Bahirwani, Vikas2008-10-152008-10-152008-10-15http://hdl.handle.net/2097/992An ontology can be seen as an explicit description of the concepts and relationships that exist in a domain. In this thesis, we address the problem of building an interests' ontology and using the same to construct features for predicting both potential friendship relations between users in the social network Live Journal, and users' interests. Previous work has shown that the accuracy of predicting friendship links in this network is very low if simply interests common to two users are used as features and no network graph features are considered. Thus, our goal is to organize users' interests into an ontology (specifically, a concept hierarchy) and to use the semantics captured by this ontology to improve the performance of learning algorithms at the task of predicting if two users can be friends. To achieve this goal, we have designed and implemented a hybrid clustering algorithm, which combines hierarchical agglomerative and divisive clustering paradigms, and automatically builds the interests' ontology. We have explored the use of this ontology to construct interest-based features and shown that the resulting features improve the performance of various classifiers for predicting friendships in the Live Journal social network. We have also shown that using the interests' ontology, one can address the problem of predicting the interests of Live Journal users, a task that in absence of the ontology is not feasible otherwise as there is an overwhelming number of interests.en-US© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/Social network analysisInterest ontologyClusteringMachine learningFriendship link predictionInterest predictionOntology engineering and feature construction for predicting friendship links and users interests in the Live Journal social networkThesisComputer Science (0984)