Amsler, Christopher2012-04-302012-04-302012-04-30http://hdl.handle.net/2097/13742Power consumption has become a large concern in many systems including portable electronics and supercomputers. Creating efficient hardware that can do more computation with less power is highly desirable. This project proposes a possible avenue to complete this goal by hardware accelerating a conjugate gradient solve using a Field Programmable Gate Array (FPGA). This method uses three basic operations frequently: dot product, weighted vector addition, and sparse matrix vector multiply. Each operation was accelerated on the FPGA. A power monitor was also implemented to measure the power consumption of the FPGA during each operation with several different implementations. Results showed that a decrease in time can be achieved with the dot product being hardware accelerated in relation to a software only approach. However, the more memory intensive operations were slowed using the current architecture for hardware acceleration.en-US© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/Field programmable gate arrayPowerHigh performance computingHardware accelerationThe effects of hardware acceleration on power usage in basic high-performance computingThesisComputer Engineering (0464)Electrical Engineering (0544)