Beswick, Matthew2009-03-242009-03-242009-03-24http://hdl.handle.net/2097/1303Let G be a connected and simply connected semisimple algebraic group over an algebraically closed field of positive prime characteristic. Let L([lambda]) and [upside-down triangle]([lambda]) be the simple and induced finite dimensional rational G-modules with p-singular dominant highest weight [lambda]. In this thesis, the concept of Weyl filtration dimension of a finite dimensional rational G-module is studied for some highest weight modules with p-singular highest weights inside the p2-alcove when G is of type B[subscript]2. In chapter 4, intertwining morphisms, a diagonal G-module morphism and tilting modules are used to compute the Weyl filtration dimension of L([lambda]) with [lambda] p-singular and inside the p[superscript]2-alcove. It is shown that the Weyl filtration dimension of L([lambda]) coincides with the Weyl filtration dimension of [upside-down triangle]([lambda]) for almost all (all but one of the 6 facet types) p-singular weights inside the p[superscript]2-alcove. In chapter 5 we study some submodule structures of Weyl (and there translations), Vogan, and tilting modules with both p-regular and p-singular highest weights. Most results are for the p[superscript]2 -alcove only although some concepts used are alcove independent.en-US© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/MathematicsAlgebraRepresentation theoryAlgebraic groupsWEYL filtration dimension and submodule structures for B2DissertationMathematics (0405)