Goetz, R. EstebanKoch, Christiane P.Greenman, Loren2020-06-172020-06-172019-01-10https://hdl.handle.net/2097/40679We demonstrate coherent control over the photoelectron circular dichroism in randomly oriented chiral molecules, based on quantum interference between multiple photoionization pathways. To significantly enhance the chiral signature, we use a finite manifold of indistinguishable (1+1′) resonantly enhanced multiphoton ionization pathways interfering at a common photoelectron energy but probing different intermediate states. We show that this coherent control mechanism maximizes the number of molecular states that constructively contribute to the dichroism at an optimal photoelectron energy and thus outperforms other schemes, including interference between opposite-parity pathways driven by bichromatic (ω, 2ω) fields as well as sequential pump-probe ionization.This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).https://journals.aps.org/authors/transfer-of-copyright-agreementhttps://rightsstatements.org/page/InC/1.0/?language=enQuantum ControlPhotoelectron Circular Dichroismquantum interferenceQuantum Control of Photoelectron Circular DichroismText