Kirkpatrick, Kimberly2014-05-162014-05-162014-01-01http://hdl.handle.net/2097/17764Timing and prediction error learning have historically been treated as independent processes, but growing evidence has indicated that they are not orthogonal. Timing emerges at the earliest time point when conditioned responses are observed, and temporal variables modulate prediction error learning in both simple conditioning and cue competition paradigms. In addition, prediction errors, through changes in reward magnitude or value alter timing of behavior. Thus, there appears to be a bi-directional interaction between timing and prediction error learning. Modern theories have attempted to integrate the two processes with mixed success. A neurocomputational approach to theory development is espoused, which draws on neurobiological evidence to guide and constrain computational model development. Heuristics for future model development are presented with the goal of sparking new approaches to theory development in the timing and prediction error fields.en-USThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/TimingPrediction error learningMotivationComputational modelingInteractions of timing and prediction error learningArticle (author version)