Aburamyah, Ghder2018-11-162018-11-162018-12-01http://hdl.handle.net/2097/39312When studying geometrical objects less regular than ordinary ones, fractal analysis becomes a valuable tool. Over the last 40 years, this small branch of mathematics has developed extensively. Fractals can be defined as those sets which have non-integer Hausdorff or Minkowski dimension. In this report, we introduce certain definitions of fractal dimensions, which can be used to measure a set’s fractal degree. We introduce Minkowski dimension and Hausdorff dimension and explore some examples where they coincide, as well as other examples where they do not.en-US© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/FractalDimensionFractaldimensionFractalDimensionHausdorff dimensionMinkowski dimensionIntroduction to fractal dimensionReport