Peiris, Kamaranga H. S.Bockus, William W.Dowell, Floyd E.2012-11-152012-11-152012-09-01http://hdl.handle.net/2097/14951Mid-infrared attenuated total reflection (Mid-IR-ATR) spectra (4000–380 cmˉ¹) of pericarp, germ, and endosperm sections from sound and Fusarium-damaged wheat kernels of cultivars Everest and Tomahawk were collected using a Fourier transform infrared (FT-IR) spectrometer. The differences in infrared absorption bands between sound and Fusarium-damaged kernels were examined. Absorption bands in which differences were identified were compared with the mid-IR-ATR absorption bands of deoxynivalenol (DON) and Fusarium graminearum hyphae. Marked differences in absorption patterns were observed between sound and Fusarium-damaged pericarp and germ spectra, whereas those differences were negligible in the endosperm spectra. Fusarium-damaged pericarp and germ spectra exhibited a shift in the peak position of the band near 1035 cmˉ¹ along with increased absorptions at 1160, 1203, 1313, and 1375 cmˉ¹, likely due to the influence of DON and fungi in the Fusarium-damaged kernel tissue matrix. These results suggest that infrared spectroscopy can detect DON in the surface tissues of Fusarium-damaged wheat kernels.en-USThis Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).http://rightsstatements.org/vocab/InC/1.0/WheatFusarium graminearumFusarium head blightDeoxynivalenolAttenuated total reflection spectroscopyFourier transform infrared spectroscopyInfrared spectral properties of germ, pericarp, and endosperm sections of sound wheat kernels and those damaged by Fusarium graminearumArticle (publisher version)