Hossain, T.Wei, DamingEdgar, James H.Garces, N. Y.Nepal, N.Hite, J. K.Mastro, M. A.Eddy C.R, Jr.Meyer H.M, III2016-04-042016-04-042015-09-01http://hdl.handle.net/2097/32257Citation: Hossain, T., Wei, D., Edgar, J. H., Garces, N. Y., Nepal, N., Hite, J. K., . . . Meyer H.M, III. (2015). Effect of GaN surface treatment on Al2O3/n-GaN MOS capacitors. Journal of Vacuum Science and Technology B: Nanotechnology and Microelectronics, 33(6). doi:10.1116/1.4931793The surface preparation for depositing Al2O3 for fabricating Au/Ni/Al2O3/n-GaN (0001) metal oxide semiconductor (MOS) capacitors was optimized as a step toward realization of high performance GaN MOSFETs. The GaN surface treatments studied included cleaning with piranha (H2O2:H2SO4 = 1:5), (NH4)2S, and 30% HF etches. By several metrics, the MOS capacitor with the piranha-etched GaN had the best characteristics. It had the lowest capacitance–voltage hysteresis, the smoothest Al2O3 surface as determined by atomic force microscopy (0.2 nm surface roughness), the lowest carbon concentration (∼0.78%) at the Al2O3/n-GaN interface (from x-ray photoelectron spectroscopy), and the lowest oxide-trap charge (QT = 1.6 × 1011 cm−2eV−1). Its interface trap density (Dit = 3.7 × 1012 cm−2eV−1), as measured with photon-assisted capacitance– voltage method, was the lowest from conduction band-edge to midgap.This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).https://rightsstatements.org/page/InC/1.0/?language=enAluminumAtomic Force MicroscopyCapacitanceCapacitorsCarbonDielectric DevicesEffect of GaN surface treatment on Al2O3/n-GaN MOS capacitorsArticle