Cao, Wei2014-07-312014-07-312014-07-31http://hdl.handle.net/2097/18161A commercially available modern laser can emit over 10^15 photons within a time window of a few tens of femtoseconds (10^-15 second), which can be focused into a spot size of about 10 um, resulting in a peak intensity above 10^14 W/cm^2. This paves the way for table-top strong field physics studies such as above threshold ionization (ATI), non-sequential double ionization (NSDI), high order harmonic generation (HHG), etc.. Among these strong laser-matter interactions, high order harmonic generation, which combines many photons of the fundamental laser field into a single photon, offers a unique way to generate light sources in the vacuum ultraviolet (VUV) or extreme ultraviolet (EUV) region. High order harmonic photons are emitted within a short time window from a few tens of femtoseconds down to a few hundreds of attoseconds (10^-18 second). This highly coherent nature of HHG allows it to be synchronized with an infrared (IR) laser pulse, and the pump-probe technique can be adopted to study ultrafast dynamic processes in a quantum system. The major work of this thesis is to develop a table-top VUV(EUV) light source based on HHG, and use it to study dynamic processes in atoms and small molecules with the VUV(EUV)-pump IR-probe method. A Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) apparatus is used for momentum imaging of the interaction products. Two types of high harmonic pump pulses are generated and applied for pump-probe studies. The first one consists of several harmonics forming a short attosecond pulse train (APT) in the EUV regime (around 40 eV). We demonstrate that, (1) the auto-ionization process triggered by the EUV in cation carbon-monoxide and oxygen molecules can be modified by scanning the EUV-IR delay, (2) the phase information of quantum trajectories in bifurcated high harmonics can be extracted by performing an EUV-IR cross-correlation experiment, thus disclosing the macroscopic quantum control in HHG. The second type of high harmonic source implemented in this work is a single harmonic in the VUV regime (around 15 eV) filtered out from a monochromator. Experiments on D_2 molecules have been conducted using the 9th or the 11th harmonic as the pump pulse. Novel dissociative ionization pathways via highly excited states of D_2 have been revealed, thus suggesting potential applications for time-resolved studies and control of photochemistry processes.en© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/High harmonic generationCOLTRIMSUltrafast dynamicsPump-probePump-probe study of atoms and small molecules with laser driven high order harmonicsDissertationAtomic Physics (0748)Optics (0752)