Navarrete, FranciscoCiappina, Marcelo F.Thumm, Uwe2023-12-072023-12-072019-09-09https://hdl.handle.net/2097/44044We analytically and numerically investigate the emission of high-order harmonic radiation from model solids by intense few-cycle midinfrared laser pulses. In single-active-electron approximation, we expand the active electron's wave function in a basis of adiabatic Houston states and describe the solid's electronic band structure in terms of an adjustable Kronig-Penney model potential. For high-order harmonic generation (HHG) from MgO crystals, we examine spectra from two-band and converged multiband numerical calculations. We discuss the characteristics of intra- and interband contributions to the HHG spectrum for computations including initial crystal momenta either from the Γ point at the center of the first Brioullin zone (BZ) only or from the entire first BZ. For sufficiently high intensities of the driving laser field, we find relevant contributions to HHG from the entire first BZ. Based on numerically calculated spectra, we scrutinize the cutoff harmonic orders as a function of the laser peak intensity and find good qualitative agreement with our analytical saddle-point-approximation predictions and published theoretical data.© American Physical Society (APS). This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/https://web.archive.org/web/20181120135245/https://journals.aps.org/copyrightFAQ.htmlCrystal-momentum-resolved contributions to high-order harmonic generation in solidsText