Curato, John2016-08-152016-08-152016-05-01http://hdl.handle.net/2097/32918Wheat streak mosaic virus (WSMV) is a disease that causes significant yield losses in wheat (Triticum aestivum L.). Host resistance is the primary approach for control. KS06HW79 is a wheat line with WSMV resistance up to 21°C. To study the inheritance of resistance in KS06HW79, it was crossed with two WSMV-susceptible wheat genotypes, KS020638-M-5 and Brawl CL Plus. Parental lines, F₁, F₂, and check varieties were mechanically inoculated and evaluated for WSMV resistance at 21°C in growth chambers. The segregation pattern in two F₂ populations fit a one-recessive-gene model (1 resistant : 3 susceptible) and a dominant-suppression-epistasis model (3 resistant : 13 susceptible). To determine which model was a better fit, WSMV resistance was evaluated for F₂:₃ families generated from resistant F₂ plants in both crosses. Approximately two thirds of the F₂:₃ families in each cross showed segregation for WSMV resistance, suggesting that the dominant-suppression epistasis model better explained the WSMV resistance in KS06HW79. This model was also supported by two KS06HW79-derived doubled haploid populations, which had a segregation ratio of 1 resistant : 3 susceptible. Therefore, the WSMV resistance in KS06HW79 is likely controlled by two dominant genes, one of which is a suppressor.en-US© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/wheat streak mosaic virusdominant suppression epistasiswheatInheritance of resistance to wheat streak mosaic virus in wheat line KS06HW79Thesis