Zhao, XiWei, HuiWu, YanLin, Chii D.2017-12-122017-12-122017-04-10http://hdl.handle.net/2097/38502Citation: Zhao, X., Wei, H., Wu, Y., & Lin, C. D. (2017). Phase-retrieval algorithm for the characterization of broadband single attosecond pulses. Physical Review A, 95(4), 8. doi:10.1103/PhysRevA.95.043407Recent progress in high-order harmonic generation with few-cycle mid-infrared wavelength lasers has pushed light pulses into the water-window region and beyond. These pulses have the bandwidth to support single attosecond pulses down to a few tens of attoseconds. However, the present available techniques for attosecond pulse measurement are not applicable to such pulses. Here we report a phase-retrieval method using the standard photoelectron streaking technique where an attosecond pulse is converted into its electron replica through photoionization of atoms in the presence of a time-delayed infrared laser. The iterative algorithm allows accurate reconstruction of the spectral phase of light pulses, from the extreme-ultraviolet (XUV) to soft x-rays, with pulse durations from hundreds down to a few tens of attoseconds. At the same time, the streaking laser fields, including short pulses that span a few octaves, can also be accurately retrieved. Such well-characterized single attosecond pulses in the XUV to the soft-x-ray region are required for time-resolved probing of inner-shell electronic dynamics of matter at their own timescale of a few tens of attoseconds.©2017 American Physical Society. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).High-Harmonic-GenerationRay Source DrivenWater WindowLasersStreakingAmplifierPhase-retrieval algorithm for the characterization of broadband single attosecond pulsesArticle