Khatiwada, RajuHettiarachchi, Ganga M.Mengel, David B.Fei, Mingwei2013-06-052013-06-052013-06-05http://hdl.handle.net/2097/15885Citation: Khatiwada, Raju, Ganga M. Hettiarachchi, David B. Mengel, and Mingwei Fei. “Speciation of Phosphorus in a Fertilized, Reduced-Till Soil System: In-Field Treatment Incubation Study.” Soil Science Society of America Journal 76, no. 6 (2012): 2006–18. https://doi.org/10.2136/sssaj2011.0299.Phosphorus management in reduced-tillage systems is a great concern for farmers. Conclusive positive results of deep-banding P fertilizers compared with broadcast application and the chemistry of reduced-tillage systems remain unclear. Knowledge of the dominant solid P species present in soil following application of P fertilizers and the resulting potential P availability would help us understand and efficiently manage P in reduced-tillage systems. The objective of this research was to study the influence of placement (broadcast vs. deep-band P), fertilizer source (granular vs. liquid P), and time on the reaction products of P under field conditions. Changes in soil pH, resin-extractable P, total P, and speciation of P were determined at different distances from the point of fertilizer application at 5 wk and 6 mo after P application at a rate of 75 kg ha−1 to a soil system that was under long-term reduced tillage. Resin-extractable P was lower for broadcast treatments compared with deep-band treatments for both time periods. Resin-extractable P was greater in the liquid P-treated soils than in the granular P-treated soils. Speciation results showed that granular P fertilizers tended to form Fe–P-like forms, whereas liquid forms remained in adsorbed P-like forms in the soil 5 wk after application; moreover, speciation results showed granular P fertilizers precipitated less when deep-banded. During the 6-mo period following application, reaction products of broadcast granular, broadcast liquid, and deep-band granular fertilizers transformed to Ca-phosphate or mixtures of Ca-, Fe- and adsorbed-phosphate-like forms, whereas deep-band liquid P remained as mainly adsorbed P-like forms. Deep-banding of P would most likely provide a solution that is both agronomically and environmentally efficient for reduced-till farmers.en-USPermission to archive granted by the Soil Science Society of America, May 20, 2013.This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).PhosphorusReduced-till soil systemsFertilizerSpeciation of phosphorus in a fertilized, reduced-till soil system: in-field treatment incubation studyText