Li, KejiaWarren, Steven2013-09-182013-09-182013-09-18http://hdl.handle.net/2097/16467Wireless body area networks (WBANs) will take on more diverse forms in terms of their sensor combinations and communication protocols as their presence is extended to a greater number of monitoring scenarios. This paper presents an application layer protocol that solves issues caused by sensor nodes that must compete for high speed, real-time communication with the receiver. Such applications emphasize the delivery of large amounts of raw data from different sensor nodes in a time-synchronized manner, rather than channels that experience intermittent operation. An example of tracking pulse wave velocity (PWV) is introduced in this paper, where high-precision PWVs are estimated with the help of timeline recovery and feature extraction processes in MATLAB.en-USThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).PhotoplethysmogramPulse wave velocityStatistical synchronizationWireless body area networkHigh resolution wireless body area network with statistically synchronized sensor data for tracking pulse wave velocityText