Alhaadi, Marai2013-04-182013-04-182013-05-01http://hdl.handle.net/2097/15527Antibiotics are substances produced by bacteria or fungi that are inhibitory to other bacteria and fungi. Antimicrobial compounds include substances that are naturally produced, chemically modified or completely synthetic (chemically designed or synthesized). The chemical modification of naturally produced antibiotic generally results in increase stability, solubility, increased spectrum of activity, or efficacy. Antimicrobial compounds are used in animals to treat and control infectious diseases, and also for growth promotion. Bacteria may gain resistance to antibacterial agents via a variety of mechanisms. There is growing evidence that antimicrobial resistance has significant public health consequences. Rationale use of antimicrobial drugs using appropriate medication at the proper dosage and for duration is one of the important means to reduce selective pressure that helps reduce life of resistant organism. It is also vital to reduce the spread of multi drug resistant organisms in the environment especially in health care facilities. Bacteria evolve rapidly not only by mutation, but also by horizontal gene transfer through the transformation, transduction, and conjugation. Conjugation involves a close contact between two bacteria and transfer of the plasmid that carry many genetic elements. The pathogenic bacteria have the ability to sense as well as respond to the stress in the recipient. The epinephrine and norepinephrine play a key role in stress situations in animals. A previous study showed that norepinephrine (NE), a catecholamine at physiological concentrations promoted the conjugation efficiencies of a conjugative plasmid from a clinical strain of Salmonella typhimurium to an E. coli recipient in vitro. The objective of this study was to determine the effect of norepinephrine on conjugation of two E. coli strains. Both filter mating and liquid mating assays were used. The results revealed that there was no significance difference between the presence and the absence of norepinephrine on conjugative transfer of RP4 plasmid between E. coli strains (FS1290 and C600N) either in filter mating or liquid mating. Further studies are needed to determine whether higher concentration of (more than 20 mM) has any effects on conjugation in E. coli.en-US© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/Antimicrobial compoundsConjugationE. coliNorepinephrineEffect of norepinephrine on conjugation of Escherichia coli strainsReportVeterinary Medicine (0778)