceleration values resulting from the use of 475 . This process is repeated m
times. The last point on the curve is (47w , Um) Where A7Tm = m x AT1, and Un is a single
acceleration value resulting from the use of AT .

In other words, the points on the free vibration curve are:

U+ Uy + Uz + Us+ s T U
First Point = (AT,, U= ——2 3 4 - )
U+ U+ Uz + U+ s U
Second Point = (AT, ,U, = L 2 > 4 - n)
U+ Uy + Uz + Ug+ i s U
Third Point = (AT, U= ———=2— 3 * - A
. un
mth Point = (AT, , Uy, = - )
WheT'e, ATZ =2 X ATl ) AT3 =3 X ATl ) AT4 =4 X ATI TTETRIIE ATm =m X ATl

It should be noted that the value of n is not the same for all points, but it decreases each
time a new point is computed till it reaches n =1 for the last (m™) point.

After extracting the free vibration (in the time domain) from the response of structure to
random excitation for each system configuration, a Fast Fourier Transform (FFT) is applied to

transform it to the frequency domain. This process is illustrated in Figure 4.5.
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Figure 4.5 Getting the Frequency Domain from the Time Domain using Fast Fourier
Transform (FFT)

52



4.3 Application

A physical steel model was constructed (discussed in details in Chapter 5) and different
configurations were used. After applying a random vibration and recording the corresponding
ambient vibration signals, the above approach is used to get the free vibration - in the time
domain - for the individual cases, then FFT is applied to obtain its representation in the
frequency domain for each case.

A numerical model is developed in ABAQUS (Abaqus/CAE 6.10-2, © Dassault Systems,
2010) to match each physical model configuration. The same approach is used on the ambient
vibration signal resulting from each model to get its free vibration signal (in time domain), then
FFT is applied to convert it into frequency domain.

By comparing the physical and numerical models frequency domain results, damage is

detected based on variations of the frequency contents in the frequency domain.

4.4 Matlab Codes
In order to numerically implement the computational procedure presented above, two
computer codes were developed. The first extracts the free vibration from the response of
structure to random excitation, and the second transforms the signal from the time domain to the

frequency domain.

4.4.1 Extraction of Free Vibration
In order to extract the free vibration from a response of structure to random excitation
using this approach, a Matlab code (MATLAB R2013a, The MathWorks, Inc.) was implemented
to be used in this approach. This code is listed in Appendix A.

4.4.2 Fast Fourier Transformation
In order to change the free vibration signal from the time domain to the frequency
domain, a second Matlab code (MATLAB R2013a, The MathWorks, Inc.) was implemented.
This code is listed in Appendix B.
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Chapter 5 - SOFTWARE FOR NUMERICAL ANALYSIS

ABAQUS (Abaqus/CAE 6.10-2, © Dassault Systems, 2010) was used to model the
physical model with different boundary condition configurations and respective loading
conditions, and to analyze the corresponding numerical model to obtain the ambient vibration
response for each case.

MATLAB (MATLAB R2013a, The MathWorks, Inc.) was used to numerically
implement the computational procedure presented in Chapter 4. Two computer codes were
developed: The first is to extract the free vibration signal from the ambient vibration signal, and
the second is to transform the signal from the time domain to the frequency domain.

5.1 Abaqus/CAE 6.10-2 Analysis

The following is a step-by-step procedure (24 steps) to numerically simulate each
physical model used in the experimental investigation. Accomplished tasks are shown in
Table 5.1.

Table 5.1 Accomplished tasks and corresponding steps.

Tasks Steps #
Creating model geometry 1t06
Defining material properties 7,8
Instances assembly 9
Creating analysis steps 10
Identifying supports, loads and accelerometer positions 11to0 13
Boundary conditions modeling 14
Applying Loads 15
Selecting points where vibrations need to be recorded and boundary 16, 17
conditions need to be specified
Creating the model mesh 18,19
Submitting and solving the model 20to 22
Output data and results 22t0 24
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Below is the detailed description of the 24 steps referred to in Table 5.1.
1. Start Abaqus/CAE and click on “With Standard/Explicit Model”, as shown in Figure 5.1.

B Start Session

Create Model Database
§08 With Standard/Explicit Model

»8 With CFD Model

Open Database "—_fl Run Script
3 = 3

M Stert Tutorial

Recent Files

1 /. /Case 5/APMSEC one Blast.cae
2 &/ JCase 4/1PMAC one Blast.cae
3 O/ JCase 14/2PMTC one Blast.cae
4 & fCase 14/2PMTC one.cae

5 C/PM Test.cae

The Abaqus Saftware iz a product of Dazsault Systémes Simulia Corp., Providence, Rl UEA.
Abaquz, the 308 lage, EIMULIA, and CATIA are krademarks or registered trademarkz of Dazzault
Eypstemes of its subsidiaries in the UE anddar other countrics,

E ’ S & Dazzault Systémes, 2010

S’MULIA Thiz product includes software that is Copgright P:] 1334 - 2006 by Jeroen van der Zijp.
See htkpetfwwwe simuliz.comproductsfproducts_legal_foxBT.heml For mare information.

Figure 5.1 Abaqus/CAE 6.10 Interface

2. In the model tree double click on the “Parts” node or right click on “Parts” and select
Create, as shown in Figure 5.2.
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Model | Results
QMDdeI Databasze EI : 28 Q‘

B 48 Models (1)

= Model-1
=i
--E Materials
- ﬁ!'._t,‘» Sections
@' Profiles
Dﬂ Assembly
ol Steps (1)

Figure 5.2 “Parts” node in Abaqus Model tree

3. Asshown in Figure 5.3, in the “Create Part” dialog box name the part and:
Select “3D” in “Modeling Space”

Select “Deformable” in “Type”

Select “Solid” in “Base Feature Shape”

Select “Extrusion” in “Base Feature Type”

Set Approximate size = 20

Click “Continue...”

Do 00 o

Mame: | Beam
Modeling Space

@ 3D ) 2D Planar () Axisymmetric

Type Options

@ Deformable

() Discrete rigid

) MNone available
) Analytical rigid

() Eulerian

Base Feature

Shape Type

® Solid
) Shell Revolution

_ Swee|
) Wire P

) Point

Approximate size: | 20

[ Continue... J [ Cancel

Figure 5.3 “Create Part” dialog box in Abaqus
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4. As shown in Figure 5.4, click on “Create Lines: Rectangle (4 Lines)” icon, and then

select a starting corner for the rectangle. Enter XY coordinates for the opposite corner of
the rectangle using Sl units, and then press Enter

Module: | Part H

Create Lines:

Rectangle
{D 4 Lines)

Figure 5.4 “Create Lines: Rectangle (4 Lines)” icon in Abaqus Module: Part

5. Asshown in Figure 5..5, select “Offset Curves”, select the entities to offset, click on
“Done”, enter the tube thickness value, and then press Enter then select “OK”

Figure 5.5 “Offset Curves” icon in Abaqus Module: Part

6. Click on “Done” then enter the Beam length value “End Condition, Depth”, As shown in
Figure 5.6. _ _
- Edit Base Bxtrusion =)

End Conditicn

Type:  Blind

Depth: I

Options

Note: Twist and draft cannot be specified together.
[ Include twist, pitch: |0

[] Include draft, angle: |0

Figure 5.6 “Edit Base Extrusion” dialog box in Abaqus
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7. Double click the “Materials” node in the model tree, as shown in Figure 5.7.

Model | Results
Mndel Databaze H : =N Q‘
= %3 Models (1)
= Model-1
g Parts (1)
- ﬁr_r} Sections
E' Profiles
Dﬁ Assembly
[+ o Steps (1)
- Bz Field Output Requests
EP History Output Requests

e

Figure 5.7 “Materials” node in Abaqus Model tree

a. Asshown in Figure 5.8, name the new material and give it a description
b. Click on the “Mechanical” tab, and then select “Elasticity”, and then “Elastic”

Mame: | Steel

Description: | Linear Isotropic Steel (SI units)
Edit...

Material Behaviors

General | Mechanical Thermal Other

ey ]

[ 3
Plasticity L4 Hyperelastic
Damage for Ductile Metals 4 Hyperfoam
Damage for Traction Separation Laws > Low Density Foam
Darnage for Fiber-Reinforced Compaosites Hypoelastic
Damage for Elastomers * Porous Elastic
Deformation Plasticity Viscoelastic
Damping -
Expansion
Brittle Cracking
Eos
Viscosity
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C.

@ —+o a

Define Material Properties in Sl units

Mame: | Steel

Description: | Linear Isotropic Steel (SI units)
Edit...

Material Behaviers

General Mechanical Thermal Other

Elastic

Type: | Isotropic EI

[] Use temperature-dependent data

"

MNumber of field variables: 0=

Moduli time scale (for viscoelasticity): | Long-term EI

[7] No compression

=] No tension
Data
Young's Poisson’s
Modulus Ratio

1 2109 0.25

Concel

Figure 5.8 “Edit Material” dialog boxes in Abaqus

Enter the values of Young’s Modulus and Poisson’s Ratio using SI units
Click on “General” tab —> Density

Define the material density ( 7800 Kg/m?)

Click “OK”
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8. Double click on the “Sections” node in the model tree, as shown in Figure 5.9.

Model | Results | Material Library |
QMndel Databaze E| : V Q‘

=] ﬁ Models (1)

= Model-1

[ Parts (1)

22 Materials (1)

%

@' Profiles

= ﬁ Assembly

ol Steps (1)

- B= Field Output Requests
% History Output Requests

Figure 5.9 “Sections” node in Abaqus Model tree

a. As shown in Figure 5.10, name the section “BeamProperties” and select “Solid” for
Category, and “Homogeneous” for Type, then click “Continue...”

Mame: | BearnProperties

Category — Type

© Solid

) Shell Generalized plane strain

® Beam Eulerian

Composite

7) Other

Continue... Cancel

Figure 5.10 “Create Section” dialog box in Abaqus

b. Select “Steel” for Material, as shown in Figure 5.11.
c. Click “OK”

Mame: BeamProperties

Type  Solid, Homogeneous

Material: | Steel EI

[7] Plane stress/strain thickness: |1

Figure 5.11 “Edit Section” dialog box in Abaqus
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d. Click on “Assign Section”, as shown in Figure 5.12.
Module: | Property EI

7z B

Assign
Section
"t

2
=

Figure 5.12 “Assign Section” icon in Abaqus Module: Property

F
i

e. Select the whole steel beam

f. Click “Done”
g. Select “BeamProperties” for Section, as shown in Figure 5.13.

u Edit Section Assignmen

Region

Region: (Picked)

Section

Section: | BearnProperties EI

Mote: List contains only sections
applicable to the selected regions.

Type: Seolid, Hormogeneous

Material: Steel

Figure 5.13 “Edit Section Assignment” dialog box in Abaqus

h. Click “OK”
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9. Expand the “Assembly” node in the Model tree and then double click on “Instances”, as

shown in Figure 5.14.
a. Select “Independent” for the instance type, as shown in Figure 5.15.

b. Click “OK”

Model | Results | Maternial Library |
£ Model Database H : LR

& Models (1) -
= Model-1
i Parts (1)
[U,/_E Materials (1)
=) ﬂ_r,‘» Sections (1)

BeamProperties

- B8 Profiles Instance Type

S ﬁ Assembly () Dependent (mesh on part)
5 @ Independent (mesh on instance);
- i Position Constraints
- Features Note: To change a Dependent instance's
& Sets mesh, you must edit its part's mesh.
-t Surfaces [7] Auto-offset from other instances

ﬁ Connector Assignments
Uﬁg Engineering Features

[ oK ] [ Apply ] [ Cancel ]

Figure 5.14 [Left] “Instance” node in Abaqus Model tree
Figure 5.15 [Right] “Create Instance” dialog box in Abaqus

10. Double click on the “Steps” node in the Model tree, as shown in Figure 5.16.

Model | Results

& Model Database EI : W

= 3 Models (1)
& Medel-1
i Parts (1)
E Materials (1)
= ﬂ_?; Sections (1)
BearnProperties
E‘ Profiles
= ﬁ Assembly
[+ @ Instances (1)
- i€ Position Constraints
# & Features (1)
b Sets
@? Surfaces
@ Connector Assignments
47 Engineering Features

Y )

- B Field Qutput Requests

*

Figure 5.16 “Steps” node in Abaqus Model tree
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a. Name the step, set the procedure type to “General” and select Dynamic, Explicit
b. Click “Continue...”, as shown in Figure 5.17.

Mame: | Ambient

Insert new step after

Procedure type: | General H

.
Dynamic, Temp-disp, Explicit
Geostatic

Heat transfer

Mass diffusion

Soils
Static, General
Static, Riks -

[Continue...] [ Cancel ]

Figure 5.17 “Create Step” dialog box in Abaqus

c. Asshown in Figure 5.18, give a step description
d. Choose a Time period in seconds (0.01 sec.)
e. Click “OK”
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Mame: Ambient

Type: Dynamic, Explicit

Basic | Incrementation | Mass scaling | Other |

Description: | Ambient Load

Time period:

O 0ff (This setting controls the inclusion of nonlinear effects

Nigeom: @ On of large displacements and affects subsequent steps.)

[] Include adiabatic heating effects

Figure 5.18 “Edit Step” dialog box in Abaqus
11. As shown in Figure 5.19, change the Module to “Assembly”

a. Click on “Translate Instance”

Module: | Assembly EI

Translate
Instance

("

Figure 5.19 “Translate Instance” icon in Abaqus Module: Assembly tool bar
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Select the instance to translate

Click “Done”

Select a starting point for the translation vector

Click on “Render Model: Wireframe” to show invisible nodes, as shown in

© oo o

Figure 5.20.
= | | =
%';_trgu Assembly defaults EI @ hd @ @ @
'le (D: Render Model:
Wireframe

Figure 5.20 “Render Model: Wireframe” icon in Abaqus main tool bar

f. Select an end point for the translation vector, (the purpose is to translate the instance
to the origin at a clear node so you can define the cutting planes easily in the
following step)

g. Click “OK”

12. In the menu bar select:
a. Tools, Datum, Point, and then Enter coordinates, as shown in Figure 5.21.

Tools  Plug-ins  Hel|

Query... Type
Reference Point... @ Point () Axis ) Plane ) CSYS
Attachment [
Method
Set .
Surface [

- Offset from point
Partition... Midway between 2 points

| Datum.. Offset rom 2 ediges

Display Group  » Enter parameter

View Cut - Project point on face/plane

CAD Interfaces  » Project point on edge/datum axis
Customize...

Options...

Figure 5.21 “Create Datum” path and dialog box in Abaqus
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b. Enter XYZ coordinates for the three points that will represent each plane where the
supports, accelerometer locations, loads ... etc. are expected to be applied

13. As shown in Figure 5.22, change the Module to “Assembly”
a. Click on “Partition Cell: Define Cutting Plane” icon
b. Select three points for “How do you want to specify the plane?”

Module: | Assembly EI Model: | Model-1 EI Step: Ambient E

Partition Cell:
Define Cutting Plane

- How do you want to specify the plane? [Point & NormaIJ [ 3 Points ] [Normal To Edge pS

:::::::

Figure 5.22 Created Portions on the numerical model at places where boundary conditions,
loads and accelerometer will be modeled

c. Select three points for each plane
d. Click “Create Partition” for each plane
e. Click “Done”
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14. Double click on the “BCs” node in the model tree, as shown in Figure 5.23.

@ Connector Sections
= F Fields

s Amplitudes

[ Loads

L

- [l Predefined Fields
" Remeshing Rules
Iy Sketches

-1 Annotations

I':'Iii Analysis

Figure 5.23 “Boundary Conditions” node in Abaqus Model tree

As shown in Figure 5.24, name the boundary condition “Pinned” or “Roller”
Select “Ambient” for Step

Select “Mechanical” for Category

Select “Displacement/Rotation” for Types for Selected Step

Click “Continue...”

® o0 oW

MName: |Pinned Mame: | Roller

Step: | Ambient E| Step: | Ambient E|

Procedure: Dynamic, Explicit Procedure: Dynamic, Explicit

Category Types for Selected Step Category Types for Selected Step

@ Mechanical | Symmetry/Antisymmetry/Encastre

Displacement/Rotation

Velocity/Angular velocity

Acceleration/Angular acceleration

@ Mechanical | Symmetry/Antisymmetry/Encastre
Displacement/Rotation
Velocity/Angular velocity

Acceleration/Angular acceleration
Connector displacement

Connector velocity

Connector displacement
Connector velocity

Connector acceleration Connectar acceleration

Continue... Cancel Continue... Cancel

Figure 5.24 “Create Boundary Condition” dialog box in Abaqus

f. Asshown in Figure 5.25, check U1, U2, and U3 and set them to 0 for “Pinned”
g. Check Ul and U2 displacements and set them to 0 for “Roller”
h. Click “OK”
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| Edit Boundary Condi ==

Mame: Pinned

- Boundary Condia e

Mame: Roller

Type:  Displacement/Rotation Type:  Displacement/Rotation
Stepr Ambient (Dynamic, Explicit)

Region: (Picked]

CSYS: (Global)
Distribution: | Uniform EI

Step: Ambient (Dynamic, Explicit)
Region: (Picked)

CSVS: (Global)

Distributicn: | Uniform E|

u1: 0 u1: 0

u2: 0 uz: q

U3 [ 3

] UR1: radians [ URL: radians
] UR2: radians [ UR2Z: radians
] URr3: radians ] UR3: radians

Amplitude: | (Instantaneous) E|

Note: The displacement boundary conditicn

Amplitude: | (Instantaneous) EI

Note: The displacement boundary condition
will be reapplied in subsequent steps, will be reapplied in subsequent steps.

Figure 5.25 “Edit Boundary Condition” dialog box in Abaqus

Figure 5.26 Numerical Model with modeled boundary conditions and the created partitions

15. Double click on the “Loads” node in the model tree, as shown in Figure 5.27.

“ﬂ] Constraints

@ Connector Sections
F Fields

% Amplitudes

m
=[S BCs (2)

Pinned

Roller

Figure 5.27 “Loads” node in the Abaqus Model tree

a. Asshown in Figure 5.28, name the load
b. Select “Ambient” for Step
c. Select “Mechanical” for Category
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d. Select “Pressure” for Types for Selected Step
e. Click “Continue...”

> @

Marme: | AmbientVibration
Step: | Ambient H
Procedure: Dynamic, Explicit
Category Types for Selected Step

@ Mechanical Concentrated force

Mament

© Acoustic Pressure |

Shell edge load
Surface traction
Body force

Line load
Gravity
Cennector force

Connector moment

Continue... Cancel

Figure 5.28 “Create Load” dialog box in Abaqus

As shown in Figure 5.29, select different instance surfaces to apply the load
Click “Done”

Select “Uniform” for Distribution

Select the Magnitude (1.0E+006 N/m?)

Select the Amplitude

Click “OK”

Mame:  AmbientVibration

Type:  Pressure

Step: Ambient (Dynamic, Explicit)
Region: (Picked)

Distribution: | Uniform H

Magnitude:

Amplitude: | (Instantaneous) H

Figure 5.29 “Edit Load” dialog box in Abaqus
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16. Expand the “Assembly” node in the model tree and double click on “Sets”, as shown in
Figure 5.30.

@ 3 Sections (1)

E‘ Profiles

= ﬁ Assembly

i [l Instances (1)

~fiif Position Constraints
& Features (26)

- Surfaces

@ Connector Assignments
Eaﬁ]g Engineering Features
ol Steps (2)

# B= Field Qutput Requests (1)

Figure 5.30 “Sets” node in Abaqus Model tree

As shown in Figure 5.31, name the Set
Click “Continue...”

Select a point at the measured location
Click “Done”

Repeat this step for each location

® a0 o

Name: |Right SpaVIV{ | Name: | Mid Span

Type: Geometry Type: Geometry

LContinue... ] [ Cancel ] [ Continue... ] [ Cancel

Figure 5.31 “Create Set” dialog box in Abaqus

17. Double click on the “History Output Requests” node in the model tree, as shown in
Figure 5.32.

i Sets (2)
@ Surfaces
@ Connector Assignments
ﬂ]g Engineering Features
ol Steps (2)
# B Field Qutput Requests (1)

H % History Output Requests (1}

I“j Time Points

I+l

I+l

Figure 5.32 “History Output Requests” node in Abaqus Model tree
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a. Asshown in Figure 5.33, name the History
b. Select “Ambient” for Step
c. Click “Continue...”

- = SQ - o

Mame: | TimeVsAcceleration

Step: | Ambient EI

Procedure: Dynamic, Explicit

[Continue...] [ Cancel ]

Figure 5.33 “Create History” dialog box in Abaqus

As shown in Figure 5.34, select “Set” for Domain, and then select one set from
previous “Sets” step

Select “Every n time increment” for Frequency, then Select n=1

Select “Select from list below”

Expand “Displacement/Velocity/Acceleration”

Expand “A, Translational and rotational accelerations”

Check “A2”

Click “OK”
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Mame: TimeVsAcceleration
Step: Ambient
Procedure: Dynamic, Explicit

Domain: Set EI ! | Right Span
Frequency: | Every n time increments E| m |1
Output Variables

@ Select from list below () Preselected defaults () All
A2

b [ Stresses

P[] 5trains

w [l Displacement/Velocity/Acceleration
P []U Translations and rotations

[ UT, Translations
[7] UR, Rotations

v

[T] ¥, Translaticnal and rotaticnal velocities
[T YT, Translational velocities
[] ¥R, Rotational velocities

() Edit variables

[C] UCOM, Equivalent rigid-body translational displacernent of the elerment set

P[] VCOM, Equivalent rigid-body translational velocity of the element set

w [H A, Translational and rotational accelerations
O] A1
V] A2
O] A3
O AR
O] AR2

1 | 1

[ Output for rebar

Output at shell, beamn, and layered section points:
@ Use defaults () Specify:

[] Include senser when available

Use global directions for vector-valued output

(] Apply filter: | Antialiasing

*

m

Cancel

Figure 5.34 “Edit History Output Request” dialog box in Abaqus
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18. Change the Module to “Mesh” and in the toolbox area click on the “Assign Element
Type” icon, as shown in Figure 5.35.
Module: | Mesh vl
flay [l
e,
Ll d
i1

Assign
Element Type

f: [=

=, I3

Figure 5.35 “Assign Element Type” icon in Abaqus Module: Mesh

a. Select the regions to be assigned element types
b. Click “Done”
c. Leave all default selections then click “OK”, as shown in Figure 5.36.
d. Click “Done”

Element Library Family
© Btandard © Bxpici
Acoustic

Geometric Order Cohesive
Continuum Shell

@ Linear () Quadratic

Hex | Wedge | Tet

[] Hybrid formulation Reduced integration [] Incompatible modes

Element Controls

Hourglass stiffness: @ Use default

Viscosity: @ Use default () Specify

Kinematic split: @ Average strain () Orthogonal () Centraid

Second-order accuracy: () Yes @ No

R P S 11

C3D8R: An &-node linear brick, reduced integration, hourglass control,

Note: To select an element shape for meshing,
select "Mesh-> Controls” from the main menu bar,

Figure 5.36 “Element Type” dialog box in Abaqus
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e. Click on “Seed Part Instance” icon, as shown in Figure 5.37.

Module: | Mesh EI

Figure 5.37 “Seed Part Instance” icon in Abaqus Module: Mesh tool bar

f. Choose an “Approximate global size”, as shown in Figure 5.38.
g. Click “OK”

¥ | Global Seeds
Sizing Controls

Approximate global size:

Curvature control

Maximum dewiation factor (0.0 < h/L < 1.0): |01
(Approximate number of elements per circle: 8)

Minimurn size factor (as a fraction of global size):

@ Use default (0.1) ) Specify (0.0 < min <10} 01

[ OK ] [ Apply ] [Defaultsl l Cancel ]

Figure 5.38 “Global Seeds” dialog box in Abaqus

h. Click on “Mesh Part Instance” icon, as shown in Figure 5.39.

Module: | Mesh EI

Figure 5.39 “Mesh Part Instance” icon in Abaqus Module: Mesh tool bar
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i. Click on “Yes” for OK to mesh the part instance?, as shown in Figure 5.40.

Figure 5.40 Meshing the part instance

19. As shown in Figure 5.41, in the menu bar select:
a. View, and then “Assembly Display Options ...”
b. Check the box “Render beam profile”
c. Click “OK”
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View Seed Mesh  Adaptivity
Save...
Pan F2
Rotate F3
Zoom In/Out F4
Box Zoom F5
Auto-Fit Fo
Cycle Views F7
Specify...

Parallel

Perspective

v Show Model Tree  Ctrl+T

Toolbars [ 3

View Options...
Graphics Options...
Light Opticns...
Image/Movie Options...

Assembly Display Options...

General | Datum | Mesh | Attribute | Instance |

Render Style
) Wireframe () Hidden @ Shaded
Geometry
Show edges in shaded render style
Show silhouette edges

[T] Highlight only visible entities

Face highlighting: | Stippling EI

[] Show reference representation
Mesh

Show: | Exterior edges E|

Show edges in shaded render style
[T] Highlight only visible entities

Idealizations

Scale factor: |1
[ Render shell thickness
actor: 1

[ Apply | [ Defautts |

[ Cancel ]

Figure 5.41 “Assembly Display Options...” path and dialog box in Abaqus

20. Double click on the “Job” node in the model tree, as shown in Figure 5.42.

a. Name the job

Click “Continue...”, as shown in Figure 5.43.

b.
c. Give a description to the job
d

Click “OK”, as shown in Figure 5.44.

[ Loads (1)
25 BCs (2)
: Pinned
: Roller
[ Predefined Fields
Remeshing Rules
I& Sketches
~A Annotations

ii Analysis

NN

%@ Adaptivity Processes

Il Co-executions

Name: | NumAnalysiq
Source: | Model EI

[ Continue... H Cancel ]

Figure 5.42 [Left] “Jobs” node in Abaqus Model tree
Figure 5.43 [Right] “Create Job” dialog box in Abaqus
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Mame: MumAnalysis
Model: Model-1
Analysis product Abaqus/Explicit

Description: | Mumerical Model Analysis

Submission | General | IMemon | Parallelization | Precision

lob Type

@ Full analysis

() Recover (Explicit)
i) Restart

Run Mode
@ Background 7 Queus:
Submit Time

@ Immediately

Figure 5.44 “Edit Job” dialog box in Abaqus

21. Expand the “Job” node in the model tree
a. Right click on the job name and select “Submit”, as shown in Figure 5.45.

Remeshing Rules | ‘

1Y Sketch
A A]bt i o Switch Context Ctrl+5pace
~3 Annctations
. Edit...
ii Analysis
=) B Copy...
Rename...
By Adaptivity  Delete.. Del
1 Write Input
Warning Data Check
b apelice
——— | The mnod ——
The ==t —ontinue
E}febSTt Manitor...
| obal
Global Results
1408 =1,
The nod
The job Export [ 3
F—

Figure 5.45 Submitting a job in Abaqus
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b. Right click on the job name and select “Monitor”, as shown in Figure 5.46.

Remeshing Rules

A Ib Sl'l:EtCHe Switch Contel| Job: NumAnalysis Status: Running
~fI Annotations
$% Anolysis Edit... e | — Total CPU Step Stable Kinetic Total
; Y Copy.. P Time Time Time Time Inc Energy Energy
& = A 1 3553 0.00100001 33 000100001  2.81359&-07 29.5262 -0.0006742i
| ename...
i 1 5331 0.00150028 51 000150028  2.81301e-07 39.4316 -0.0006481
-Ra Adaptivity | Delete. |} 7109 000200000 67 000200009 28077607 30.5639 0.00061082
EIN—  WobSlp 1 8290 0.00250018 84 000250018 2.80751e-07 485858 00016769
E Global ¢  DataCheck 1 10671 0.00300027 10 000300027 2.80751e-07 13.244 0.0028853. ~
Global = Sybmit < T | ’
1408 e=le N
%ﬂ: ?ggeml Log | Errors | | Warnings | Output | Data File | Message File | Status File
The job N
Job Humi Results Completed: Abaqus/Explicit Packager
Job Humi K =1
Job Humi———— )| | Started: Abaqus/Explicit S
Job Humi Export
=%,
Search Text
Text te find: [ [ Match case Il Next {f Previous

Figure 5.46 Monitoring a job analysis in Abaqus

c. Right click on the job name and select “Results”, as shown in Figure 5.47.

Rermeshing Rules ‘

a ;H%t:;:t:fes Switch Context Ctrl+5pace
i$ An Edit...
El Igl Copy...
>$ﬂ Adaptivity Processes Delete... Del
B 1 Write Input
Data Check

1

Global ==ed= haw

Q Global =eed= hawe Submit

1408 element= har B

The model databas AL
The job "Huminal- Monitar...

The job input fi.

Job Hundnalysis: Ll

Job Humdnalv=i=s: !

Job HumAnalv=is=s:
Job Humdnaly=sis « Export 3

Figure 5.47 “Results” path in Abaqus
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d. Click on “Plot Contours on Deformed Shape” to see the deformed shape cases due to

the applied ambient load, boundary conditions and the material properties, as shown
in Figure 5.48

Module: | Visualization E] QDB: | C:/Research/NumAnalysis.odb E' MO A4 > M| B @@

| Madel Analy=s
mAnalyx=.add  Abaqux/Explcil 6.10-2  Sal Jan D4 17:18:41 Cenlial Standad Time 2014

L, Ambiznl Load
2B47E: Step Time = E.DDDIE-DI

£33
Defaimatian Scale Faclar: +1.000=+00

Figure 5.48 One case of the Beam Deformed Shape

22. Expand the “Output Databases” node in the results tree
a. Expand the job name node
b. Expand the “History Output” node
c. Double click on “Spatial acceleration: A2 at Node 48 in NSET RIGHT SPAN”, as
shown in Figure 5.49.
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Model | Results

Session Data EI i

= Q Output Databases (1)
= E] MumAnalysis.odb
= Ef‘ History Qutput (12)

Artificial strain energy: ALLAE for Whole Model
Creep dissipation energy: ALLCD for Whole Model
Damage dissipation energy: ALLDMD for Whole Model
External work: ALLWEK for Whole Model
Frictional dissipation: ALLFD fer Whole Model
Internal energy: ALLIE for Whole Model
Kinetic energy: ALLKE for Whole Model
Plastic dissipation: ALLPD for Whole Model

Spatial acceleration: A2 at Node 48 in NSET RIGHT S5PAN

Strain energy: ALLSE for Whole Maodel
[ patial acceleration: A2 at Node 48 in MSET RIGHT SPAN |

Viscous dissipation: ALLVD for Whole Model

Figure 5.50 “Spatial acceleration: A2” at a specefic node in Abaqus Results tree

d. See the graph showing the Time vs. Acceleration at the selected node, as shown in
Figure 5.50.

|#1.E7]

Acceleration

-40. - -

b.0DD D.0D2 D.00A b.ODE b.DOE 0.010
Time

Figure 5.49 Time vs. Acceleration at a specific node (Time Domain)
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23. As shown in Figure 5.51, click on “XY Data Manager” icon
a. Click on “Edit” in the “XY Data Manager” window
b. Export the output file to a spread sheet file
c. The spread sheet will be used as an input file in Matlab

Maodule: | Visualization E| ODEB: | Ci/Research/MumAnalysis.odb E|

a4 4l

| B0

1]a[3] @ L%1.E1]
Lzia 2

&
20, =
B B,
i i L) i r v b
Ery, B i Edit XY Data ' =
- | a i
poE.|
=y, 5 Name: _temp_2
(Do 41 } F % ,
‘%‘J 3 N - x Y =n
* . Data Source 1 0 -41118.1
=5 ) . _ 2 2.62625E-007 -14376.9
E] E::: @ Current session () Current ODB: NumAnalysis.odb 3 5.35356-007 082742
N [— L
Al ;e 2 Spatial acceleration: A2 at Node 48 in NSET RIGHT SPA . B
o 6 131312E-006 -7792.04
=] 7 1.57575E-006 -27352.2
k> | XV Data 8 1.83837E-006 -16290.2
| Manager 9 2101E-006 -773.499
Ry Copy to ODB...
10 236362E-006 147207 -
L —
=y X | Time EI ¥: AccelerationEI
i B =
| o OK Cancel
(" ok ] [ Cancel |
Ll
-40.
o000 D.I;DZ D.I;Dd D.I‘:lDEt L.0DE D.I;iD

Time

AL N: 4B NSET RISHT SRaN

Figure 5.51 Path showing output file exportation to a spread sheet file to be used as an

input file in Matlab

24. Change the boundary conditions and the applied ambient loads and obtain the results for

each case.

Note: Applying ambient loads could be achieved in Abaqus/CAE in different pricedures

other than what was used here.
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5.2 MATLAB R2013a Analysis

The following is a step—by-—step procedure (5 steps) to obtain the free vibration in

frequency domain from a given structure ambient vibration response signal.

1. Start Matlab, as shown in Figure 5.52.

R2013a

R2013a (8.1.0.609)
64-bit (win64)

February 15, 2013
License Number: 194798

MATLAB

, Inc, Protected by U.S. and international

J MathWorks-

Figure 5.52 MATLAB R2013a Interface

a. As shown in Figure 5.53, import the Extracting Free Vibration Response from a
Response of Structure to Random Excitation Matlab Code to the “Current Folder” tree
Import the Fast Fourier Transformation Matlab Code to the “Current Folder” tree

c. Import the spread sheet data file for Time vs. Acceleration obtained from each
Physical Model case and from each Numerical Model Abaqus case to the “Current
Folder” tree
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o\ MATLAB 20120 TN T . e |
B 8 e 5 @) search Documentation p

@ ,:Ej = [Slrrries & El [z, New variable |+ Analyze Code 28] E @ Preferences @ % Community

[t} open variable + {7 Run and Time 5 Request Support
{7 Clear = | Clear -
FILE VARIABLE CODE SIMULINK ENVIRONMENT RESOURCES

«pEa » C b Users b ntadros b Documents b MATLAB -l o
[Of] Workspace

New New Open |[Z|Compare Import  Save
- Data

Simulink  Layout |5l Set Path Help
Seript Lbrary = -

0 Add-Ons =

Current Folder [GI Commend Window
Name 4 Fooes | MName = Value
(=] DEMO Xl
) FFTTadros.m
] Proglm

fl e v

Command History

-clear B
cle
- ProgL

FFITadros

clear

clec

Progl

FFITadros

clec

clear

Details
clc

-Progl
-~ FFITadros

~~clear
cle
%-- 1/4/2014 6:47 PM —-%

Select a file to view details

""" %$-- 1/5/2014 2:15 PM —-% -

Figure 5.53 MATLAB R2013a general command window

2. Double click on the spread sheet data file in the “Current Folder” tree
a. Select the two columns A & B, as shown in Figure 5.54 and its corresponding graph
in Figure 5.55)
Select “Matrix” in the “IMPORTED DATA” tab
Click on “v Import Selection” in the “IMPORT” tab
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Mai

Cell Array ImOrt | ort selected data into MATLAB Workspace
=T, Selection

[DEMOAsx x|
A H C D E F G H 1

1 0f -41118e+04] A
2 26263e-07| -1.4377e+04f
3 5.2525e-07| -9.8274e+03]
4 7.8787e-07 -38021f
5 1.0505e-06| -2.0336€+04f
6
7
8
9

13131e-06| -7.7920€+03|
15758e-06| -2.7352¢-+04f
18384e-06| -1.6290e+04)
2.1010e-06| -773.4990]
10 2.3636e-06| -1.4721e+04f
1 26505e-06| -9.6037¢+03f
12 2.9368e-06| 5.5207e+03|
13 3.2229e-06| -9.7821e+03|
14 3.5085e-06| 3.0468e-+03]
15 | 37938e-06| 3.5458e+03)
16 4.0788e-06| -7.3854¢+03]
17 4.3636e-06| 2.4491e+03]
18 4.6483e-06| -5.9960¢€+03|
19 4.9327e-06| -8.0040e+03|
20 5.2170e-06| -541.2330]
2 5.5012e-06| -8.0771e+03]
22 | 57852e-06| -5.1680e+03)
23 6.0692e-06| -3.9438¢+03]
24 6.3530e-06| -1.0711e+04f
25 6.6367e-06| -7.0306€+03|
26 6.9204e-06| -8.7072¢+03|
7

28

29

30

31

32

7.2033e-06| -1.1533e+04f
7.4874e-06| -8.5701e+03]
7.7708e-06| -1.2896e+04)
8.0542e-06 -1.4464¢+04f
8.3375e-06| -1.1695¢+04f
8.6207e-06| -1.1768e+04f
33 8.8033e-06| -8.9347e+03
34 9.1870e-06| -8.3850e+03|
35 9.4701e-06| -1.0276e+04|
36 | 9753le-06| -9.5127e+03)
37 1.0036e-05| -1.2109¢+04f
Sheetl

Figure 5.54 Importing spread sheet file to MATLAB environment

3000

Acceleration

Time

Figure 5.55 Typical graph showing Time vs. Acceleration for an ambient vibration

(Time Domain)
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3. Rename the imported spread sheet file in the “Workspace” tree to match the input file
name in the Extracting Free Vibration Response from a Response of Structure to
Random Excitation Matlab Code

4. Run the Extracting Free Vibration Response from a Response of Structure to Random
Excitation Matlab Code, as shown in Figure 5.56. Get the graph showing the free
vibration for each case with Time on the horizontal axis vs. Acceleration on the vertical
axis. See Figure 5.57 for an illustrative example

FILE VARIABLE
e 5= v C v Users b ntadros * Documents #

Current Folder Comrmand W
MName fx »
=] DEMO adsx
ﬂ FFTTadros.m
Open Ctrl+D
Hide Details
Run F9
Run Cenfiguraticns »
View Help F1
Show in Explorer
Create Zip File
Rename F2
Delete Delete
Compare Against »
Source Control »
Cut Ctrl+X
Copy Ctrl+C
Ctrl+V
¥ Indicate Files Net on Path

Figure 5.56 Running Extracting Free Vibration Response from a Response of Structure to

Random Excitation Matlab Code
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Figure 5.57 Free Vibration response extracted from response of structure to random

0 R

200 300 400 500 OO 7OO 80O 900 1000

Time (Equal Intervals)

excitation using the Matlab Code for a signal shown in Figure 5.55

5. Run the Fast Fourier Transformation Matlab Code to obtain the frequency domain for

each case, as shown in Figure 5.58 and Figure 5.59.

FILE VARIABLE
= E L v Gy Users » ntadros » Documents b
Current Folder UGN Command !
MName >> Pre
Jx 5>
Open Ctrl+D
Hide Details
Run Fa
Run Configurations »
View Help F1

Show in Explorer

Create Zip File
Renarmne F2

Delete Delete

Figure 5.58 Running the Fast Fourier Transformation Matlab Code
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Figure 5.59 Free vibration response in frequency domain for the signal

shown in Figure 5.57
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Chapter 6 - EXPERIMENTS WITH PHYSICAL AND
NUMERICAL MODELS

A physical model consisting of a 20 mm x 20 mm x 1670 mm long steel square tube with
1.65 mm average thickness and four supports (two hinges and two rollers) was used to validate
the used approach described in Chapter 4. The beam was tested under difference supports
conditions varying from a single- to three-span continuous configuration. Random excitation
was applied to the beam, and the dynamic response was measured by a MicroStrain®

accelerometer placed at various locations on the span.

A numerical model was constructed in ABAQUS (Abaqus/CAE 6.10-2, © Dassault
Systems, 2010) and the dynamic response (ambient vibration) was obtained from the finite

element model subjected to similar excitation as the physical model.

The dynamic response (acceleration as a function of time) resulting from the numerical
model was correlated and compared to the one from the physical model. Matlab codes described
in Chapter 5 were used for both responses (the first code was to extract the free vibration of the
system from the ambient vibration, and the other code was used to transfer the free vibration
from the time domain to the frequency domain). Comparisons were made between the different
span/support configurations indicating a change in frequency and other dynamic properties of the

structure.
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6.1 Test Set Up
Figure 6.1 shows the general configuration of the physical model and MicroStrain®
accelerometer, base station and laptop to record the random vibration signal for one of the test

cases. In order to obtain several intentional stiffness changes, seven structure configurations

were implemented with two accelerometer positions achieving a total of fourteen (14) cases.

Figure 6.1 General configuration for the physical model and MicroStrain® accelerometer,

base station and a laptop to record the random vibration signal

Figure 6.2 shows the numerical model in ABAQUS (Abaqus/CAE 6.10-2, © Dassault
Systems, 2010) that corresponds to the physical model for the given case.

Figure 6.2 General configuration for the numerical model in ABAQUS/CAE 6.10 that
corresponds to the physical model
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For each of the fourteen cases, two different actual random loads were applied on the
physical model, and a third simulated random load was applied to the corresponding numerical
model, resulting in a total of forty two (42) test combinations.

A typical vibration signal obtained from one of the physical model experiments using

MicroStrain® accelerometer is shown in Figure 6.3

[/ Microstrain Agile-Link™ - [Real-Time Graph] . =13
WA Fi= Edt View LlaunchPlugn  Help

HLOIOYE B PE] /ISP & .ﬁ FP@HR 22D

-8 X

Localhost O x | P Real-Time Graph |
e Conm s Realtime Streaming Graph  5end Fort: & Receivs Port: 6 Mode: 227
© hodezz? 3200
3000
2300
2600
2400
2200 ’ |M ‘i
2000
z 1 il 1 u \ J
S1800 I | l 1 |\W ‘\
= Ll
=
B1e00
=
H
1400
1200
1000
200 I I I I I I I I I I
30000 31000 32000 33000 34000 35000 36000 7000 38000 79000
Sweep Mumber
% Opened port 8 mecessfully -]
O Attempting to tinn on port &
Exror: Basest nse of &
g Attempt ort §
Esor: Basast ivad s bad response of b
P Attempting to 1t handle 8
3 Poxt & mumcesshilly closed

Figure 6.3 An ambient vibration signal from one of the physical model experiments
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A typical vibration signal obtained from one of the numerical model experiments in

Abagqus is shown in Figure 6.4
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Figure 6.4 An ambient vibration signal from one of the numerical model experiments

A label with the general form of xXPMyC was created for each case, where:

x refers to the accelerometer placement, 1 is when the accelerometer is placed in the outer span
and 2 is for middle span. For consistency, the accelerometer was always positioned at the
center of the span in which it is placed.

PM refers to the Physical Model.

y refers to the configuration arrangement, (seven configurations are explained below).

C refers to continuity of the beam.
Table 6.1 and Table 6.2 indicate schematic sketches for individual cases. Table 6.1

shows the seven configurations when the accelerometer was located on the outer span, and Table

6.2 shows these configurations when the accelerometer was located on the middle span.
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Table 6.1 Case identification for the different configurations when the accelerometer was

placed in the outer span

Case no. Label Configuration

Casel 1PM1C i &

Case 2 1PM2C &

Case3 1PM3C

Case 4 1PM4C

Case 5 1PM5C ®

Case 6 1PM6C

DU

Case 7 1PM7C A

Table 6.2 Case identification for the different configurations when the accelerometer was

Label Configuration

2PM1C i ) - ') A

2PM2C - -

2PM3C i ’ .m A
Case 11 2PMAC ~ - -
Case 12 2PM5C & o ® A
Case 13 2PM6C & & o B
Case 14 2PMTC S S
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6.2 Test Results
Tables 6.3 to 6.16 summarize physical and numerical experiments, (as presented in
Tables 6.1 and 6.2) and corresponding test results. These tables consist of two different actual
random loads applied on the physical model (shown in the tables as “Physical Model 1% Trial”
and “Physical Model 2" Trial”), and a third simulated random load applied to the corresponding
numerical model (shown in the tables as “Numerical Model”), resulting in a total of forty two
(42) test combinations. The peak magnitude frequency (in Hz) for each trial is determined. This
value is shown in the lower right corner of each trial test result table. These peak frequencies are
used as the basis for comparison of the different test results.
Test configurations and results are presented in the following pages. Tables 6.3 to 6.9 are
for cases 1 to 7, when the accelerometer was placed in the outer span. Tables 6.10 to 6.16 are for

cases 8 to 14, when the accelerometer was placed in the middle span.
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Table 6.3 Case 1 (IPM1C) Test Results

Case 1 (1PM1C)

Physical
Model 1%
Trial

Random
Vibration
40
Free H
Vibration :
L4
-SUD ﬂ;ﬂ 280 3!20 Agﬂ Elgﬂ Sgﬂ 730 ﬂgﬂ 930 1000
Time (Equal Intervals)
250
Frequency 0.0280
Domain : Hz
UD ﬂ,iﬂ1 U,LZ ﬂ,‘DB 0 Iﬂti 0 IﬂE D,Inﬁ D,:J? 0.08
Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

v i Fiea]

Free
Vibration

Acceleration (Averages)

-20

1} it fj\hlmﬂ\m'\i.ﬁm\. f\/\jmm o
! ‘ V3 Vwivmw :'Vwﬂ‘vv“ 'I?V\IW

100 200

300 400 500 600 OO 800 900 1000

Time (Equal Intervals)

Frequency

Domain

Magnitude

250

0.01

0.02

0.03 0.04 0.05 0.08 0.07

Frequency (Hz)

0.08

0.0250
Hz
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Numerical
Model

1PM1C Abagqus

20000
10000 |
o
Random 5 i PR LA PR CEE R IS T H L s 4 TEL
:
]
- - T
Vibration g
-30000
-40000
-50000
Time
3000
2000 {--
g 1000
=
g
Free £
B 0
. . 2
g
Vibration 3
&: -1000
2000 [-4-- i--
-3000 1 i 1 L L i L L L
100 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)
10
12
L T e ESGhut RGTRRTEE EEERRELL EELPRREEE EEPRRRRE
. |
Frequency E 0.0230
=] PSR PO 8 1 TR SO AU SR
. g
Domain I O 11 1L T O O O Hz
PR U 1 8T NN USRS SO N

i H H
0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)
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Table 6.4 Case 2 (IPM2C) Test Results

Case 2 (1PM2C)

Physical
Model 1%
Trial

Random
i,_
Vibration i
30
25
20
g 15
Free 2 ofl
Vibration g,
L4
5
ol
-150 ﬂ;n 230 3!20 Agﬂ Elgﬂ Bgﬂ 730 ﬂgﬂ 930 1000
Time (Equal Intervals)
300
Frequency o I i 0.0085
Domain ) , ( Hz
I
UD n,g1 n,‘nz ﬂ,‘DB 0 Inri I
Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

E—
H . H

]

Free

Vibration

Acceleration (Averages)

0 1

00 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)

Frequency

Domain

Magnitude

250 -

=S

n
S
S

o
=

100 1

B H—
p—

; ; ; H
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0.0080
Hz
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1PM2CAbaqus
Random £
]
. . g -
Vibration i
e Time
2000
1500
g 1000
Free H
A s 500--b---
Numerical | \/jpration £l
Model
-500
1000 100 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)
E,EXN‘ T T T T T T
.
Frequency r 0 1 N S 0.0040
Domain L1 i e Hz
05 N v\ RN AR A N |
Y .
UU 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08
Frequency (Hz)
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Table 6.5 Case 3 (LPM3C) Test Results

Case 3 (1PM3C)

Physical
Model 1%
Trial

Random r
Vibration i
60
Free H
Vibration :
75“0 130 ZaU 360 460 550 BéU TéU SéU 9&0 1000
Time (Equal Intervals)
300 T T T T T T T
Frequency g 1 0.0765
Domain - Hz
Uﬂ n,EW n,lnz ﬂ,‘ﬂ} n,‘m, 0 Ins n,‘ns 0 ‘OT 0.08
Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

[——
i . i

]

Free H
Vibration :
<
T s L S 4
60 1&0 ZLU 3;0 4;0 530 ESU 7;0 830 530 1000
Time (Equal Intervals)
300 T T T T T T T
Frequency g 0.0690
Domain : Hz

I 1
0.01 0.02

i i i i
0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

101




Numerical
Model

Random
Vibration

1PM3C Abaqus

Time

Free
Vibration

Acceleration (Averages)

40

~
=]

o

s
5]

N
s

&
2

I I 1 I | I
400 500 600 70O 8OO 900 1000
Time (Equal Intervals)

Frequency

Domain

Magnitude

I I i
0.03 0.04 0.05 0.06 007 0.08
Frequency (Hz)

0.0750
Hz
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Table 6.6 Case 4 (LPM4C) Test Results

Case 4 (1PMA4C)

Physical
Model 1%
Trial

T I.‘

|

||\ﬂﬂ||'

Random
i Febn Rl e i e e i bt o 0 bbb o gt g
Vibration
150 T T T T T T T
Free i
Vibration .
2 -50
100}
-1500 180 Zéﬂ 3li]ﬂ dgﬂ Egﬂ Sgﬂ 7éﬂ Béﬂ 930 1000
Time (Equal Intervals)
1400
1200
1000 |-
Frequency g o 0.0330
Domain = Hz

400

200 -

: ; i : !
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

[——
H . H

Swesp e e

Free 5 'iﬂﬁu’\jf vhvi?v v'tw w; Pl
Vibration S |
< H H
,150_.....‘3... ' ....... .
0 IS N S A S I
0 100 200 300 400 500 600 FOO 800 900 1000
Time (Equal Intervals)

1600

1400 ---

1200 ---

1000 -
Frequency 0.0330
Domain - Hz

: : :
0.02 0.03 0.04 0.05
Frequency (Hz)
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Numerical
Model

Random
Vibration

Acceleration

1PM4C Abaqus

Time

Free

Vibration

Acceleration (Av erages)

-150
0

i i
100 200

i | i i i i i
300 400 500 600 700 GOO 800 1000
Time (Equal Intervals)

Frequency

Domain

4000

3500

3000

2500

2000

Magnitude

1500

1000

500

| I
0 0.01 0.02 0.03 0.04

Frequency (Hz)

0.0420
Hz
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Table 6.7 Case 5 (LPM5C) Test Results

Case 5 (1PM5C)

Physical
Model 1%
Trial

Random i
Vibration i T LU ‘l'. M
140
Free H
Vibration :
7200 130 ziu 3!ilu 450 5;0 séu 7;0 siu 9;0 1000
Time (Equal Intervals)
1400 T T T
Frequency 0.0100
Domain : Hz
UU u.|01 U.LZ U.iU3 U.‘UA U.gﬁ U.‘US U.‘U? 0.08
Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

[——
H . H

]

Free :
Vibration : R S e
. U\/ MW‘ TR N N
i s S
20 1;0 2;0 3;0 4;0 SAU ESU 7;0 830 530 1000
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500 ({3

0.02 0.03 0.04 0.05 0.06 0.07 0.08

Frequency (Hz)
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Numerical
Model

Random

Vibration

Acceleration

-2000

1PM5C Abagus

Free

Vibration

Acceleration (Arerages)

@
=
=

@
2
5

=
S
5

o
S
5

o

200 |-4--pip -1

100 200 300 400 500 600 70O 8OO 900 1000
Time (Equal Intervals)

Frequency

Domain

Magnitude
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12000 -~
10000 -
B0 [-----{4-+

5000 -----{-

4000

2000

1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0.0085
Hz
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Table 6.8 Case 6 (LPM6C) Test Results

Case 6 (1PM6C)

Physical
Model 1%
Trial

Random
Vibration

200

Free H

Vibration <

71500 180 Z;U 3!i!U 4;0 5;0 630 7;0 8;0 9&0 1000

Time (Equal Intervals)

800
Frequency g 0.0090
Domain : Hz

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

Swesp e e

200

Free H
Vibration :
<[
71500 1;0 2;0 3;0 4;0 SAU SéU 7;0 830 930 1000
Time (Equal Intervals)
1200 T T T T T T
1000 i |
Frequency g 0.0100
Domain : Hz

I
0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)
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Numerical
Model

Random
Vibration

1PM6C Abaqus

mmmmm

i

|
|

F ‘ |
= TR R il “5 al: H B

)

Time

Free

Vibration

Acceleration (Av erages)

500

400 H

300

o
=1
5

=
5

(]
=]
S

P
S
2

0

i i
100 200

i | i i i i
300 400 500 600 700 GOO 800 1000
Time (Equal Intervals)

Frequency

Domain

Magnitude

8000

7000 -

6000 -+

5000

=
S
=1
S

3000

2000 -

1000

i i
0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0.0105
Hz
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Table 6.9 Case 7 (LPM7C) Test Results

Case 7 (1PM7C)

Physical
Model 1%
Trial

Random
Vibration
Free H
Vibration <
<<
0 100 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)
6000
5000
4000
Frequency 3 0.0675
= 3000
Domain : Hz

2000

1000

0 L i i i
0 0.01 0.02 0.03 0.04 0.05 0.08 0.07 0.08
Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

Swesp e e

Free
Vibration

Acceleration (Averages)

1500

1000

1
200

300 400 500 600 700 800 900 1000
Time (Equal Intervals)

Frequency

Domain

Magnitude

1
0.01

1
0.02

I I I I I
0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0.0680
Hz
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Numerical
Model

Random
Vibration

Acceleration

1PM7CAbaqus

Lok

Free
Vibration

Acceleration (Arerages)

100 200 300

400 500 600 70O 8OO 900
Time (Equal Intervals)

1000

Frequency

Domain

Magnitude

6000

5000

4000 -~

3000

2000

1000 f---

i 4
0.01 0.02 0.03 0.04 0.05 0.06 0.07

Frequency (Hz)

0.0690
Hz
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Table 6.10 Case 8 (2PM1C) Test Results

Case 8 (2PM1C)

Physical
Model 1%
Trial

Random
Vibration | il U ik
40 T T T T T
mﬂw -
20
i‘f’ 10+
Free z
c 0F
Vibration % of
q-zu—
-wﬂ 160 Zéﬂ 3[‘]0 450 Egﬂ Béﬂ Téﬂ aén 930 1000
Time (Equal Intervals)
Frequency g 0.0310
Domain : Hz

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

]

T
&
Free i
5
E
Vibration 3
S
0 100 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)
700
600
500
Frequency g 40 0.0310
=
:
. = 300
Domain Hz
200
100
0 i i
0.03 0.04 0.05 0.06 0.07

0.01 0.02

Frequency (Hz)
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Numerical
Model

Random

Vibration

Acceleration

2PM1CAbaqus

Time

Free
Vibration

Acceleration (Averages)

4000

3000

2000 H-H-He k- -1

1000 H-H-HH- 133

4000 Hi-4- -1

2000 [ - 4L

-3000

0 100 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)

Frequency

Domain

Magnitude

i i i i
0 0.01 0.02 003 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0.0270
Hz
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Table 6.11 Case 9 (2PM2C) Test Results

Case 9 (2PM2C)

Random
Vibration I
150 S A S R R A R
100 H----- - - - -
R R S S R R
Free é wa\/ g Wf\ﬁ, [l i VMJIV"V e i
Physical | Vibration S LS S O O O O O 0
Model 1% ol
Trlal -1500 1&0 2&0 350 4&0 Séﬂ Séﬂ 750 ﬂéﬂ 950 1000
Time (Equal Intervals)
700

0.0600
Hz

Frequency

Magnitude

Domain

i i i i i i i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

[——
i .

Swesp e e

Free :
Vibration :
s
7EDU 1;0 2;0 3;0 4;0 530 ESU 7;0 EAU 530 1000
Time (Equal Intervals)
Frequency g 0.0610
Domain : Hz

o i i i i i i

1
0 001 002 003 004 005 006 007 008
Frequency (Hz)
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Numerical
Model

Random
Vibration

2PM2C Abaqus

Free
Vibration

Acceleration (Averages)

B e e e S A I I R

3000

2000 {44

1000 [t -1

-1000 1

-2000 (-

O S N N I I NN NN N
0 100 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)

Frequency

Domain

Magnitude
-

+ : ; H
0 0.01 0.02 003 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0.0440
Hz
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Table 6.12 Case 10 (2PM3C) Test Results

Case 10 (2PM3C)

Random
Vibration I 2
150 T T
L e 4
Free 1t S 1
Physical | Vibration £ opli WMW‘ MMMW”WWJWi“'w*y:*ﬁ,“uk

Model 1% -5“

100 | 1 | | i | | i i
Trlal 0 100 200 300 400 500 600 70O 800 900 1000
Time (Equal Intervals)
600 T T T T T T T

o
=
2

=
=1
2

0.0760
Hz

Frequency

Magnitude
w
g
5

Domain

[
=1
2

i i i i i i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0 i
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Physical
Model 2"
Trial

Random
Vibration

[——
H . H

Swesp e e

Free H
Vibration A [ T e 1
RTINS
B T71 O S U U ARG SN UL U S A .
VQDOU 1&0 ZLU 3;0 4;0 530 ESU 7;0 EAU 530 1000
Time (Equal Intervals)
Frequency 2 0.0770
Domain : Hz

o i i i i i i i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)
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Numerical
Model

Random

Vibration

Acceleration

2PM3C Abaqus

Free
Vibration

Acceleration (Averages)

4000

3000

1000 [t -1

-1000 1

-2000 (-

-3000

2000 {44

0

I 1 I I I I I I I
100 200 300 400 500 600 700 800 900 1000

Time (Equal Intervals)

Frequency

Domain

Magnitude
-

i i i
0.01 0.02 003 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0.0440
Hz
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Table 6.13 Case 11 (2PM4C) Test Results

Case 11 (2PM4C)

Physical
Model 1%
Trial

Random
Vibration

| \H\Hwﬂ

0 1
0 0.01 0.02 003 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

4000 T T T
S R O
P 6 S G O
Free R AT e R
L N (AR L ;
Vibration 2 f§” g U\ wi v
= e el BAAn R
-2000 ‘: : \‘r ,,,,,
-jumﬂ 130 2én Sgﬂ 430 Sgﬂ Séﬂ 750 ﬂéﬂ 9&0 1000
Time (Equal Intervals)
. 10
Frequency 0.0330
Domain Hz
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Physical
Model 2"
Trial

Random
Vibration

[——
H .

Swesp e e

Free
Vibration

Acceleration (Averages)

200

150

100 200 300 400 500 €00 700 800 900 1000

Time (Equal Intervals)

Frequency

Domain

Magnitude

1200

i i
0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

0.0330
Hz
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Numerical
Model

Random
Vibration

Acceleration

2PMA4C Abagus

Time

Free

Vibration

L

150 f--

100 {}- |

Acceleration (Averages)

100 Al SNSNSUUS SRR SN SO S S

-150

1
0 100 200 300 400 500 600 700 800 900 1000
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Frequency

Domain

6000 T T T

5000

4000

3000

Magnitude

2000

1000

0 001 002 003 004 005 006 007 008
Frequency (Hz)

0.0420
Hz
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Table 6.14 Case 12 (2PM5C) Test Results

Case 12 (2PM5C)

Random . W

Vibration Al

Free

Acceleration (Averages)

Physical | Vibration
Model 1*
Trial

0 100 200 300 400 500 600 700 800 900 1000
Time (Equal Intervals)

1400

1200

1000

@
=3
a

0.0080
Hz

Frequency

Magnitude

@
=1
2

Domain

=
=3
2

200 -

0 0.01 0.02 003 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)
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Physical
Model 2"
Trial

Random
Vibration

[——
H . i

]

Free H
Vibration :
< i
7600 1&0 2&0 350 4&0 SAU EéU 750 EéU BéU 1000
Time (Equal Intervals)
2500
2000
Frequency g™ 0.0080
Domain = o Hz

500 el -

| i i |
0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)

i
001 0.2
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2PM5C Abaqus
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&
8
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Table 6.15 Case 13 (2PM6C) Test Results

Case 13 (2PM6C)

Physical
Model 1%
Trial

Random
Vibration

Free
Vibration

RN I S S S SN SN
0 100 200 300 400 500 600 700 800 800 1000
Time (Equal Intervals)

Frequency

Domain

Magnitude

1500

QL] - RPN JSNNS SRS MRS SRS S S

500 [{--=- - femeeeees freneee T St SeC T S B

i i i | i i
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Frequency (Hz)
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Hz
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Physical
Model 2"
Trial

Random
Vibration

[——
H . i

]

Free
Vibration

Acceleration (Averages)

I 1
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300 400 500 600 700 800
Time (Equal Intervals)

Frequency
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Numerical
Model

Random
Vibration

Acceleration

2PM6C Abaqus
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Vibration

Acceleration (Averages)
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Table 6.16 Case 14 (2PM7C) Test Results

Case 14 (2PMT7C)

Random
Vibration P
Free

Acceleration (Averages)

Physical | Vibration
Model 1%

Trial 0l

i i i i i i i i i
100 200 300 400 500 600 700 800 800 1000
Time (Equal Intervals)

4000 T T T
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2500
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=
g
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i } ¢ i i 1
0 001 002 003 004 005 006 007 008
Frequency (Hz)
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6.3 Results Summary

Table 6.17 and Figure 6.3 summarize all test results based on the peak frequency

obtained for each case.

Table 6.17 All cases and trials results

Results Summary
Case no. Label PM1 PM2 NM
Case 1 1PM1C 0.028 0.025 0.023
Case 2 1PM2C 0.0085 0.008 0.004
Case 3 1PM3C 0.0765 0.069 0.075
Case 4 1PM4C 0.033 0.033 0.042
Case 5 1PM5C 0.01 0.0095 0.0085
Case 6 1PM6C 0.009 0.01 0.0105
Case 7 1PM7C 0.0675 0.068 0.069
Case 8 2PM1C 0.031 0.031 0.027
Case 9 2PM2C 0.06 0.061 0.044
Case 10 2PM3C 0.076 0.077 0.044
Case 11 2PM4C 0.033 0.033 0.042
Case 12 2PM5C 0.008 0.008 0.003
Case 13 2PM6C 0.005 0.006 0.003
Case 14 2PM7C 0.069 0.069 0.043
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Chapter 7 - CONCLUSIONS AND SUGGESTED FUTURE
RESEARCH

7.1 Conclusions

Based on the obtained test results, the peak magnitude frequency changes when the
structure stiffness is altered by choosing different types of structure configurations, as
demonstrated when two different actual random loads that were applied on the physical model,
and a third simulated random load was applied to the corresponding numerical model. This
resulted in a total of forty two test combinations.

For all the fourteen physical model cases (two trials for each case), the peak frequency
had nearly the same value for the two trials. For a majority of the fourteen numerical model
cases (one trial for each case), the peak frequency had a value close to that of the corresponding
physical model case, with the exception of Cases 9, 10, and 14 for which these results were not
so close.

In general, any difference in the peak frequency values between the physical and the
corresponding numerical models could be due to the ideality of the numerical model compared to
the physical model; the physical model had slight thickness variation along the tube cross
sections, and the supports were not pure hinge or roller supports as in the numerical model. In
addition, the values of material properties used in the numerical model could differ from the
actual material properties of the physical model, such as the steel modulus of elasticity and the

Poison’s ratio.

Based on that, we conclude the following:

¢+ The approach used is valid.

% Free vibration is embedded in any ambient vibration for the same system.

% The free vibration signal extracted from an ambient vibration signal by the approach
used in this study is a correct representation of the system free vibration.

+¢+ Structure frequency and stiffness are dependent characteristics.

% Changes in the structure stiffness are reflected by a change in the dominant frequency.

% Ambient vibration can be a useful tool to detect structure damage.
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7.2 Suggested Future Research
The following are suggested areas for future research:
The physical model used in this research is simple. It had a small number of degrees of
freedom and consisted of a steel tube with square cross section. The main goal was to
verify the validity of the approach. Further research is needed on structures with a larger
number of degrees of freedom and damage locations. This could be obtained by a more
complex physical model with more degrees of freedom. In addition to changing the
system span/support configurations, a possible further investigation could include saw
cuts of various depths in the tube at different locations to simulate various levels of
damage and loss of continuity.
With only one accelerometer, it is not possible to identify the location of the symmetrical
damage. For two cases in which the damage (removal of support) was at symmetrical
locations from the accelerometer position — namely Cases 12 and 13 — the structure peak
frequency was nearly identical for both cases. Further research is needed for structures
with damage in symmetrical locations relative to the accelerometer position.
In order to obtain accurate results for large physical models and full-size structures,
several sensors should be placed at different locations. This will allow for better
gathering and correlation of the collected data to obtain the corresponding signals.
Further research is needed for the ideal accelerometer positions.
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Appendix A - Extraction of Free Vibration Matlab Code

Extracting Free Vibration Response from a Response of Structure to Random Excitation
Matlab Code is listed below:

$INITIAL DATA PROVIDED BY USER

realTlimit=1000; %$in sec., the maximum period of the expected free vibration
frequency

theTimeStep=5; %in sec., real time step we choose to be added to previous
time

timeIncrement=1; %in sec., the time increment in the data file (time starts
from 0 and increases by this increment to the end

a=(1/10)*max(D(:,2));%the initial condition set as 1/10 of max

$END OF INITIAL DATA

mystep=theTimeStep/timeIncrement; S%$number of increments within the time step
we chose

Tlimit=realTlimit/timeIncrement; *number of increments within the time limit
TM=mystep; %this is each step (in number of increments)

myData (1:Tlimit/mystep,1:2)=0.0;

%$size (myData)
%disp ('beginning"')

while TM<=Tlimit
disp('first while')

m=1;%this is number of row in the data, used to read the corresponding second
column that is value

n=0;%this is number of values found at the given TM for the given initial
condition a

data=0; $summation of values with TM and initial a

Flag=false;%checking if we have already set the AD flag

AD=false;%flag to know if ascending or descending at the inital point of a

while m+TM<length(D(:,1))
%disp (' cycle second while')
if Flag==false
%disp('inside Falg faklse')
if D(m,2)==a
data=data+D (m+TM, 2) ;
n=n+1;
%disp('Flag False')
if D(m+1,2)>D(m,2)
AD=true;
else
AD=false;
end
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Flag=true;
elseif D(m+1l,2)==a
data=D (m+1+TM, 2) ;
n=n+1;
%disp('Flag False')
if D(m+1,2)>D(m,2)
AD=true;
else
AD=false;
end
Flag=true;
elseif D(m,2)<a && a<D(m+1,2)
ratio=(a-D(m,2))/(D(m+1l,2)-D(m,2));
data=data+D (m+TM, 2) +ratio* (D (m+1+TM, 2) =D (m+TM, 2) ) ;
n=n+1;
%$if D(m+1,2)>D(m,2)
AD=true;

% AD=false;

Flag=true;
elseif D(m,2)>a && a>D(m+1,2)
ratio=(a-D(m+1,2))/(D(m+1,2)-D(m,2));
data=data+D (m+TM, 2) +ratio* (D (m+1+TM, 2) -D (m+TM, 2) ) ;
n=n+1;
%$if D(m+1,2)>D(m,2)
% AD=true;
% else
AD=false;
% end
Flag=true;
end

end
if Flag==true
%disp('inside TRUE Flag')
if AD==true
if D(m+1)>D (m)
if D(m,2)==a
data=data+D (m+TM, 2) ;
n=n+1;
%disp ('"AD True')
elseif D(m+1l,2)==a
data=data+D (m+1+TM, 2) ;
n=n+1;
%disp ('"AD True')
elseif (D(m,2)<a) && (a<D(m+1,2))
ratio=(a-D(m,2))/(D(m+1l,2)-D(m,2));
data=data+D (m+TM, 2) +ratio* (D (m+1+TM, 2) —
D(m+TM, 2)) ;
n=n+1;
%disp ('"AD True')
end
end
elseif AD==false
if D(m+1)<D (m)
if D(m,2)==a
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D(m,2));

data=data+D (m+TM, 2) ;
n=n+1;
sdisp ('AD False')
elseif D(m+l,2)==a
data=data+D (m+1+TM, 2) ;
n=n+1;
%disp ('AD False')

elseif D(m+l,2)<a && a<D(m,2)

ratio=(a-D(m,2))/ (D (m+l,2)-

data=data+D (m+TM, 2) +ratio* (D (m+1+TM, 2) =D (m+TM, 2) ) ;

n=n+1;
%disp ('AD False')
end

end

end

datapoint=data/n;

myData (TM/mystep, 1) =
myData (TM/mystep, 2) =

TM=TM+mystep;
%TM
end
%size (myData)
smyData

plot (myData(:,1),myData(:,2));

$TM=nstep*step
xlabel ('Time (Equal Intervals)')
ylabel ('Acceleration (Averages)'
grid

TM*timeIncrement;
datapoint;

)
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Appendix B - FFT Matlab Code

Fast Fourier Transformation Matlab Code is listed below:

o

Fast Fourier Transform Spectrum.m
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Here is the PROGRAM in MATLAB

disp(' *** KSU Civil Engineerin Department,Nader N Tadros,P.E. *** ')
disp('—=—=———-" - ")

disp('This MATLAB code trasfers time domain of a signal to frequency domain
by using FFT'")

diSp(' ")

[

myData = myData; % The file name in Workspace
t=myData(:,1);

s=myData(:,2);

Ts=mean (diff (t));

fs=1/Ts;

L=length(s);

NFFT=2"nextpow2 (L) ; % Next power of 2 from length of y
M=L+1;

y=fft (s,NFFT);

mag=abs (y) ;

f=fs/2*1linspace (0,1,NFFT/2+1) ;

r=real (y);

a=r."2;

i=imag(y);

b=1.72;

c=a+b;

Energy=sum(c(:)) % Energy of signal

figure;

plot (£(1:M/2),mag(1:M/2));

xlabel ('Frequency (Hz)")

ylabel ('Magnitude')

grid

fid=fopen('mag result.txt','w');
fprintf (fid, '$6.3f\r\n',mag(1:M/2));
status=fclose (fid) ;
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