Betz, Amy RachelJenkins, JamesKim, Chang-JinAttinger, Daniel2013-07-092013-07-092013-02-01http://hdl.handle.net/2097/15961With recent advances in micro- and nanofabrication, superhydrophilic and superhydrophobic surfaces have been developed. The statics and dynamics of fluids on these surfaces have been well characterized. However, few investigations have been made into the potential of these surfaces to control and enhance other transport phenomena. In this article, we characterize pool boiling on surfaces with wettabilities varied from superhydrophobic to superhydrophilic, and provide nucleation measurements. The most interesting result of our measurements is that the largest heat transfer coefficients are reached not on surfaces with spatially uniform wettability, but on biphilic surfaces, which juxtapose hydrophilic and hydrophobic regions. We develop an analytical model that describes how biphilic surfaces effectively manage the vapor and liquid transport, delaying critical heat flux and maximizing the heat transfer coefficient. Finally, we manufacture and test the first superbiphilic surfaces (juxtaposing superhydrophobic and superhydrophilic regions), which show exceptional performance in pool boiling, combining high critical heat fluxes over 100 W/cm² with very high heat transfer coefficients, over 100 kW/m²K.en-USThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).https://rightsstatements.org/page/InC/1.0/?language=enSuperhydrophobicSuperhydrophilicBiphilicEnhanced heat transferPool boilingNucleationBoiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfacesArticle (author version)