Dammannagari Gangadhara, Shravan2017-04-172017-04-172017-05-01http://hdl.handle.net/2097/35387This research is a part of BREAD PHENO, a PhenoApps BREAD project at K-State which combines contemporary advances in image processing and machine vision to deliver transformative mobile applications through established breeder networks. In this platform, novel image analysis segmentation algorithms are being developed to model and extract plant phenotypes. As a part of this research, the traditional Watershed segmentation algorithm has been extended and the primary goal is to accurately count and characterize the seeds in an image. The new approach can be used to characterize a wide variety of crops. Further, this algorithm is migrated into Android making use of the Android APIs and the first ever user-friendly Android application implementing the extended Watershed algorithm has been developed for Mobile field-based high-throughput phenotyping (HTP).en-US© the author. This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/High-Throughput phenotypingPlant breedingPhenotypePhenoAppsOpenCV with AndroidWatershed segmentationMobile high-throughput phenotyping using watershed segmentation algorithmThesis