Liu, Ziyan2011-05-042011-05-042011-05-04http://hdl.handle.net/2097/8572Transforming growth factor beta (TGF-β) and interleukin-1β (IL-1β) are both up-regulated in high grade gliomas and their elevated activities have been associated with prognosis in glioma patients. It is known that TGF-β is involved in proliferation and maintenance of glioma stem cells. In this study, I evaluated whether IL-1β also plays an important role in glioma stem cell development. Glioma stem cells are usually identified by using a sphere assay where glioma stem cells proliferate as neurospheres in serum free medium (SFM) in the presence of two growth factors: EGF and bFGF. However, LN229, a human glioblastoma cell line does not form neurospheres in SFM, suggesting that LN229 cells contain very few stem cells. I found that combination of IL-1β and TGF-β, but not IL-1β or TGF-β alone induced LN229 cells to grow as neurospheres in SFM. Furthermore, quantitative RT-PCR analyses show that the expression of stem cell markers (Nestin, Bmi1, Notch2, and LIF), cytokines (IL-1β, IL-6 and IL-8) and invasive genes (SIP1, β-integrin and N-Cadherin) are significantly enhanced in IL-1β /TGF-β induced spheres compared to the control. Using an invasion assay, drug resistance test, and colony assay, I found that LN229 sphere cells induced by IL-1β and TGF-β are more invasive, have increased drug resistant ability, and are more oncogenic in comparison to the control. Together, these results suggest that IL-1β cooperates with TGF-β to induce glioma stem-like cell phenotype.en-US© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/steminterleukin 1 betaInduction of glioma stem cells by interleukin-1beta and transforming growth factor-betaThesisBiochemistry (0487)