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Abstract 

Controlling and preventing the spread of silvery-thread moss (STM, Bryum argenteum 

Hedw.) in putting greens is a difficult task for superintendents. Once established, a STM 

infestation can quickly increase through the movement of asexual propagules, such as shoot 

fragments, bulbils and protonema. Many practices used by superintendents are likely aiding in 

the dispersal and establishment of propagules. Research is needed to help superintendents 

effectively control this very invasive pest. The objectives of this research were to: 1) Investigate 

the cumulative effect of cultivation on a STM infestation in a creeping bentgrass putting green, 

when used with or without light, frequent topdressing and the herbicide carfentrazone; 2) 

Determine if STM growth is reduced by spraying ammonium sulfate (AMS) compared to urea, 

and understand the effect of spray volume on STM growth; 3) Evaluate the effectiveness of a 

range of carfentrazone rates for postemergence STM control; and 4) Determine if altering the pH 

of irrigation water with sulfuric- or hydrochloric acid affects the growth of STM. Generally, 

cultivation and carfentrazone reduced STM cover; however, the greatest reduction in STM cover 

was achieved when cultivation treatments were used in conjunction with carfentrazone. 

Topdressing did not affect STM cover. Ammonium sulfate increased STM cover and dry weight 

compared to urea and an untreated control. Furthermore, spray volume did not affect STM cover 

at any rating date. Superintendents managing STM infestations should limit or avoid use of AMS 

as an N source. At 28 days after treatment (DAT) the ED90 (dose required to cause 90% 

gametophyte injury) was 26.8 g ai ha-1, and at 49 DAT ED90 was 54.3 g ai ha-1; both of these 

doses are substantially lower than the label rates for long- and short-term control, respectively. 

As compared with label recommendations, this research suggests lower carfentrazone rates, and 

longer intervals, may be effective for STM control in putting greens. Irrigation pH affected STM 



  

growth, with pH’s 5 and 6 having increased growth compared to pH’s 7 and 8. It was 

hypothesized a lower irrigation pH enabled STM to better withstand sodium stress.  
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at any rating date. Superintendents managing STM infestations should limit or avoid use of AMS 

as an N source. At 28 days after treatment (DAT) the ED90 (dose required to cause 90% 

gametophyte injury) was 26.8 g ai ha-1, and at 49 DAT ED90 was 54.3 g ai ha-1; both of these 

doses are substantially lower than the label rates for long- and short-term control, respectively. 

As compared with label recommendations, this research suggests lower carfentrazone rates, and 

longer intervals, may be effective for STM control in putting greens. Irrigation pH affected STM 



  

growth, with pH’s 5 and 6 having increased growth compared to pH’s 7 and 8. It was 

hypothesized a lower irrigation pH enabled STM to better withstand sodium stress.  
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Chapter 1 - A Review: Establishment, dispersal, and management of 

silvery-thread moss (Bryum argenteum Hedw.) in creeping bentgrass 

putting greens 

 

 Introduction 

Controlling and preventing the spread of silvery-thread moss (Bryum argenteum Hedw.) 

in golf course putting greens is a difficult task for golf course superintendents. Bryum argenteum 

is undesirable because it can negatively affect ball roll and surface uniformity. The prevalence of 

B. argenteum in golf course putting greens has received attention from several researchers in 

recent decades (Boesch and Mitkowski, 2005; Borst et al., 2010; Kennelly et al., 2010; 

Thompson et al., 2011). Although no published research has directly established a connection 

between mercury-based fungicides and the prevalence of B. argenteum on putting greens, some 

researchers speculate the discontinued use of mercury-based fungicides plays an important role 

(Boesch and Mitkowski, 2005; Borst et al., 2010; Burnell et al., 2004; Happ, 1998; Rossi, 2002; 

Yelverton, 2005) because bryophytes are relatively intolerant of heavy metals (Weber and 

McAvoy, 2003). Additionally, in recent decades there have been improvements in equipment 

technology, nutrient management, putting green construction, and changes in golfer expectations 

that have influenced the intensity and scope of cultural practices utilized by golf course 

superintendents. It is likely several of these cultural practices are impacting the establishment 

and infestation of B. argenteum (Kennelly et al., 2010; Thompson et al., 2011). Furthermore, a 

thorough understanding of a target weed’s biology, morphology, and physiology is essential to 

formulating hypotheses for testing best management practices for effective weed control 
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(Radosevich et al., 2007; Sutherland, 2004). Therefore, the objective of this literature review is 

to discuss relevant biological and ecological traits of B. argenteum and how they potentially 

interact with current turfgrass management practices utilized by golf course superintendents. 

With this information, researchers and practitioners will be better equipped to develop successful 

long-term management strategies for B. argenteum in golf course putting greens.  

 

 Morphology, reproduction, and dispersal 

The morphological and reproductive characteristics of B. argenteum uniquely affect its 

behavior in putting greens; thus, a thorough understanding of these traits is necessary to develop 

successful control strategies. Bryum argenteum is a member of the Bryopsida class of 

bryophytes. Bryopsida contains 84% of all bryophyte families and is by far the most diverse 

class (Glime, 2007). Bryum argenteum is a cosmopolitan species found on every continent 

(Crum and Anderson, 1981).  It is highly polymorphic, with several different ecotypes and 

growth rates experimentally demonstrated (Longton 1981; Shaw and Albright, 1990; Horsley et 

al., 2011). The upper leaves of B. argenteum have a layer of clear cells, giving it a silvery sheen, 

and hence the common name silvery-thread moss (Crum and Anderson, 1981).  

An established B. argenteum colony is comprised of individual gametophores, 

protonema, and rhizoids (Figures 1.1 & 1.2). The stems and leaves of bryophytes are known as 

gametophores or shoots, which grow from an apical meristem containing a prominent apical cell 

(Mauseth, 2003). Gametophores can form from structures produced during sexual or asexual 

reproduction. Completion of the sexual cycle produces a diploid sporophyte containing genes 

from both male and female parents (Figure 1.3). The distal region of the sporophyte expands and 

undergoes meiosis, producing thousands of haploid spores. During favorable conditions the 
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spore germinates, giving rise to chlorophyllous cells that undergo mitosis to produce a mass of 

chloroplast-containing thread-like green filaments called primary protonema (Vanderpoorten and 

Goffinet, 2009). Interestingly, B. argenteum can also produce secondary protonema from 

fragments, bulbils or rhizoidal tubers (Frey and Kürschner, 2011). Protonema are capable of 

growing along the surface of almost any stable structure, but can easily desiccate if moisture is 

not available (Proctor et al., 2007). As protonema develop, buds are produced giving rise to an 

individual shoot (the gametophore), which differentiates into stems and leaves. A mass of 

gametophores (shoots) is known as the gametophyte. In laboratory studies where B. argenteum 

was cultured from individual bulbils, Horsley et al. (2011) reported approximately 11 days were 

required until the emergence of protonema, and 31 days until the production of the first 

gametophore. Rhizoids are produced from the underside of the protonema or directly from 

bulbils and gametophore fragments (Vanderpoorten and Goffinet, 2009).  Bryum argenteum 

produces an extensive rhizoid system, enabling it to anchor to almost any substrate. This is 

similar to the roots of vascular plants, but B. argenteum rhizoids do not appear to have the ability 

to conduct water and nutrients internally (Glime, 2007).  

Other characteristics of B. argenteum include dioecy and the capability of both sexual 

and asexual reproduction (Crum and Anderson, 1981); however, the most advantageous mode of 

reproduction is not clear. Sexual reproductive structures form on the tips of separate 

gametophores; female organs are known as the archegonia and male organs are antheridia 

(Vanderpoorten and Goffinet, 2009). In the presence of water, biflagellate sperm are released 

from the antheridia and swim to fertilize the archegonia, producing a diploid sporophyte (Figure 

1.3). The sporophyte grows as an embryo via mitosis until emerging and producing an elongated 

seta (stalk). The distal region of the seta undergoes meiosis to produce haploid spores, restarting 
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the cycle (Vanderpoorten and Goffinet, 2009). Spores can be carried long distances by water, 

wind and machinery. Longton and Miles (1982) reported B. argenteum colonies are capable of 

producing 3.7 million spores m-2 annually; thus, spores serve as the primary mechanism for long 

distance dispersal (Selkirk et al., 1998). Crum (1972) reported that spores 8 to 12 µm in diameter 

are capable of traveling over 19,000 km by wind. However, the role of spores in the initial 

invasion and infestation of putting greens is unclear. Putting greens are typically mown daily, at 

cutting heights < 3.4 mm and clippings are collected. It is likely the seta stalks (Figure 1.3, part f) 

are removed via mowing or simply crushed by the weight of the mower; therefore, spore 

production is unlikely to be a viable mode of reproduction for established B. argenteum in a 

putting green. However, spores may play a role in the initial stages of invasion in a putting green 

that was previously uninhabited by B. argenteum. Sexual reproduction produces genetically 

unique individuals, which may provide an ecological advantage in a changing environment. 

Despite this capacity for sexual reproduction, Longton and Miles (1982) monitored 690 moss 

species found in England, and only 50% regularly formed sporophytes, with 18% never forming 

sporophytes. Therefore, bryophytes arguably rely on asexual reproduction for colonizing new 

habitats more than any other plant group (Frey and Kürschner, 2011). 

Once established, B. argenteum can spread asexually, serving as the primary mechanism 

for further infestation (Selkirk et al., 1998). Regeneration can occur from cloning 

(fragmentation) or through the production of specialized caducous organs, such as bulbils or 

shoot apices (Frey and Kürschner, 2011). Fragmentation is a simple form of vegetative 

reproduction in bryophytes and occurs when a piece of gametophore is separated from the 

gametophyte (Frey and Kürschner, 2010). Fragments are capable of traveling long distances, but 

are typically deposited in close proximity to the original gametophyte. Fragments contain all the 
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genetic information necessary to establish a new plant. Once deposited in a favorable site, 

secondary protonema radiate from the fragment (Figure 1.4), producing several hundred new 

shoots (Frey and Kürschner, 2010). Additionally, the fragments can grow directly into a whole 

plant with rhizoids developing from their basal parts (Imura and Iwatsuki, 1990).  

When no sporophytes are present, B. argenteum stems can actively produce a large 

amount of deciduous shoot apices called bulbils (Selkirk et al., 1998; Stark et al., 2010). Bulbils 

are small, highly condensed leaf primordia surrounding shoot apical meristems that occur in the 

axillary position (Figure 1.3); one to several can be produced per shoot (Frey and Kürschner, 

2011). Once transported to a favorable site, bulbils “germinate”. A germinating bulbil can 

produce a shoot directly or give rise to secondary protonema (Frey and Kürschner, 2011). In 

laboratory studies, Horsley et al. (2011) found bulbil production to be similar between 

populations of B. argenteum collected from Arizona, New Mexico, and Kentucky; moreover, 

only sixty days were required for a single shoot to produce ten bulbils. It quickly becomes 

apparent how important bulbil production is in the spread of B. argenteum, considering a 5 cm 

diam. gametophyte contains thousands of shoots, each capable of producing ten bulbils in only 

sixty days. 

Gametophore fragments and bulbils are buoyant and readily transported by water; 

therefore, a heavy rainfall or irrigation event can move vegetative structures to previously 

uninhabited areas (Proctor et al., 2007). Additionally, propagules (bulbils, shoot fragments, and 

protonemal fragments) can be transported from green to green by adhering to golfers’ shoes and 

to maintenance equipment. So, while sexual reproduction is important for long distance dispersal 

of spores to previously uninhabited areas, researchers have suggested that movement of 

vegetative structures serves as the primary mode of short distance dispersal (Frey and Kürschner, 
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2011; Selkirk et al., 1998); consequently, the effect of putting green management practices on 

the production, dispersal, and establishment of asexual propagules is of extreme importance.  

 

 Water relations 

The management regime for a putting green is dictated by a variety of factors, such as 

turfgrass species, soil rootzone properties, operating budget, and golfer expectations. These 

differences make it difficult to pinpoint specific causes for increased incidence of B. argenteum. 

The current trend in putting green management is “firm and fast”. Such conditions are obtained 

through several avenues, but an important practice is reducing the quantity of irrigation, while 

increasing frequency to produce a firm putting surface with faster ball roll speed (Brame, 2008). 

Bryum argenteum is non-vascular and therefore obtains minimal water and nutrients from the 

soil (Glime, 2007). In addition, B. argenteum is poikilohydric, meaning the water content of the 

gametophyte will tend to equilibrate with the water status of its surrounding environment (Green 

et al., 2011). However, this does not mean its cellular water content is constantly fluctuating with 

changes in the environment because there are several morphological traits B. argenteum 

possesses to deal with water losses (Proctor et al., 2007). For instance, during periods of drought, 

B. argenteum will completely dehydrate and enter a dormant state, possibly for several years, 

and growth will reinitiate when water is no longer limiting (Happ, 1998). Very little 

decomposition of B. argenteum may occur during prolonged periods of dormancy, because 

bryophytes generally have a slower decomposition rate compared to vascular plants (Scheffer et 

al., 2001), and liquid water is required for decomposition. Many bryophytes resist decay by 

producing secondary compounds, including phenolics, which can inhibit the organisms that 
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typically facilitate decomposition (Glime, 2007) and is considered a critical attribute for a plant 

needing to survive prolonged dormancy.  

Bryum argenteum is poikilohydric (Stark et al., 2010); therefore, irrigation practices have 

a major effect on its competitiveness and establishment (Lyons et al., 2012). Putting green 

rootzones are often comprised primarily of sand because most native soils do not possess the 

physical properties necessary to withstand compaction from frequent traffic (Kunze, 1956). 

Furthermore, sand is highly porous relative to most native soils. The rootzone mix, outlined in 

the United States Golf Association’s “Green Section Recommendations for a Method of Putting 

Green Construction”, is composed primarily of sand and requires a minimum saturated hydraulic 

conductivity of 152.4 mm/hr (United States Golf Association Green Section, 2004). Therefore, 

superintendents often irrigate on a daily basis, especially in summer months when turfgrass roots 

recede and evapotranspiration rates are high. This practice undoubtedly has a significant impact 

on moss establishment in putting greens. In a greenhouse experiment, Lyons et al. (2012) 

irrigated pots containing ground B. argenteum shoots with either 75% or 100% Eo (open pan 

evaporation) at four watering frequencies (1-,2-,4-, and 7-day intervals).  Results indicated no 

differences in the number of B. argenteum shoots produced between the irrigation levels; 

however, daily watering resulted in higher shoot counts compared to pots watered on every 

fourth or seventh day. This research suggests the higher irrigation frequency necessary to 

maintain putting greens favors the establishment of individual B. argenteum propagules. 

In addition to being poikilohydric, B. argenteum is also ectohydric, meaning water is 

transported primarily along the external surfaces of the leaf through capillary action (Glime, 

2007; Jones and Rosentreter, 2006). Unlike vascular plants, B. argenteum lacks the specialized 

vascular tissue necessary for rapid internal water movement; therefore, it relies mainly on 
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capillary action along external leaf and stem surfaces for rapid transport (Glime, 2007). Internal 

water movement is a rather slow process compared to external capillary movement. Because the 

dense mat of shoots creates a large amount of surface tension, B. argenteum can store and 

regulate water, while minimizing losses of water to gas exchange (Proctor, 1979). By contrast, 

isolated shoots do not have the luxury of high surface tension and dry out much more quickly 

compared to an established gametophyte (Proctor et al., 2007). In the presence of extracellular 

water, B. argenteum remains active but cells will quickly dehydrate and cease metabolism when 

extracellular water has been exhausted (Proctor et al., 2007). Therefore, B. argenteum typically 

remains in one of two states, fully turgid or desiccated (Proctor et al., 2007). Bryum argenteum is 

usually fully turgid in well-watered putting greens (personal observation).  

No published research has identified a connection between poorly drained putting greens 

and the establishment of silvery-thread moss; however, a moist surface is likely to enhance the 

survival of dispersed propagules (fragments, bulbils, protonema) and established gametophytes. 

Superintendents struggling with B. argenteum infestations should examine the putting green soil 

profile to determine if excessive thatch or layering are reducing infiltration rates. If layering 

exists, then hollow tine aerification should be considered. For instance, over a two year period, 

McCarty et al. (2007) aerified with hollow tines on eight separate occasions and reported a 150% 

increase in water infiltration rates on average for aerified plots compared to untreated plots at the 

conclusion of the study. 

In a frequently watered putting green B. argenteum has some distinct advantages 

compared to turfgrass plants. For instance, the dense mat of shoots in a gametophytic colony is 

often fully immersed in the laminar boundary layer created by the surrounding turfgrass plants 

(Proctor et al., 2007), reducing water loss. In addition, high surface tension created by the dense 
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mat of shoots allows B. argenteum to retain extracellular water from frequent irrigation or dew 

(Glime, 2007), compared to turfgrass which is completely reliant on adequate soil moisture 

within the rootzone profile. Lastly, the poikilohydry of B. argenteum enables it to desiccate when 

extracellular water is not present and quickly reinitiate growth when water is available (Proctor 

et al., 2007). To maintain a firm putting surface, many superintendents reduce the quantity at 

each irrigation event, but increase the frequency; therefore, extracellular water may seldom be 

limiting, allowing B. argenteum to remain in an active, turgid state throughout most of the 

growing season.  

 

 Nutrition 

Fertilization is another important component to maintain acceptable turfgrass quality 

throughout the growing season. For creeping bentgrass growing in sand-based rootzones, 

agronomists typically recommend applying 16 to 32 kg N ha-1 every month during the growing 

season (Dernoeden, 2013). Superintendents typically “spoon-feed” nitrogen throughout the 

growing season for several reasons: 1) sand-based rootzones inherently have low cation 

exchange capacity; 2) applying 50 to 100 kg N ha-1 in a single fertilization event in the summer 

months can cause a flush of growth, leading to excessive thatch buildup and potentially leaving 

the canopy prone to scalping and creating environmental conditions favorable for diseases; and 

3) many superintendents apply preventative fungicides and plant growth regulators about every 

14 days in the summer months, and soluble nitrogen fertilizers such as urea and ammonium 

sulfate are often included in the spray mixture at low rates (≤ 10 kg N ha-1).  

This spoon-feeding N approach likely favors B. argenteum. Bryophytes have about one-

tenth the nutrient requirement of higher plants, with excessive nutrient amounts potentially being 
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harmful (Glime, 2007). In liverworts, Voth (1943) applied an array of nutrient concentrations to 

Marchantia polymorpha and reported decreased dry weight and thallus growth as nutrient 

concentrations increased. By contrast, Thompson et al. (2011) sprayed urea at 15 kg N ha-1 

biweekly throughout the growing season and reported a 147% to 155% increase in B. argenteum 

infestation. Futhermore, Jones and Rosentreter (2006) reported B. argenteum growth in a sand 

substrate was greatest when fertilized with a solution containing macro and micronutrients, 

compared to macronutrients alone. These results suggest that B. argenteum can readily use 

nutrients when available, despite minimal nutrient requirements of most bryophytes. 

 

 Mowing and other cultural practices 

The factors primarily responsible for the dispersal of asexual B. argenteum propagules 

are currently unknown. Researchers have attributed the increased incidence of B. argenteum in 

putting greens to excessively low cutting heights (Kennelly et al., 2010). In Kansas, greater moss 

cover in a creeping bentgrass putting green was reported when plots were mown at 3.2 mm 

compared to plots mown at 4.0 mm (Kennelly et al., 2010). Lower cutting heights can lead to 

stressed turfgrass plants, decreasing their competitiveness against weed species. Furthermore, the 

likelihood of the mower removing or dislodging individual gametophores increases as cutting 

heights decrease; such gametophore fragments may then be dispersed around the putting green 

on equipment or golfers’ shoes.  Mower contact with gametophytes may also be increased where 

frequent nutrient applications result in the growth of longer gametophores.  

By contrast, topdressing greens is a management practice that may reduce B. argenteum. 

Frequent topdressing applies a thin layer of sand to the turfgrass canopy every 2 to 4 weeks at a 

typical rate of 1200 to 2400 kg sand ha-1 (Dernoeden, 2013). Turfgrass plants quickly grow 
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through the layer of sand, but the vertical growth rate of B. argenteum is much slower in relation 

to turfgrass. Borst et al. (2010) reported four biweekly topdressing applications reduced B. 

argenteum cover by 34% in a creeping bentgrass putting green. This reduction may have 

occurred because topdressing elevated the effective height of cut in relation to the gametophyte, 

reducing the incidence of fragmentation caused by mowing, compared to a green that does not 

receive frequent topdressing. Furthermore, topdressing dilutes thatch, providing a firmer surface 

for the mower to ride upon (Dernoeden, 2013). If thatch is excessive, the mower will sink into 

the turf, lowering the effective height of cut and increasing the likelihood of the mower clipping 

B. argenteum gametophytes. Therefore, strategies aimed at reducing the removal of gametophore 

tips during mowing may reduce the amount of plant material available for dispersal, and possibly 

delay the infestation of B. argenteum. Many of the cultural practices utilized by superintendents 

such as, aerification, grooming, verticutting, and brushing are aimed at manipulating the 

turfgrass canopy and are likely affecting the fragmentation and dispersal of B. argenteum. 

Currently, these practices have not been evaluated for their effects on B. argenteum 

establishment, but this information would be helpful to superintendents attempting to manage 

existing infestations.  

 

 Chemical management 

Several researchers have conducted studies and reviews on the current chemical control 

strategies for reducing B. argenteum in putting greens (Boesch and Mitkowski, 2005; Borst et al., 

2010; Burnell et al., 2004; Kennelly et al., 2010; Thompson et al., 2011). All achieved some 

level of success, but none were effective at completely eradicating B. argenteum from putting 

greens. Arguably, the most effective control has been achieved with the herbicide carfentrazone-
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ethyl, but control has been inconsistent and temporary (Boesch and Mitkowski, 2005; Borst et 

al., 2010; Kennelly et al., 2010; Thompson et al., 2011).  

Carfentrazone-ethyl is a protoporphyrinogen oxidase (PPO) inhibitor that causes rapid 

necrosis via lipid peroxidation (Senseman, 2007). Active photosynthesis is required to cause 

necrosis because PPO catalyzes the oxidation of protoporphyrinogen IX, which is a light 

dependent process (Senseman, 2007). Active photosynthesis in B. argenteum occurs in the green 

tissue located at the upper portion of the gametophore; however, regeneration can occur from 

lower segments on the gametophore where photosynthesis is not actively occurring. Application 

of carfentrazone-ethyl causes lipid peroxidation in actively growing gametophore tips, but 

reactive oxygen species are not likely produced in the lower, non-photosynthetically active 

portions of the gametophyte. Hence, turfgrass managers should not expect long-term control 

from a single application of carfentrazone-ethyl. Moreover, because B. argenteum is 

poikilohydric, it has the potential to be in a non-photosynthetically active state if extracellular 

water is not present, which would reduce the efficacy of a carfentrazone-ethyl application. 

Research regarding the effects of cellular water content of B. argenteum on efficacy of 

carfentrazone-ethyl would be valuable to superintendents.   

 

 Multifaceted management approach  

Current management practices on golf course putting greens, designed to provide a firm, 

fast putting surface, appear to complement the ecology and biology of B. argenteum. Water is 

seldom limiting in many putting greens, allowing B. argenteum to remain active throughout most 

of the growing season. In putting greens where B. argenteum is prevelant we recommend 

superintendents pay strict attention to their water management practices. A higher irrigation 
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frequency is likely to favor the establishment of deposited bulbils and fragments, leading to 

further infestation. The presence of extracellular water dictates whether B. argenteum is active or 

dormant, so limiting the number of irrigation events within a given period should encourage the 

latter state. Bryum argenteum’s internal water content is directly related to its surrounding 

environment; therefore, superintendents should increase air movement through the use of fans or 

selective removal of surrounding vegetation to encourage desiccation of asexual propagules and 

gametophytes. Ultimately, a deep and extensive root system can allow turfgrass greater access to 

water within the profile for longer periods of time, decreasing the need for frequent irrigation 

events (Jordan et al., 2003). Management practices that encourage root growth in the spring and 

fall are recommended. 

Frequent applications of nitrogen enhance the growth and competitiveness of B. 

argenteum in putting greens; however, reducing fertility is not recommended as a means of 

control. Improper fertility can lead to increased incidence of several diseases and reduce the 

healing of ball marks, all of which create available sites for B. argenteum propagules to grow. 

Furthermore, a good fertility program is essential to producing an extensive root system 

(Schlossberg and Karnok, 2001), which should enable superintendents to decrease irrigation 

frequency. 

Frequent topdressing has been shown to reduce B. argenteum. Topdressing provides a 

firmer surface for the mower to ride upon, decreasing the likelihood of the bedknife or reel 

coming in contact with the gametophyte, especially at low cutting heights. Topdressing sand is 

often brushed into the canopy to help reduce the amount of material picked up by the mowers. 

Research is not available regarding the effects of brooming/brushing on dispersal of B. 

argenteum propagules; however, it is likely to physically dislodge vegetative propagules.   
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The importance of monitoring for B. argenteum cannot be over emphasized because a 

colony 25 mm in diameter can contain thousands of individual shoots, each capable of 

establishing a new colony. Additionally, the ability of B. argenteum to retain and absorb 

extracellular water increases with the size of the gametophyte. Individual gametophores 

deposited away from the original colony are highly susceptible to desiccation because they lack 

the strong adhesive forces to hold onto extracellular water. Furthermore, the amount of asexual 

plant material available for dispersal increases drastically as the size of the colony grows. The 

efficacy of control measures is likely to be enhanced if an invasion of B. argenteum is caught 

early; however, control may be much more difficult during the later stages of an infestation. 

 

 Conclusion 

The “silver-bullet” for selective B. argenteum control does not seem likely in the near 

future, but management practices aimed at reducing the number of available propagules for 

dispersal in conjunction with the current control measures (Table 1.1) are likely to keep 

populations low. Lastly, from personal experience, superintendents typically battle with B. 

argenteum in select greens on the property. This begs the question: Why isn’t it a major problem 

on every green? Several factors could be to blame, but ultimately, those greens likely contain a 

microenvironment that is optimal for B. argenteum. Superintendents should consider which 

factors are contributing to the success of B. argenteum on infested greens and address them 

accordingly in order to obtain successful long-term control. 



15 

References  

Boesch, B.P. and N.A. Mitkowski. 2005. Chemical methods of moss control on golf course 

putting greens. Online. Appl. Turf. Sci. doi:10.1094/ATS-2005-1006-01-RV. 

Borst, S.M., J.S. McElroy, and G.K. Breeden. 2010. Silvery-thread moss control in creeping 

bentgrass putting greens with mancozeb plus copper hydroxide and carfentrazone applied 

in conjunction with cultural practices. Hort Tech. 20(3):574-578. 

Brame, B. 2008. Affirming firmness. USGA Green Section Record. March/April. 46(2):17-20. 

Burnell, K.D., F.H. Yelverton, J.C. Neal, T.W. Gannon, and J.S. McElroy. 2004. Control of 

silvery-thread moss (Bryum argenteum Hedw.) in creeping bentgrass (Agrostis palustris 

Huds.) putting greens. Weed Tech. 18(3):560-565. 

Crum, H. 1972. The geographic origin of the mosses of North America's eastern deciduous 

forest. Journal of the Hattori Botanical Laboratory 35:269-298. 

Crum, H.A. and L.E. Anderson. 1981. Mosses of Eastern North America, 2 Vols. Columbia 

University Press, NY. 

Dernoeden, P.H. 2013. Creeping Bentgrass Management. 2nd ed. CRC Press, Boca Raton, FL. 

Frey, W. and H. Kürschner. 2011. Asexual reproduction, habitat colonization and habitat 

maintenance in bryophytes. Flora 206:173-184.  

Green, T. G. A., L. G. Sancho, and A. Pintado. 2011. Ecophysiology of desiccation/rehydration 

cycles in mosses and lichens. pp. 89-120 in U. Lüttge, E. Beck, & D. Bartels (eds.), Plant 

Desiccation Tolerance, Ecological Studies 215, Springer-Verlag, Berlin. 

Glime, J.M. 2007. Bryophyte Ecology. Volume 1. Physiology Ecology. Online. Ebook 

sponsored by Michigan Technical University and the International Association of 

Bryologists. http://www.bryoecol.mtu.edu/.  

Happ, K. 1998. Moss eradication in putting green turfgrass. USGA Green Section Record. 36:1-

5. 

Horsley, K., L.R. Stark, and N.D. McLetchie. 2011. Does the silver moss Bryum argenteum 

exhibit sex-specific patterns in vegetative growth rate, asexual fitness or prezygotic 

reproductive investment? Annals of Bot. 107:897-907. 

Imura, S. and Z. Iwatsuki. 1990. Classification of the vegetative diaspores on Japanese mosses. 

Hikobia. 10:435-443. 

Jones, P.R. and R. Rosentreter. 2006. Gametophyte fragment growth of three common desert 

mosses on artificial and natural substrates. The Bryologist 109(2):166-172. 



16 

Jordan, J.E., R.H. White, D.M. Vietor, T.C. Hale, J.C. Thomas, and M.C. Engelke. 2003. Effect 

of irrigation frequency on turf quality, shoot density, and root length density of five 

bentgrass cultivars. Crop Sci. 43(1):282-287. 

Kennelly, M. M., T.C. Todd, D.M. Settle, and J.D. Fry. 2010. Moss control on creeping 

bentgrass greens with standard and alternative approaches. Hort Sci. 45(4):654-659. 

Kunze, R. J. 1956. The effects of compaction of different golf green soil mixtures on plant 

growth. M.S. thesis. Texas A&M Univ., College Station, T.X. 

Longton, R.E. 1981. Inter-population variation in morphology and physiology in the 

cosmopolitan moss Bryum argenteum Hedw. Journal of Bryology 11:501-520. 

Longton, R.E, and C.J. Miles. 1982. Studies on the reproductive biology of mosses. Journal of 

the Hattori Botanical Laboratory 52:219-240. 

Lyons, E. M., K.S. Jordan, I.T. James. D.M. Hudner, and D. McGowan. 2012. Irrigation 

frequency influences the establishment of silvery thread moss (Bryum argenteum Hedw.) 

and rooting of creeping bentgrass (Agrostis stolonifera L.) on simulated golf greens. Acta 

Agriculturae Scandinavica, Section B – Soil & Plant Science 62:79-85. 

Mauseth, J.D. 2003. Botany: An Introduction to Plant Biology. 3rd ed. Jones and Bartlett 

Publishers, Sudbury, MA.  

McCarty, L.B, M.F. Gregg and J.E. Toler. 2007. Thatch and mat management in an established 

creeping bentgrass golf green. Agron. J. 99(6):1530-1537. 

Proctor, M.C.F. 1979. Structure and eco-physological adaptation in bryophytes. Pages 479-509. 

In G.C.S. Clark & J.G. Duckett (eds.), Bryophyte Systematics. Systematics Associate 

Special Volume No. 14. Academic Press, London & New York. 

Proctor, M. C. F., M. J. Oliver, A. J. Wood, P. Alpert, L. R. Stark, N. L. Cleavitt, and B. D. 

Mishler. 2007. Desiccation-tolerance in bryophytes: a review. The Bryologist 

110(4):595-621. 

Radosevich, S.R., J.S. Holt, and C.M. Ghersa. 2007. Ecology of Weeds and Invasive Plants. 3rd 

ed. John Wiley & Sons, Inc. Hoboken, NJ. 

Rossi, F. 2002. Cornell researchers tackle moss control. Cornell University Turfgrass Times. 

Spring. 13(1):10-11. 

Selkirk, P.M., M.L. Skotnicki, J.A. Ninham, M.B. Connett, and J. Armstrong. 1998. Genetic 

variation and dispersal of Bryum argenteum and Hennediella meimii populations in the 

Garwood Valley, Southern Victoria Land, Antarctica. Antarctic Sci. 10:423-430. 

Senseman, S. A. 2007. Herbicide Handbook. 9th ed. Weed Sci. Soc. of Amer., Lawrence, KS. 



17 

Scheffer, R. A., Van Logtestijn, R. S. P. and Verhoeven, J. T. A. 2001. Decomposition of Carex 

and Sphagnum litter in two mesotrophic fens differing in dominant plant species. Oikos 

92: 44–54. 

Schlossberg, M.J and K.J. Karnok. 2001. Root and shoot performance of three creeping 

bentgrass cultivars as affected by nitrogen fertility. J. Plant Nutr. 24(3):535-548. 

Shaw, A.J and D.L. Albright. 1990. Potential evolution of heavy metal tolerance in Bryum 

argenteum, a moss. II. Generalized tolerances among diverse populations. The Bryologist 

93:187-192. 

Stark, L.R., N.D. McLetchie, and S.M. Eppley. 2010. Sex ratios and the shy male hyphothesis in 

the moss Bryum argenteum (Bryaceae). The Bryologist 113(4):788-797. 

Sutherland, S. 2004. What makes a weed a weed: life history traits of native and exotic plants in 

the USA. Oecologia 141: 24-39. 

Thompson, C., M. Kennelly, and J. Fry. 2011. Effect of nitrogen source on silvery-thread moss 

on a creeping bentgrass putting green. Online. Appl. Turf. Sci. doi:10.1094/ATS-2011-

1018-02-RS. 

United States Golf Association Green Section. 2004. Green section recommendations for a 

method of putting green 

construction. http://www.usga.org/Content.aspx?id=26124 (accessed 9 January 2015). 

Vanderpoorten, A. and B. Goffinet. 2009. Introduction to Bryophytes. Cambridge University 

Press, Cambridge. 303p. 

Voth, P. D. 1943. Effects of nutrient-solution concentration on the growth of Marchantia 

polymorpha. Bot. Gaz. 104: 591-601. 

Weber, A. P. and T. O. McAvoy. 2003. Moss infestations in putting greens. USGA Green 

Section Record. July/August. 41(4):32-36. 

Yelverton, F. H. 2005. Managing silvery thread moss in creeping bentgrass greens. Golf Course 

Mgt. 73(3):103-107.  



18 

 

Figure 1.1 Bryum argenteum (Hedw.) gametophyte containing a) gametophores and; b) rhizoid 

mat. 
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Figure 1.2 Production of Bryum argenteum (Hedw.) gametophores from secondary protonema. 
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Figure 1.3 Life cycle diagram of silvery-thread moss (Bryum argenteum Hedw.) displaying 

sexual and asexual cycles, ploidy, and dispersal processes: a) bulbil; b) secondary 

protonema produced from existing gametophore; c) established gametophyte containing 

individual gametophores; d) female gametophore with arrow pointed at archegonia; e) male 
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gametophore with arrow pointed at antheridia; f) group of sporophytes raised in a petri dish 

under laboratory conditions. 
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Figure 1.4 Parent shoot of Bryum argenteum (Hedw.) treated with carfentrazone-ethyl 

producing; a) secondary protonema and; b) new leaf primordia one week after treatment. 
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 Reduce irrigation frequency to encourage desiccation of disseminated shoot 

fragments, bulbils, and protonema. 

 Implement a light and frequent topdressing program throughout the growing season.  

 Reduce the frequency of soluble-nitrogen applications; consider substituting organic 

nitrogen applications in spring and fall. 

 Applications of carfentrazone-ethyl should be used in combination with cultural 

practices, as the herbicide is effective at reducing the size of infestations, but does not 

usually lead to complete eradication.  

 Increase air movement via fans or selective removal of surrounding vegetation to 

encourage light penetration and air circulation. 

 Increase cutting heights.  

 Address factors contributing to poor drainage and infiltration. 

 

  

Table 1.1 Best management practices for silvery-thread moss (Bryum argenteum Hedw.) control 

in golf course putting greens. 
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Chapter 2 - Cultivation Reduces Infestation of Silvery-Thread Moss 

(Bryum argenteum Hedw.) in a Creeping Bentgrass (Agrostis 

stolonifera L.) Putting Green 

 

 Abstract 

Cultivation creates voids in a putting green that may be recolonized by weeds or creeping 

bentgrass; therefore, we investigated the cumulative effect of cultivation on a silvery-thread 

moss (STM) infestation in a creeping bentgrass putting green, when used with or without light, 

frequent topdressing and the herbicide carfentrazone. Cultivation treatments were applied spring 

and fall, and included hollow-tine aerification at low- and high surface disruption (SD), 

vertislicing, and no cultivation. Carfentrazone was applied one week before and after cultivation 

treatments each spring and fall. On average, each split-application of carfentrazone reduced STM 

cover by ~20%. Cultivation did not increase STM cover; to the contrary, hollow-tine aerification 

at low SD and vertislicing slightly reduced STM cover, even in the absence of carfentrazone. 

Topdressing did not affect STM cover. The greatest reduction in STM cover was achieved when 

cultivation treatments were used in conjunction with carfentrazone.  

 

 Introduction 

Controlling silvery-thread moss (STM) infestations in golf course putting greens can be a 

difficult task because of STM’s unique morphological and biological properties. Silvery-thread 

moss is a perennial species capable of tolerating a wide range of environmental conditions and is 

highly competitive at low temperatures (Crum and Anderson 1981; Longton 1981), when the 
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relative growth rate of desirable cool-season turfgrass species is low. An infestation of STM 

typically begins as small colonies (< 5 cm in diameter), but it can rapidly increase in size if 

environmental conditions are conducive for its growth and dispersal. Silvery-thread moss can 

invade new habitats via production of sexual and asexual structures, but once established it is 

believed to spread exclusively through asexual avenues (Raudenbush et al. 2015; Selkirk et al. 

1998). Two common modes of asexual reproduction in STM are fragmentation and bulbil 

production (Frey and Kurschner 2011; Horsley et al. 2011; Jones and Rosentreter 2006; Selkirk 

et al. 1998). Fragmentation is the physical movement of an existing STM filament. Filaments can 

be dislodged by machinery, heavy irrigation/precipitation, or golfers’ spikes. Once deposited, the 

dislodged filaments can grow directly into new shoots, or produce secondary protonema which 

give rise to new shoots. Bulbils are highly condensed leaf primordia and are actively produced 

by an existing STM shoot (Frey and Kurschner 2011). Bulbils are buoyant; consequently, they 

are readily transported during a heavy irrigation or precipitation event. Once deposited, bulbils 

may produce secondary protonema or new shoots. Horsley et al. (2011) collected several STM 

populations and reported individual shoots were capable of producing 10 bulbils in only sixty 

days. All of these factors make it imperative that golf course superintendents take action early in 

a STM infestation. Left unchecked, a small infestation can quickly spread throughout a putting 

green due to the massive amount of propagule material and its potential to proliferate. 

Superintendents utilize an array of tools and cultural practices, and these tools often 

affect the population dynamics of STM in a creeping bentgrass putting green. For example, 

Kennelly et al. (2010) reported a cutting height of 3.2 mm resulted in a 1.6-fold increase in STM 

severity compared to 4.0 mm. Thompson et al. (2012a) investigated different N sources and 

discovered soluble N sources increased STM severity in a putting green. Irrigation practices may 
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also influence STM invasion. Lyons et al. (2012) reported increases in STM establishment with 

higher irrigation frequencies in greenhouse experiments. Borst et al. (2010) found that several 

light topdressing applications slightly reduced STM severity.  Finally, applications of the 

herbicide carfentrazone can selectively suppress STM in creeping bentgrass (Borst et al. 2010; 

Kennelly et al. 2010; Thompson et al. 2011b). Different combinations and intensities of these 

practices are likely to affect the success of STM control measures.  

In contrast to the above practices and tools, little is known about the effect of turfgrass 

cultivation on STM severity in putting greens.  Aerification and vertislicing are two common 

practices utilized by superintendents around the world to manage thatch and compaction, and to 

increase water infiltration. Both practices create temporary openings in the turfgrass canopy 

which may be recolonized by either STM or creeping bentgrass; however, it is unclear which 

species will ultimately occupy the available sites. Personal observations indicate creeping 

bentgrass may not recolonize an area currently occupied by STM, because stolons and tillers 

have difficulty penetrating the dense gametophyte. Aerification and vertislicing can create 

available sites within the gametophye, which would allow neighboring bentgrass plants to 

establish; conversely, STM propagules may reside in the available sites and further the 

infestation. 

Each species has characteristics that may increase its competitiveness in filling canopy 

voids. For example, STM fragments and bulbils are buoyant, and are likely to be transported in 

water and deposited in the voids. On the other hand, creeping bentgrass stolons typically fill such 

voids in 1 to 2 weeks under optimal growing conditions. Furthermore, aerification and/or 

vertislicing may increase the competitiveness of STM and creeping bentgrass in different ways: 

1) With regard to STM, both practices are likely to dislodge gametophore fragments and bulbils, 
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possibly increasing STM propagule availability; 2) with regard to creeping bentgrass, both 

practices may decrease compaction and increase soil-oxygen levels, thereby promoting bentgrass 

growth. Unfortunately, no published research has evaluated their effects on an existing STM 

infestation.   

When used in conjunction with aerification or vertislicing, applications of sand 

topdressing may give creeping bentgrass a competitive advantage in colonizing available sites by 

suppressing STM growth (Borst et al. 2010). However, many superintendents do not utilize a 

frequent topdressing program for a variety of reasons: 1) sand removed during mowing damages 

mower reels and bedknives; 2) inadequate equipment and labor to spread and store sand; 3) 

budgetary restrictions; and/or 4) thatch accumulation may be minimal due to a short growing 

season. 

Applications of carfentrazone have been shown to be highly effective at suppressing 

STM growth (Borst et al. 2010; Kennelly et al. 2010; Thompson et al. 2011b), and therefore may 

also be a valuable tool for shifting the population dynamics in favor of creeping bentgrass, when 

aerification and/or vertislicing are implemented. 

Therefore, the objective of our study was to determine the effect of cultivation, with and 

without light, frequent topdressing and carfentrazone applications, on an existing STM 

infestation in a creeping bentgrass putting green. We hypothesized significant cultivation × 

herbicide, and cultivation × topdressing treatment interactions, wherein cultivation would reduce 

STM cover when used in conjunction with carfentrazone or topdressing, but would result in an 

increase in STM cover when implemented without the herbicide.  
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 Materials and Methods 

 Site Characteristics and Plot Maintenance.  

A 2-yr field experiment was conducted from October 2012 to October 2014 at the Rocky 

Ford Turfgrass Research Center in Manhattan, KS. Treatments were applied to a ‘Penncross’ 

creeping bentgrass (Agrostis stolonifera L.) putting green with an existing STM infestation. The 

green utilized a sand-based rootzone containing 95% sand and 5% soil with a pH of 8.0. The area 

was walk-mowed 6 days per week from March to November using a Toro Greensmaster Flex 21 

(The Toro Company, Bloomington, MN) at a bench cutting height of 3.0 mm. Irrigation was 

hand-applied to ensure even distribution and typically applied every 1 to 2 days from May-

September as needed to prevent creeping bentgrass wilt.  Plots were fertilized from April to 

October and received a total of 171 kg N ha-1. An 18-9-18 granular fertilizer (Contec DG, 

Maumee, OH) was applied at 36 kg N ha-1 in the spring and fall when cultivation treatments 

were administered. Additionally, foliar applications of soluble N (46-0-0) and liquid 0-2-2 

(LebanonTurf, Lebanon, PA) were applied every two weeks from May to September at a rate of 

9.8 kg N ha-1 and 0.17 kg K ha-1, respectively. A tank-mix of Emerald® [boscalid, 3-

pyridinecarboxamide, 2-chloro-N-(4’-chloro(1,1’-biphenyl)-2-yl), BASF Corp. Durham, NC] 

and Triton Flo® [triticonazole, 5-[(4-chlorophenyl)methylidene]-2,2-dimethyl-1-(1,2,4-triazol-1-

ylmethyl)cyclopentan-1-ol, Bayer Environmental Science, Research Triangle Park, NC] at rates 

of 320 and 286 g a.i. ha-1, respectively, was applied on 10 May, 24 June, 31 July, and 6 Sept in 

2013 and 29 April, 31 May, 11 July, and 14 Sept in 2014  to control dollar spot and brown patch.  

Acelepryn® [chlorantraniliprole, 3-Bromo-N-[4-chloro-2-methyl-6-

[(methylamino)carbonyl]phenyl]-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5-carboxamide, DuPont, 
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Wilmington, DE] was applied at 59.0 g a.i. ha-1 on 13 June  and 24 August in 2013 and on 1 July  

in 2014 to control black cutworms.  

 Experimental Design and Treatments 

A randomized complete-block design using three blocks and a split-plot treatment 

structure was used to evaluate three main effects: topdressing (2 levels), herbicide (2 levels), and 

cultivation (4 levels). Treatments were applied to the same plots in both study years because we 

were interested in the cumulative effect over time on STM cover. Whole plots measured 3.7 × 

3.7 m, and received either infrequent or frequent topdressing applications. The infrequent 

topdressing treatment consisted of 0.8 L m-2 of sand applied directly after cultivation treatments, 

and the frequent treatment consisted of 0.8 L m-2 of sand applied directly after cultivation 

treatments + 0.4 L m-2 of sand applied every two weeks from May to September in 2013 and 

2014. Sand was applied using a handheld shaker jar.  The 0.9 × 1.2 m subplots contained a 4 

(cultivation) × 2 (herbicide) factorial. Cultivation treatments were applied during fall and spring 

of each study year, specifically on 1 October 2012, 29 March 2013, 8 October 2013, and 7 April 

2014. The four cultivation treatments were: 1) 13 mm dia. hollow-tine aerification at low 

intensity (3.9% surface disruption, SD); 2) 13 mm dia. hollow-tine aerification at high intensity 

(7.2% SD); 3) vertislicing; and 4) no cultivation. Aerification treatments were applied using a 

Toro ProCore® (648, The Toro Company, Bloomington, MN) operating at 3000 rpm. Ejected 

cores were removed with a shovel, and dry sand was hand-broomed (Model# 829, The Libman 

Company, Arcola, IL) into applicable plots until holes were completely filled. Vertislice 

treatments were applied using a Billy Goat® Power Rake (PR550H, Billy Goat Industries, Lee’s 

Summit, MO), that cut 1.5 mm wide slits on 5 cm centers at a depth of 8 mm in the turfgrass 

surface. The herbicide factor contained two levels: 1) carfentrazone applied at 111 g a.i. ha-1 one 
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week before, and one week after cultivation treatments were administered (i.e., four applications 

per year); and 2) no herbicide. Herbicide applications were made using a two-nozzle CO2 

powered backpack sprayer equipped with TeeJet XR8002VS nozzles, and calibrated to deliver a 

spray volume of 342 L ha-1. All herbicide applications included a nonionic surfactant applied at a 

0.25% v/v. Silvery-thread moss is poikilohydric and has the potential to be in a dormant state if 

extracellular water is not present. Therefore, 2.5 mm of irrigation were applied the night before 

carfentrazone applications were made to ensure the STM would be actively photosynthesizing.  

 Data Collection and Analysis 

Percent moss cover was obtained using a 0.9 × 1.2 m rating grid containing 330 

intersections on 5 × 5 cm centers. Application of carfentrazone causes rapid necrosis of the 

gametophyte tissue; however, the gametophyte carcass does not breakdown and regrowth occurs 

several weeks later (Personal observations). Therefore, a positive grid count was recorded if a 

STM gametophyte was situated directly under an intersection, regardless of whether it was green 

and healthy, or black/brown and desiccated. Initial moss cover was determined for each plot on 

24 September 2012, one week before any treatments were applied. Subsequent ratings were 

recorded on March 21, 2013, October 1, 2013, April 1, 2014, and October 1, 2014. Moss cover 

in individual plots ranged from 20 to 60 % at study initiation, therefore, percent change in moss 

cover at subsequent rating dates was determined by comparing moss cover in each plot to its 

initial value. This was the same approach used by Kennelly et al. (2010) and Thompson et al. 

(2012a). The calculation was: % change in moss cover = [(grid count at rating date / grid count at 

trial initiation) × 100]-100. Negative values indicate moss cover decreased. 

A log transformation [x’= log (x + 1)] was needed to improve homogeneity of residual 

variances; however, the transformation cannot be executed with negative values. Therefore, 
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percent cover data were scaled to complete the transformation. Log transformed data were 

subjected to ANOVA using the PROC MIXED procedure in SAS (SAS software, Version 9.4, 

2013, SAS Institute Inc., Cary, NC). Means were separated using Fisher’s protected least 

significant difference (P ≤ 0.05). Nontransformed data are presented, but statistical inferences 

are based on transformed data.  

 

 Results and Discussion 

Several treatments were effective at reducing STM cover over the course of the 2-yr field 

study; however, no treatment combination completely eradicated STM.   

 Cultivation 

Aerification and vertislicing are practices often used by golf course superintendents 

which create open spaces, or voids, in the turfgrass canopy; however, it was unknown if these 

voids would be colonized by STM or creeping bentgrass. Our hypothesis that cultivation would 

only decrease STM cover when combined with herbicide use or topdressing turned out to be 

incorrect; both vertislicing and 3.9% SD aerification reduced STM cover compared to the 

untreated control by the end of the study (Figure 2.1). While the reduction in STM cover was 

greatest where carfentrazone was used in tandem with cultivation (data not shown), cultivation 

treatments reduced STM cover irrespective of herbicide use or topdressing (Table 2.1). This is 

the first research describing the effects of cultivation on a STM infestation. The fact that 

cultivation did not increase STM cover over the course of this 2-yr study will be welcome news 

to golf course superintendents, considering the widespread adoption of these practices 

throughout the world. The fact that cultivation reduced STM cover in the absence of 



32 

carfentrazone is, perhaps, even more important to golf course superintendents, because 

superintendents in some parts of the world do not have access to carfentrazone. 

Notably, the effect of cultivation was not significant until after the treatments had been 

administered three times (Table 2.1). Cultivation is known to have positive effects on rootzone 

properties (Dernoeden 2012; McCarty et al. 2005), and it seems likely that the cumulative 

beneficial effects of cultivation treatments helped the bentgrass to have a competitive advantage 

in filling the canopy voids. While the 3.9% SD aerification and vertislicing treatments reduced 

STM cover by the spring and fall of 2014 compared to the untreated, the 7.2% SD aerification 

treatment resulted in slightly less STM cover, and was not different from the untreated (Figure 

2.1). Currently, it is unclear why the 7.2% SD treatment was not as effective as other cultivation 

treatments and warrants further research to determine if an optimal SD for STM control exists.  

 Carfentrazone 

The effect of carfentrazone was highly significant at every rating date throughout the 

study (Table 2.1). On average, a 20% reduction in STM cover was observed after two 

applications of carfentrazone at a rate of 111 g a.i. ha-1 (Figure 2.2). These results are similar to 

those reported by Kennelly et al. (2010) and Borst et al. (2010), who reported a 39 and 36% 

reduction in STM severity, respectively, when treated with carfentrazone. No negative effects to 

bentgrass color or quality were observed following the split applications of carfentrazone; 

however, this herbicide, a protoporphyrinogen oxidase inhibitor (Senseman 2007), cause rapid 

necrosis in the gametophore tips by 2 to 3 DAT. A total of eight applications of carfentrazone 

were applied throughout the duration of the study, but on average, only an 80% reduction in 

moss severity was observed (Figure 2.2). Bryophytes, such as silvery-thread moss, have been 

reported to have a slower decomposition rate compared to vascular plants (Scheffer et al. 2001). 
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Carfentrazone is very effective at injuring STM; however, the necrotic gametophyte is able to 

resist decay, and regrowth often occurs directly from the injured shoots in the weeks following 

the initial application.  

Herbicide timing often has a dramatic effect on the efficacy of herbicide applications 

(Johnson et al. 2002; Raudenbush and Keeley 2014; Reicher and Weisenberger 2007). In this 

study, the split-applications of carfentrazone were strategically made one week before and one 

week after cultivation treatments were administered. Our intention was that the first of the split-

applications would injure the STM gametophyte, allowing creeping bentgrass to fill the voids 

created by the cultivation treatments, while the second application (two weeks later) would 

control any dispersed plant material. This research supports previous findings showing that 

carfentrazone is a valuable tool that can temporarily shift stand dynamics in favor of the 

desirable turfgrass species; however, it not likely to completely eradicate STM. As noted 

previously, the greatest reductions in STM cover were observed when carfentrazone was used in 

conjunction with cultivation treatments (data not shown).  

 Topdressing 

Theoretically, topdressing in conjunction with cultivation would shift stand dynamics in 

favor of creeping bentgrass, by partially covering STM (Borst et al. 2010) and thereby reducing 

its photosynthesis rate. However, in our study, light frequent topdressing did not affect STM 

cover at any rating date throughout the experiment (Table 2.1). These results differ from Borst et 

al. (2010), who reported a 39% reduction in STM cover from four applications of sand 

topdressing. The whole plots receiving frequent topdressing did have enhanced turfgrass color 

and quality (data not shown). The lack of effect on STM cover in our study may have been a 

consequence of the statistical design we employed. Because the topdressing factor was assigned 
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to the whole plots in our split-plot treatment structure, this factor had only two denominator 

degrees of freedom in the ANOVA. We chose this treatment structure for two main reasons: 1) 

Concern that assigning the topdressing factor to individual small plots in a 2 (topdressing) × 4 

(cultivation) × 2 (herbicide) factorial design  would create a checkerboard effect, in which  the 

canopy of plots receiving frequent topdressing would become elevated as the study progressed, 

causing the mower to scalp plot edges and introduce unwanted variation; and 2) We were highly 

interested in cultivation and herbicide effects, and their interaction, and our treatment structure 

resulted in more statistical  power for those factors/interactions.  

 Recommendations 

Superintendents confronted with STM infestations should use a multifaceted approach 

with two main goals: 1) reduce the size of the current infestation, while 2) preventing the future 

establishment of dispersed propagules. Our research demonstrates that hollow-tine aerification or 

vertislicing, in tandem with split applications of carfentrazone, effectively accomplishes these 

goals. Unfortunately, cultivation disrupts playability and would have to be performed with 

moderate intensity to reduce STM cover. Silvery-thread moss is typically a problem in select 

areas of the putting green, and if twice yearly cultivation is not feasible, we recommend 

selectively implementing cultivation in those areas where STM is most prevalent. Greatest 

reductions in STM cover will likely be attained by combining cultivation and carfentrazone. 

Although light, frequent topdressing did not reduce STM cover in our study, other research 

supports its inclusion as part of a comprehensive STM management strategy. A light, frequent 

topdressing program should help reduce survival of dispersed fragments and bulbils by directly 

burying the propagules. Lastly, this research may be most applicable to putting greens with large 

(e.g., >10%) STM infestations. It is unclear if very small infestations (e.g., 1% or less) would 
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respond to cultivation in the same manner. Investigating such a scenario could be the subject of 

future research.  
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Figure 2.1  Effect of cultivation treatment on silvery-thread moss cover in a creeping bentgrass 

putting green in 2013 and 2014. The 3.9% SD and 7.2% SD indicate hollow tine aerification 

at low and high surface disruption, respectively. Vertislice treatments involved cutting 1.5 

mm wide slits on 5 cm centers to a depth of 8 mm in the turfgrass surface. Cultivation 

treatments were performed each spring and fall starting on October 1, 2012 and ending on 

April 7, 2014. Means followed by the same letter on individual rating dates are not 

significantly different (P < 0.05) according to Fisher’s Protected LSD.  
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Figure 2.2  Effect of carfentrazone on silvery-thread moss cover in a creeping bentgrass putting 

green in 2013 and 2014. Herbicide applications began on September 25, 2012 and the last 

application was on April 14, 2014. Each spring and fall a split application was applied at 

111 g a.i ha-1, two weeks apart (four total applications per year). Means followed by the 

same letter on individual rating dates are not significantly different (P < 0.05) according to 

Fisher’s Protected LSD. 
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Table 2.1 ANOVA for percent change in silvery-thread moss cover when combinations of topdressing, herbicide, and 

cultivation were applied to a creeping bentgrass putting green in Manhattan, KS.  

      P-value Associated with % Change in Moss Cover 

      2013  2014 

Source  Num df  Den df  Spring  Fall  Spring  Fall 

Topdressing  1  2  0.5365  0.7346  0.8991  0.6599 

Herbicide  1  28  <.0001  <.0001  <.0001  <.0001 

T × H  1  28  0.4842  0.2038  0.1423  0.4666 

Cultivation  3  28  0.6735  0.1006  0.0131  0.0070 

T × C  3  28  0.2118  0.6961  0.4654  0.5638 

H × C  3  28  0.6653  0.4972  0.7981  0.3725 

T × H × C  3  28  0.0679  0.9044  0.8055  0.2375 
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Chapter 3 - Effect of Nitrogen Source and Spray Volume on the 

Establishment and Colonization of Silvery-Thread Moss (Bryum 

argenteum Hedw.) in Putting Greens 

 

 Abstract 

During the growing season, golf course superintendents often fertilize putting greens with 

low nitrogen rates on a weekly or biweekly interval, using foliar applications of soluble N 

sources such as ammonium sulfate (AMS) or urea. Silvery-thread moss (STM) is ectohydric; 

consequently, we hypothesized that STM would be injured from the higher partial salt index of 

AMS compared to urea, and that injury would be exacerbated by low spray volumes. Therefore, 

the objectives of this study were to: 1) determine if STM growth is reduced by AMS compared 

to urea, and 2) understand the effect of spray volume on STM growth, when using a high-salt-

index N source.  In greenhouse studies, AMS or urea were applied weekly at 4.4 lbs N acre-1 to 

nascent STM growing in pots. The N sources were applied at three spray volumes: 11, 44, and 

110 gal H2O acre-1. Percent moss cover was determined weekly from digital images, and after 

seven weeks, gametophytes were harvested, dried, and weights recorded. Contrary to our 

hypothesis, AMS increased STM cover and dry weight compared to urea and an untreated 

control. Furthermore, spray volume did not affect STM cover at any rating date. Follow-up field 

studies were conducted on putting greens at Rocky Ford Turfgrass Research Center and Colbert 

Hills Golf Course. Although results were less consistent in the field, AMS again generally 

increased STM cover compared to urea and the untreated control. Superintendents managing 

STM infestations should limit or avoid use of AMS as an N source. 
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 Introduction 

The establishment and spread of silvery-thread moss (STM; Bryum argenteum Hedw.) in 

golf course putting greens is likely affected by fertilization practices along with other factors 

(e.g., irrigation, mowing height, infiltration, drainage, etc.) (Raudenbush et al., 2015), but the 

role of nitrogen (N) fertilization is unclear. Nitrogen is important for healthy putting green turf, 

and is often applied to greens at 4.4 to 8.8 lbs N acre-1 every 10 to 14 days during the growing 

season. Some have speculated that low N fertility encourages the invasion of STM in putting 

greens (Cook et al., 2002; Hummel, 1994); this could occur because a low N environment often 

causes poor turfgrass density, providing voids for opportunistic weeds (Johnson and Bowyer, 

1982; Murray et al., 1983). However, with some weeds, high N levels increase weed 

competitiveness (e.g., annual bluegrass) (Lodge and Lawson, 1993). To date, the effect of N 

level on STM in putting greens has not been adequately researched. 

Silvery-thread moss is ectohydric, so it cannot extract water and nutrients from within the 

soil profile; rather, it absorbs water and soluble nutrients foliarly (Glime, 2007). Consequently, 

the source of N may dramatically impact STM growth. In particular, the competitiveness of STM 

may be enhanced if soluble nutrients are applied, compared to insoluble nutrients. Recent 

research supports this idea: Kennelly et al. (2010) supplied 13 lbs N acre-1 every two weeks 

using two N sources: liquid urea (46-0-0) and a granular organic poultry litter (8-1-3). They 

reported a 200% increase in STM cover in plots receiving liquid urea compared to the granular 

organic N source. Similarly, Thompson et al. (2011) found plots fertilized with liquid urea had a 

47% and 50% increase in STM cover compared to plots receiving IBDU and organic poultry 

litter, respectively.  

Unfortunately, applying insoluble nutrients, specifically N, may not be preferred by 

superintendents for a variety of reasons: 1) Some insoluble granular products emit a foul odor 
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after application; 2) granular fertilizers may stick to the rollers on reel mowers and create a 

marcelling effect; 3) and granular fertilizers may be directly removed during mowing, reducing 

their effectiveness. By contrast, soluble N can be added to a spray tank and applied in 

conjunction with pesticide and plant growth regulator applications. Therefore, research regarding 

soluble N sources and their effect on silvery-thread moss infestations would be extremely 

valuable to superintendents. 

Urea and ammonium sulfate (AMS) are two soluble N sources commonly used by 

superintendents. Ultimately, both N sources are converted from NH4
+ to NO3

- in the soil via 

nitrification (Turgeon, 2004); however, agronomists often recommend AMS as the primary N 

source when combating a high rootzone pH. This is because the nitrification of NH4
+ to NO3

- in 

soil produces two net moles of H+ for every mole of nitrified NH4
+. Conversely, urea only 

produces one net mole of H+ for every mole of ammoniacal N because urea hydrolysis produces 

a competing mole of OH- (Lungu and Dynoodt, 2008). Ammonium sulfate may be the ideal 

nitrogen source when attempting to reduce rootzone pH, but it has a higher potential than urea to 

burn turfgrass leaves, due to its higher partial salt index. A high partial salt index can create an 

osmotic gradient, which potentially could draw water directly from the cells of turfgrass leaves, 

causing discoloration (Stiegler et al., 2013). 

With respect to STM, this effect on osmotic potential is of interest because bryophytes 

are especially susceptible to osmotic shock (Glime, 2007). As usually practiced by 

superintendents, the spraying of high-salt-index fertilizers at low rates may result in little or no 

foliar burn, because superintendents typically apply fertilizers, fungicides, and plant growth 

regulators at relatively high spray volumes (> 60 gal acre-1). Conversely, a low spray volume 

would result in a higher concentration of salts in individual spray droplets, which could have a 
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detrimental effect on STM. In a different bryophyte, Voth (1943) found the growth of 

Marchantia polymorpha decreased as the salt concentration of nutrient solutions increased. 

Because of its higher partial salt index, it is plausible that substituting AMS for urea 

would be detrimental to STM, and injury would likely be enhanced at lower spray volumes. 

Therefore, the two objectives of this research were to: 1) determine if STM growth could be 

reduced by substituting AMS for urea as a N source and; 2) understand if a lower spray volume 

would reduce the growth of STM when used with a high-salt-index N source. We hypothesized 

that AMS would injure STM regardless of spray volume, but that the injury would be enhanced 

at lower spray volumes. 

 

 Materials and Methods 

 Greenhouse Study Material Preparation  

A greenhouse study was conducted in the Throckmorton Plant Science Center at Kansas 

State University, Manhattan, KS to determine the effects of N source and spray volume on STM 

growth. Greenhouse temperature ranged from 64° to 78° F (Hobo ProV2, Onset Computer 

Corporation, Bourne, MA) throughout the duration of the study. The STM population used in the 

experiment was a colony originally collected from a research green at Rocky Ford Turfgrass 

Research Center in Manhattan, KS. The population was clonally propagated in the greenhouse 

for several months prior to trial initiation to obtain sufficient plant material. The propagated plant 

material was removed from the greenhouse and allowed to air-dry in the laboratory at 68° F for 7 

days. After 7 days, 0.2 oz of dried plant material were placed in a coffee grinder (Krups F20342, 

Millville, NJ) and ground for ~ 6 s until the plant material was sufficiently shredded.  
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PVC containers (4 inches dia. by 8.5 inches deep) were filled with pea gravel to a height 

of 2 inches, and then filled with 6 inches of moist sand conforming to United States Golf 

Assocation specifications for a putting green rootzone. Containers were filled to field capacity 

and allowed to drain several times to encourage settling, and additional sand was added as 

needed to position the sand 0.75 inch from the top of the pot. After pots drained for 24 h, each 

pot was planted with 0.03 oz of ground STM material. Plant material was evenly spread over 

each individual pot and then immediately watered with a misting nozzle (Dramm 610SF, 

Manitowoc, WI) until saturated. The misting nozzle was continuously moved while watering the 

pots to prevent puddling of water at the soil surface. Puddling would have allowed the ground 

gametophyte material to float and consequently migrate towards the outer edge of the pots, 

reducing uniformity. Pots were watered three times per day for 10 days, and then once per day 

for the remainder of the study. Silvery-thread moss gametophores began actively growing after 7 

days. A total of 36 pots were needed for each of the two runs of the experiment; however, 50 

pots were planted for each run. After 10 days, percent moss cover was determined for all 50 pots 

by the methods described below, and the 36 pots with the most homogeneous cover were 

selected for each run.  

 Greenhouse Experimental Design and Data Collection  

Treatments were applied approximately every 7 days in the greenhouse for a total of 

seven applications. Nitrogen source treatments included AMS, urea, and untreated. Ammonium 

sulfate and urea were applied at a rate of 4.4 lbs N acre-1 per week. Additionally, dibasic 

potassium phosphate was used to supply all three treatments with 0.37 lbs P and 1.8 lbs K acre-1 

per week. Spray volumes were 11, 44, and 110 gal H2O acre-1, which were obtained using TeeJet 

XR8001EVS, XR8004EVS, and XR8008EVS nozzles (Spraying Systems Co., Wheaton, IL), 
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respectively. Applications were made using a single nozzle boom and a metronome was used to 

maintain steady walking speed. The experiment used a completely randomized design with four 

replicates and a two-way factorial treatment structure to evaluate the effect of nitrogen source 

(factor a) and spray volume (factor b). 

Percent moss cover was determined weekly using overhead images, and those images 

were batch-processed using the methods described by Richardson et al. (2001). Images were 

obtained using a Nikon D3000 (Nikon Co., Tokyo, Japan) digital single-lens reflex camera 

affixed to a custom-built lightbox (20 × 28 × 24 inches) containing four 6500 K-temperature 

fluorescent light bulbs (model ESL23TM/D, Feit Electric Co., Pico Rivera, CA). The camera 

utilized a shutter speed of 1/125 s, aperture of F5.6, ISO 800, and focal length of 50 mm. Images 

were saved as JPEG format because light conditions were uniform and well-controlled 

throughout the experiment.  Percent cover was extracted from images using SigmaScan Pro 

(Version 5.0, SPSS, Chicago, IL). The program was able to selectively identify individual STM 

gametophores utilizing a hue range of 45-75 and a saturation range of 50-100. 

 After trial completion, moss gametophytes were harvested, dried at 170° F for 48 h, and 

dry weights were recorded. Percent moss cover and gametophyte dry weights were subjected to 

analysis of variance using the GLM procedure of Statistical Analysis System (SAS) software 

(Version 9.4; SAS Institute Inc., Cary, NC). Means were separated using Fisher’s protected least 

significant difference (LSD) test (P ≤ 0.05).  

 Field Study Plot Maintenance 

In 2014, field studies were conducted from May to October at Rocky Ford Turfgrass 

Research Center and Colbert Hills Golf Club in Manhattan, KS. The Rocky Ford putting green 

utilized a sand-based rootzone and contained ‘Declaration’ creeping bentgrass (Agrostis 
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stolonifera L.), which was mowed six days per week with a flex cutting unit set to a bench 

cutting height of 0.115 inch. The Colbert Hills green was of California-style construction and 

contained ‘Penn G-2’ creeping bentgrass. It also was mowed six days per week, but with a 

triplex mower set to a bench cutting height of 0.115 inch. Both sites were irrigated every 2 to 3 

days at 100% ET replacement estimated from onsite weather stations and the FAO-56 Penman-

Monteith equation. 

 Field Study Experimental Design and Data Collection 

Spray volume had minimal effect on STM growth in the greenhouse (Table 3.1); 

therefore, to make efficient use of limited experimental units, field studies only evaluated the 

effect of N source on STM infestation. At both locations, a randomized complete-block design 

with five blocks and a one-way treatment structure was used to evaluate N sources AMS, urea, 

and untreated. Blocks were constructed by placing three plots with similar initial percent cover in 

the same block to improve homogeneity of experimental units. Similar to greenhouse 

experiments, treatments were applied every 7 days, but for a longer time period; specifically, 

from May 15 to October 15.  Ammonium sulfate and urea were applied at 4.4 lbs N acre-1. 

Dibasic potassium phosphate supplied all treatments with 0.37 lbs P and 1.8 lbs K acre-1. After 

fertilizers were dissolved into solution, applications were made with a single nozzle (TeeJet 

XR8004EVS) CO2 powered backpack sprayer operating at 30 psi to deliver a spray volume of 44 

gal acre-1. Initial STM cover at Rocky Ford ranged from 5-15% cover with a mean cover of 9%, 

and the STM cover at Colbert Hills ranged from 5-21% with a mean cover of 13%. Silvery-

thread moss cover of the 3 × 3 ft plots was determined using a rating grid containing 961 

intersections on 1 inch centers. A count was registered if a STM gametophyte was positioned 

directly under an intersection. Percent change in moss cover at subsequent rating dates was 
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determined by comparing moss cover in each plot to its initial value. This was the same approach 

used by Kennelly et al. (2010) and Thompson et al. (2011). The calculation was: % change in 

moss cover = [(grid count at rating date / grid count at trial initiation) × 100]-100. Negative 

values indicate moss cover decreased.  

Normality of residue variances were examined using the UNIVARIATE and GPLOT 

procedures in SAS. Percent change in moss cover at Rocky Ford was normal; however, a log 

transformation [x’= log (x + 1)] was needed to normalize cover data from Colbert Hills. Percent 

moss cover data (transformed and untransformed) were subjected to analysis of variance using 

the MIXED procedure of SAS and means were separated using Fisher’s protected LSD test (P ≤ 

0.05); transformed means were back-transformed for presentation.  

  

 Results and Discussion 

 Effect of N Source in Greenhouse Study 

A significant Run × N-source interaction was present, therefore results from Run 1 and 2 

are presented separately. The interaction was likely due to the lower initial moss cover in Run 2 

(Figure 3.1), which allowed the untreated plots to increase substantially in STM cover during the 

first few weeks of Run 2, but not Run 1. Final STM cover under all treatments was slightly 

higher in Run 2, but overall treatment effects were similar by the end of each run. 

Our hypothesis that AMS would be detrimental to STM growth, and that this effect 

would be exacerbated by low spray volumes, was incorrect; on the contrary, AMS typically 

increased STM growth in both greenhouse and field trials (Figures 3.1 - 3.5), and spray volume 

did not affect moss cover (Table 3.1). A low spray volume would only have a negative effect on 

STM growth if the salt content of the spray solution was sufficiently high to be toxic to STM. 
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Perhaps the low N rates used in our research, which were chosen because they are representative 

of the “spoon-feeding” approach used by many golf course superintendents, did not result in a 

sufficiently high salt content of the spray solution to cause injury to STM. Higher rates of AMS 

in combination with low spray volumes could possibly cause foliar burn to STM (as sometimes 

happens with turfgrass), but substantially higher rates of soluble N are not typically used on 

greens. Additionally, to obtain the lowest spray volume evaluated in this study (11 gal acre-1), 

superintendents would have to drastically increase sprayer ground-speed or use low-volume 

nozzles. Both options may be problematic, because a slower ground speed is usually necessary 

when spraying greens to provide the operator ample time to maneuver around intricate green 

complexes; and secondly, low-volume nozzles have a small orifice that can easily be clogged by 

water-dispersable-granule or wettable-powder fungicide formulations.  

Unlike spray volume, N source was highly significant (P <.01) on every rating date in 

both runs of the experiment (Table 3.1). While both AMS and urea generally increased STM 

cover compared to the untreated, AMS caused the greatest increases. In Run 1, AMS increased 

STM cover on all 7 rating dates, and caused greater moss cover than urea on all dates after week 

1 (Figure 3.1). Urea increased STM cover compared to the untreated on 4 of 7 rating dates. In 

Run 2, AMS again increased STM cover compared to the untreated on all 7 rating dates, while 

urea increased STM cover on 6 of 7 dates. Ammonium sulfate caused greater STM cover than 

urea on 4 of 7 rating dates, including the last three weeks of the study (Figures 3.1 and 3.2).  

In addition to STM cover, dry weight of harvested STM gametophytes was highly 

affected by N source (Table 3.1). Gametophytes treated with AMS had a 3- and 2-fold increase 

in dry weight compared to urea and the untreated in Runs 1 and 2, respectively (Figure 3.3). Urea 

did not significantly increase STM dry weight compared to the untreated in either run of the 
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experiment. The increased dry weight caused by AMS was the result of longer gametophyte 

filaments (gametophores), which ultimately reflects increased leaf production. Longer 

gametophores enable STM to better compete for sunlight in the turfgrass canopy, while crowding 

out desirable turfgrass species. Additionally, longer gametophores are more likely to be sheered 

off or dislodged during mowing, which may aid in the dispersal of propagules (Raudenbush et 

al., 2015). 

As noted, our hypothesis that AMS would decrease STM growth was proven false, at 

least at the low rates used in “spoon-feeding” fertilization programs, and the spray volumes used 

in this research. However, the fact that AMS actually caused greater STM growth than urea was 

more surprising. At least four scenarios seem plausible to explain the increase in STM growth 

with AMS compared to urea in the greenhouse study: 1) Less N uptake occurred with urea 

because the activity/abundance of urease, on or in STM gametophores, was reduced for unknown 

reasons (foliar-applied urea is typically hydrolyzed to NH4
+ by urease on the leaf surfaces 

(Stiegler et al., 2013), however, direct uptake of the intact molecule is known to occur in other 

plants (Wittwer et al., 1963)); 2) Hydrolyzed urea may have volatilized, reducing N uptake; 3) 

Ammonium sulfate may have reduced the pH of the water film retained by the gametophyte, 

which positively impacted STM growth (current research is underway by the authors that 

indicates STM growth is greater when irrigated with slightly acidic water compared to water of 

neutral or alkaline pH); and lastly, 4) The sulfate supplied by AMS may have positively 

impacted STM growth. These possibilities should be the subject of future research. 

 Effect of N Source in Field Study 

Because of the dramatic effect of AMS on STM growth in the greenhouse, field studies 

were conducted to see if the results could be duplicated in the field. Location was included in the 
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model and a significant location × N-source interaction was present; therefore, results for each 

location are presented separately. This interaction occurred because the STM infestation at 

Rocky Ford decreased throughout the summer months, while an increase was observed at 

Colbert Hills. 

The Colbert Hills study (described below) corroborated our greenhouse results; however, 

in the Rocky Ford study N source did not affect moss cover, although the P-value associated 

with F trended downward as the study progressed (Table 3.2). The lack of significance appeared 

to be due to variation in the distribution of STM over the plot area, and especially an anomalous 

AMS-treated plot in one block. For example, at the October rating date, AMS treated plots had 

increased STM cover in 4 of 5 blocks, ranging from 40 to 177%, but the fifth block had a 

decrease in STM cover. We are confident in the accuracy of our data, considering the large 

number of intersections in our rating grid (961). Other factors besides N and N source obviously 

affect STM’s competitiveness (Kennelly et al., 2010; Lyons et al., 2012), and some unknown 

factor caused the decline of STM in the anomalous plot.   

At Colbert Hills, N source did affect STM cover at the last two rating dates (Table 3.2 

and Figure 3.4). Ammonium sulfate increased STM cover on the last 2 (out of 5) rating dates 

compared to the untreated, and on the next to last rating date compared to urea (Figure 3.4). By 

the study’s end, AMS increased STM cover by nearly 200%, which was similar to the results 

reported by Kennelly et al. (2010) with urea. Urea increased STM cover by 55%, but was not 

different from the untreated at any rating date. By contrast, Thompson et al. (2011) found that 

foliar-applied urea increased STM severity by 55% compared to the untreated.  

Overall, STM cover at Rocky Ford and Colbert Hills was similar at study initiation; 

however, differences between the two locations became evident as the study progressed. At 
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Colbert Hills, the size of the infestation did not decrease throughout the study; in contrast, a 

reduction in STM cover was observed at Rocky Ford during the summer months (Figure 3.5). It 

is surprising that no decrease in STM cover occurred during summer at Colbert Hills, 

considering STM utilizes a C-3 pathway for carbon fixation (Crum and Anderson, 1973). Smith 

(1999) reported maximal photosynthesis rates of Bryum argenteum collected from Antarctica at 

temperatures of 59 to 68° F, and Longton (1981) reported that day/night temperatures of 95/86° 

F were close to the upper limit for STM survival. The average maximum/minimum air 

temperature in Manhattan, KS from June 1 through August 30, 2014 was 88/65° F, which makes 

the increase in STM cover at Colbert Hills even more interesting. However, several researchers 

have found significant variation among STM populations (Longton, 1981; Horsley et al., 2011), 

which may explain the differences in STM growth between the two locations. 

Lastly, at both locations, an increase in STM cover was observed in September and 

October (Figure 3.6). Superintendents should consider applying a selective herbicide, such as 

carfentrazone-ethyl, in the fall to reduce the competiveness of STM as temperatures decrease. 

This is especially important considering STM is capable of fixing a significant amount of carbon 

at temperatures as low as 41° F (Smith, 1999), when the relative growth rate of turfgrass is low.  

  

 Conclusions 

This research supports previous findings that spraying soluble nitrogen throughout the 

growing season is likely to increase the competitiveness of STM (Kennelly et al., 2010; 

Thompson et al., 2011). Additionally, based on our research, superintendents struggling with 

STM should limit or avoid use of AMS as an N source. Although granular fertilizers have 

drawbacks for putting green fertilization, previous research demonstrated that granular N-sources 



53 

did not increase STM cover in putting greens (Borst et al., 2010; Kennelly et al., 2010; 

Thompson et al., 2011); therefore, superintendents should consider including them in their N 

fertilization program, especially in the spring and fall when STM is highly competitive. If 

superintendents choose to spray soluble N, they should be aware that STM will be more 

competitive and should implement a STM control program. Such a program may include 

selective herbicide use (Kennelly et al., 2010), along with cultural practices such as reduced 

irrigation frequency (Lyons et al., 2012), cultivation (Raudenbush and Keeley, 2014), and 

topdressing (Borst et al., 2010).  
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Figure 3.1 Effect of ammonium sulfate (AMS) and urea sprayed weekly at 4.4 lbs N acre-1 for seven weeks on silvery-thread moss 

(Bryum argenteum Hedw.) cover in the greenhouse in Run 1 and 2. Means followed by the same letter on individual rating dates 

are not significantly different (P < 0.05) according to Fisher’s Protected LSD test. 
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Figure 3.2 Lightbox images showing effect of ammonium sulfate (AMS) and urea when applied at 4.4 lbs N acre-1 wk-1 on silvery-

thread moss (Bryum argenteum Hedw.) for seven weeks, at a spray volume of 44 gal acre-1, in Run 2 of greenhouse study. Images 

captured at seven weeks after initial treatment. 
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Figure 3.3 Effect of ammonium sulfate (AMS) and urea sprayed weekly at 4.4 lbs N acre-1 for 

seven weeks on silvery-thread moss (Bryum argenteum Hedw.) dry weight at experiment 

termination in the greenhouse. Within each run, treatments with the same letter above the 

bar are not significantly different (P < 0.05) according to Fisher’s protected LSD test.  
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Figure 3.4 Effect of spraying ammonium sulfate (AMS) and urea at 4.4 lbs N acre-1 weekly from May to October on silvery-thread 

moss (Bryum argenteum Hedw.) cover in an infested creeping bentgrass putting green at Colbert Hills Golf Club (Manhattan, 

KS). Means followed by the same letter on individual rating dates are not significantly different (P < 0.05) according to Fisher’s 

Protected LSD test. 
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Figure 3.5 Effect of spraying ammonium sulfate (AMS) and urea at 4.4 lbs N acre-1 weekly from May to October on silvery-thread 

moss (Bryum argenteum Hedw.) cover in an infested creeping bentgrass putting green at Rocky Ford Turfgrass Center in 

Manhattan, KS. There were no significant differences among treatments over the course of the study. 
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Figure 3.6 Effect of spraying ammonium sulfate (AMS) and urea to creeping bentgrass plots infested with silvery-thread moss (Bryum 

argenteum Hedw.); plots highlighted in black were treated with AMS or urea; plots highlighted in red are untreated. Light green 

areas are silvery-thread moss. Photo captured on 10/17/2014 at Rocky Ford Turfgrass Research Center in Manhattan, KS. 
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    P-value Associated with F  

    Moss Cover   

    WAIT   

Run 1  df  1  2  3  4  5  6  7  Dry Weight 

    N source  2  <.0001  <.0001  <.0001  <.0001  <.0001  <.0001  <.0001  <.0001 

    Spray Volume  2  0.3906  0.0563  0.1636  0.0935  0.1432  0.7709  0.2633  0.1020 

     N × S  4  0.5098  0.0021  0.2695  0.5858  0.3893  0.4819  0.9525  0.2534 

Run 2                   

    N source  2  0.0019  <.0001  <.0001  <.0001  <.0001  <.0001  <.0001  <.0001 

    Spray Volume  2  0.1442  0.9353  0.6005  0.6473  0.1875  0.2577  0.1105  0.6821 

     N × S  4  0.4652  0.2989  0.2507  0.5564  0.2840  0.3370  0.0150  0.4703 

 

 

  

Table 3.1 ANOVA for percent silvery-thread moss (Bryum argenteum Hedw.) cover at various weeks after initial treatment (WAIT) 

when sprayed with two different nitrogen sources at differing spray volumes in the greenhouse: Run 1 and 2. 



63 

 

 

  

Table 3.2 ANOVA for nitrogen source effect on silvery-thread moss (Bryum argenteum Hedw.) cover at Rocky Ford Turfgrass 

Research Center and Colbert Hills Golf Course, Manhattan, KS. 

  P-value Associated with F for % Change in Moss Cover 

  Days After Initial Treatment 

Location  30  60  90  120  150 

Rocky Ford  0.3554  0.4162  0.2932  0.1017  0.1251 

Colbert Hills  0.1976  0.3376  0.1371  0.0391  0.0237 
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Chapter 4 - Dose Responses of Silvery-thread Moss (Bryum 

argenteum) to Carfentrazone 

 

 Abstract 

Greenhouse dose response studies were conducted to determine the effectiveness of 

POST applications of carfentrazone on silvery-thread moss (STM) control. Carfentrazone was 

applied at 0, 14, 28, 56, and 112 g a.i. ha-1 to pots containing established STM and creeping 

bentgrass. Percent gametophyte injury was visually estimated at 14, 28, 49, and 77 days after 

treatment (DAT). Shoot viability was determined by excising shoots from treated pots, and 

plating them in Petri dishes containing sand. The 28 and 49 DAT ED90 (dose required to cause 

90% gametophyte injury) were 26.8 and 54.3 g ai ha-1, respectively; both of these doses are 

substantially lower than the label rates for long- and short-term control, respectively. STM 

recovery did not occur until after 2 weeks after treatment (WAT), which indicates the label-

stipulated application interval of 2 weeks is too short. All doses reduced the viability of shoots at 

10 DAT compared to untreated STM; however, regrowth occured in all Petri dishes by 17 DAT. 

As compared with label recommendations, this research suggests that lower carfentrazone rates, 

and longer intervals, may be effective for STM suppression in putting greens.  

 

 Introduction 

Quicksilver® (a.i. carfentrazone-ethyl), a phenyl triazolinone herbicide, is commonly 

used for selective control of silvery-thread moss (STM) in golf course putting greens in the 

United States. Carfentrazone-ethyl controls weeds by inhibiting protoporphyrinogen oxidase 
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(PPO), an essential enzyme in chlorophyll and heme biosynthesis (Senseman 2007). Inhibition of 

PPO ultimately results in the unregulated accumulation of protoporphyrin IX (Dayan et al. 

1997). Protoporphyrin IX is a photodynamic pigment, and once energized by light, causes the 

formation of reactive oxygen species (Senseman 2007).  These reactive oxygen species 

compromise the integrity of cell membranes via lipid peroxidation, and the leaky membranes 

result in rapid cell death (Duke et al. 1991). Because PPO is highly sensitive to phenyl 

triazolinone herbicides, use rates required to control weeds are very low (Cobb and Reade 2010). 

Upon absorption, plants can rapidly hydrolyze carfentrazone-ethyl to its free acid 

derivative, carfentrazone; however, both are strong inhibitors of PPO (Dayan et al. 1997).  Plants 

with selectivity, such as creeping bentgrass, are believed to further metabolize carfentrazone to 

nontoxic metabolites with the assistance of P-450 mono-oxygenases, while susceptible plants do 

so to a lesser extent (Dayan et al. 1997). The activity of carfentrazone is extremely fast with 

susceptible plants capable of showing herbicidal symptoms 2 hours after treatment (Thompson 

and Nissen 2000). Because of this rapid activity, several PPO inhibitors are now included as 

tank-mix partners with the slower acting synthetic auxin herbicides for broadleaf weed control in 

turfgrass.  

In order to suppress STM, carfentrazone must reach the target site in lethal quantities to 

trigger the production of reactive oxygen species; a process which is highly dependent on the 

retention, absorption, and translocation of the herbicide (Cobb and Reade 2010). Unfortunately, 

the transport processes utilized by bryophytes, such as STM, are some of the most poorly 

understood areas in bryology (Glime 2007). Silvery-thread moss’s high surface area-to-volume 

ratio creates a large amount of surface tension, enabling it to store and regulate the movement of 

extracellular water (Proctor et al. 2007). Therefore, the movement of carfentrazone is likely to be 
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highly dependent on the water status of STM. If translocation and absorption are reduced, then 

more herbicide will be required to obtain sufficient control. Additionally, Aro (1982) evaluated 

the composition of chlorophyll proteins and reported bryophytes had more chlorophyll 

associated with light-harvesting complexes and less with reaction center complexes compared to 

vascular plants, which may affect the lethal herbicide requirement compared to vascular plants.  

Quicksilver has a supplemental label for STM control in bentgrass greens and tees. The 

label stipulates two STM control strategies: 1) For burndown and control of STM in bentgrass 

greens and tees, apply 112 g ai ha-1, followed by a second application two weeks later at the 

same rate; 2) For control over longer periods, applications may be repeated every two weeks at a 

rate no less than 33 g ai ha-1. Lastly, regardless of application strategy, no more than 448 g ai ha-1 

can be applied per year (Anonymous 2015). It is unclear why the application rates for STM 

control are relatively high (33 to 112 g ai ha-1) considering the label application rates for 

broadleaf weed control are 17 to 35 g ai ha-1. Several researchers have evaluated the efficacy of 

Quicksilver when applied at 111 g ai ha-1 (Borst et al. 2010; Kennelly et al. 2010; Thompson et 

al. 2011); however, minimal research has evaluated lower use rates. In the only peer-reviewed 

report to date, Kennelly et al. (2010) applied carfentrazone-ethyl at 56 and 112 g ai ha-1 to 

creeping bentgrass and reported no differences in STM control between the two rates throughout 

the study.  

 Additionally, once established, STM is likely to spread exclusively through the 

movement of asexual propagules, such as, protonema, gametophore fragments (shoots), and 

bulbils (Frey and Kürschner 2011; Hutsemekers et al. 2008; Raudenbush et al. 2015). Many of 

the cultural practices utilized by golf course superintendents, such as aerification, verticutting, 

grooming, and brushing are likely to dislodge and disseminate these propagules, especially 
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shoots. It seems plausible that an application of carfentrazone before implementation of the 

aforementioned cultural practices could reduce the viability of the dispersed STM shoots. 

The possibility of obtaining STM control with lower carfentrazone rates is important 

information for superintendents from an environmental and budgetary standpoint. Therefore, the 

objective of this research was to determine the efficacy of POST applications of carfentrazone, at 

rates ranging from 1/8X to 2X (where X = the approximate label rate of 112 g ai ha-1), for control 

of STM. 

 

 Materials and Methods 

 Plant Material Maintenance and Preparation 

Growth chamber studies were conducted in 2014 and 2015 to determine the dose 

response of STM to carfentrazone. All studies were repeated. The STM population used in the 

studies was collected from a single colony (< 5 cm dia) in a research putting green at Rocky Ford 

Turfgrass Research Center in Manhattan, KS. The population was clonally propagated in the 

greenhouse for three months to obtain sufficient plant material. The propagated plant material 

was removed from the greenhouse and allowed to air-dry in the laboratory at 19°C for seven 

days. After seven days, ~5 g of dried STM gametophyte were placed in a coffee grinder (Krups 

F20342, Millville, NJ) and ground for 6 to 7 s to thoroughly shred the plant material.  

PVC containers (10 cm dia. by 23 cm deep) were filled with pea gravel to a depth of 4 

cm, and then filled with 17 cm of moist sand conforming to USGA specifications (pH: 7.9; CEC: 

2.75 meq 100 g-1) for a putting green rootzone. Containers (hereafter referred to as “pots”) were 

saturated and allowed to drain several times to encourage settling, and additional sand was added 

as needed to position the sand 2 cm from the top of the pot. After draining for 24 hr, each pot 
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was planted with 1.2 g of ground STM material. Plant material was evenly spread over the 

surface, and then immediately watered with a misting nozzle (Dramm 610SF, Manitowoc, WI) 

until nearly saturated. The misting nozzle was continuously moved while watering to prevent 

puddling of water at the soil surface. Puddling would have allowed the ground gametophyte 

material to float and consequently migrate towards the outer edge of the pots, reducing 

uniformity. Pots were watered three times daily for ten days, and then once daily for the 

remainder of the study. Silvery-thread moss gametophores began actively growing after 7 days. 

Pots were fertilized weekly throughout the study with a Hoagland 1:10 solution to provide 3 kg 

N ha-1 wk-1. 

In putting greens, STM rhizoids attach to the crowns, roots, and shoots of desirable 

turfgrass species. Preliminary dose response studies on pots solely containing STM showed the 

importance of the rhizoid-turfgrass relationship, as treated gametophytes would begin to detach 

from the sand substrate, curling up at the pot edges. To prevent this from occurring, six 1.3 cm 

dia × 8 cm creeping bentgrass cv. 007 plugs were inserted through the STM gametophyte and 

into the sand substrate (Figure 4.1). The plugs and STM were allowed to acclimate for 30 d 

before any treatments were applied and plugs were trimmed twice weekly with scissors 

throughout the duration of the study. Plants were grown in the greenhouse for 90 d before 

treatments were applied. All plants used in the experiments had 100% cover and an average 

gametophore length of 2 cm. After 90 d, pots were transferred to the growth chamber (Conviron 

E15, Winnipeg, Canada) and allowed to acclimate for 7 d. The growth chamber was set to a 

day/night temperature of 20°/17°C (HOBO Pro V2, Onset Computer Corporation, Bourne, MA) 

with a 16 hr photoperiod emitting 690 μmolm-2 s-1 of photosynthetically active radiation 

(AccuPar LP-80, Decagon Devices, Pullman, WA) at 30 cm above the pots.  
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 Gametophyte Injury and Shoot Viability 

Carfentrazone was applied at rates of 0, 14, 28, 56, 112, and 224 g ai ha-1. Herbicides 

were applied using a moving-track spray chamber (Devries Manufacturing, Hollandale, MN) 

affixed with a TeeJet XR8002EVS nozzle, operating at 220 kPa to deliver a spray volume of 220 

L ha-1. All treatments were applied with a nonionic surfactant (0.25% v/v). Percent gametophyte 

injury was visually estimated weekly for eleven weeks. Plants with necrotic gametophore tips 

were considered dead, while green tips were considered healthy. At 77 DAT, STM gametophytes 

were harvested and fresh weight was recorded. Harvested plant material was dried at 70°C for 2 

d and dry weight was recorded.  

Shoot viability was also determined by harvesting individual shoots (gametophores) 

directly from the pots described above. At 3 days after treatment (DAT), approximately 40 total 

shoots were harvested from four random areas of each pot using fine point forceps. Harvested 

shoots were immediately submerged in 1.5 mL centrifuge tubes containing double-distilled 

water. Eight randomly selected shoots from each centrifuge tube were placed in 51 mm petri 

dishes filled with sand (previously described) which had been autoclaved for 20 min at 120°C at 

a pressure of 98 kPa; sand was added to the dishes to a depth of ~ 5 mm. Shoots were arranged in 

two parallel rows, each with four shoots, across the middle of the dishes. Double distilled water 

was pipetted over both rows of shoots until a light film of water appeared at the soil surface and 

then lids were placed on the dishes. Dishes were placed in the previously described growth 

chambers and double distilled water was pipetted into dishes every 4 d to maintain a film of 

water at the surface. At 7 and 14 days after plating (DAP) the viability of individual shoots was 

determined by counting the number of erect shoots with > 5 leaves and by visually estimating the 

percent of a shoot covered by protonema. Structures were identified and counted using a 

dissecting microscope (SMZ645, Nikon Co., Tokyo, Japan).   
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 Experimental Design and Analysis 

A completely randomized design with four replicates and a one-way treatment structure 

was used to evaluate the effect of carfentrazone dose on several STM growth parameters. Percent 

gametophyte injury, gametophyte fresh and dry weight, shoot viability counts, and percent 

protonema were subjected to ANOVA using the GLM procedure in SAS. Experimental run was 

included in the model, and data were combined when a significant run × dose interaction (P 

<0.05) was not observed. Means were separated using Fisher’s protected LSD test (P <0.05). 

Percent gametophyte injury at 28 and 49 DAT were further analyzed using nonlinear regression. 

A three parameter log-logistic model was fit to the data because it had the lowest bias-corrected 

Akaike information criterion.  The log-logistic model was used to calculate the dose of 

carfentrazone-ethyl required to cause 50 and 90% gametophyte injury at 28 and 49 DAT. As 

described by Kniss and Lyon (2011), the lower limit of the log-logistic model is constrained to 

zero, so the equation takes the form of: 

𝑌 = 𝑑/{1 + exp[𝑏(log x − log 𝑒)]}                   [1] 

where Y is percent gametophyte injury; d is the upper asymptote; b is the slope around e; x is the 

rate of carfentrazone; and e is the rate of carfentrazone required to cause 50% of the maximum 

response. ED50 and ED90 values were estimated using the sensitivity index function in the drc 

package (Knezevic et al. 2007) in R (R Foundation for Statistical Computing, Vienna, Austria, 

2014). 

 

 Results and Discussion 

A dose × run interaction was not present for gametophyte fresh- and dry-weight, shoot 

viability, and percent protonema measurements (Tables 4.1 and 4.2); therefore, data were 
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combined for those parameters. Additionally, there was no dose × run interaction for 

gametophyte injury data at 28 and 49 DAT, but there was an interaction at 14 and 77 DAT 

(Table 4.1). Therefore, we combined data for the 28 and 49 DAT rating dates, and discussion of 

gametophyte injury will be focused on those dates, for the following reasons: Close inspection of 

the interaction plots (not shown) revealed that the interactions at 14 DAT was due to very slight 

“injury” (<10%) in the untreated STM from run 2, while all higher doses in run 2 caused similar, 

but slightly less, injury to STM than in run 1; thus, the interaction was not judged to be a 

meaningful one. More importantly, the 28 and 49 DAT rating dates were the most definitive in 

making determinations of gametophyte injury. For example, we had anticipated that 14 g ai ha-1 

(the 1/8X rate) would cause considerably less injury compared to higher doses at 14 DAT, but all 

doses caused > 85% injury (Figure 4.1); and insights gained from the 77 DAT data were not 

substantially different those obtained from the 49 DAT data. The main difference was that 

overall injury levels at 77 DAT were lower for all doses, as the STM continued to recover. 

At 28 DAT, 14 g ai ha-1 of carfentrazone caused 83% injury to STM gametophytes, 

which was significantly less than the > 97% injury caused by the 56, 112, and 224 g ai ha-1 doses 

(Figure 4.2).  The estimated ED90 value for gametophyte injury at 28 DAT was 26.8 g ai ha-1. At 

49 DAT some recovery had occurred, and the 14 g ai ha-1 had only 50% gametophyte injury 

(Figures 4.2 and 4.3). The 112 and 224 g ai ha-1 doses had > 90% injury, which was significantly 

more than with 14 and 28 g ai ha-1, but not different than with 56 g ai ha-1. The ED90 value at 49 

DAT was 54.3 g ai ha-1, which was a 2-fold increase compared to the ED90 value at 28 DAT. 

Therefore, superintendents spraying multiple applications at intervals up to 4 weeks should 

expect to see adequate control with 26.8 g ai ha-1; while superintendents who make less frequent 

applications would benefit from the higher rate of 54.3 g ai ha-1. The programs described above 
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differ somewhat from those currently on the Quicksilver label. The experimental 26.8 g ai ha-1 is 

similar to the 33 g rate prescribed for “control over longer periods”; however, the label stipulates 

applying at 2 week intervals, whereas we did not observe recovery until after 2 WAT. The 54.3 g 

ai ha-1 is a 50% reduction from the higher 112 g label rate of Quicksilver. In this study, no 

differences in injury between the 56 and 112 g dose were observed; similar to the results 

presented by Kennelly et al. (2010). 

Silvery-thread moss gametophyte growth was also affected by carfentrazone dose (Table 

4.1). Untreated STM had higher fresh- and dry-biomass accumulation compared to those treated 

with carfentrazone (Figure 4.4). Notably, there were no differences in biomoass accumulation of 

STM among carfentrazone doses tested (Figure 4.4); while several doses caused > 90% visual 

injury, that injury was not accompanied by proportionate decreases in fresh- and dry-weight.  

This result demonstrates a remarkable ability of STM gametophytes to resist decay after being 

injured by carfentrazone. After being treated with herbicides, most vascular plant carcasses 

eventually lose their turgidity, collapse, and begin to decompose. However, bryophytes have a 

slower decomposition rate compared to vascular plants (Scheffer et al. 2001). In fact, many 

bryophytes actively produce microbial inhibitors to decrease the rate of decomposition (Glime 

2007). This slower rate of decomposition is a key factor in understanding why applying 

carfentrazone alone for STM control may be unsuccessful: Bentgrass stolons and tillers may 

have difficulty penetrating the dense STM gametophyte, even after it has been injured by 

carfentrazone. Therefore, following carfentrazone application, superintendents should consider 

implementing hollow-tine aerification or verticutting to create available sites within the injured 

gametophyte for desirable turfgrass species to occupy. (Raudenbush and Keeley 2015). For small 

infestations, mechanical removal with a knife or cup cutter may be more practical and less 
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disruptive to play. Ultimately, STM’s slower decomposition rate presents challenges for 

management; therefore, practices to increase the rate of STM decomposition are possible 

avenues for future research.  

Once established, STM can spread through dislodged shoots, increasing the size of an 

infestation (Raudenbush et al 2015). If the viability of dislodged shoots could be reduced by 

carfentrazone, then superintendents could make an application before implementing practices 

that are likely to dislodge shoots (e.g., aerification, verticutting, grooming, brushing, etc.), to 

reduce the spread and establishment of new colonies.  This research showed that carfentrazone 

did affect the viability of individual shoots (Table 4.2 and Figure 4.5). At 7 DAP (corresponding 

to 10 DAT), petri dishes containing shoots harvested from untreated STM had a mean count of 

7.8 shoots with > 5 leaves, while shoots harvested from STM receiving any carfentrazone dose 

had none (data not shown). The erect shoots in untreated pots were not new leaf primordia, 

rather, the existing gametophore tip produced rhizoids and exhibited positive phototropism 

(Figure 4.6). Secondly, a mean shoot count of 7.8 means that almost every plated shoot produced 

rhizoids and began to establish in 7 d, which may have important implications for managing the 

spread of STM. Furthermore, while no carfentrazone-treated STM had erect shoots with >5 

leaves at 7 DAP, nearly all of the excised shoots (from all carfentrazone doses) were producing 

new leaf primordia and protonema (Figure 4.6b). 

By 14 DAP, all petri dishes contained a large number of erect shoots; however, the 112 

and 224 g ai ha-1 rates of carfentrazone reduced the number of shoots compared to the untreated 

(Figure 4.5). This raises an interesting question: Why did the shoots in petri dishes exhibit such 

prolific and rapid regrowth, but the intact gametophytes took ≥ 28 d to exhibit recovery? Two 

scenarios seem plausible: First, although it was not directly measured, relative humidity in the 
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covered petri dishes is likely near 100%, while the relative humidity in the growth chamber was 

~60%. Thus, higher humidity in the petri dishes may have created a favorable environment for 

protonema production, and consequently, new leaf primordia. Second, an STM gametophyte is 

very dense, consequently, only the uppermost leaves receive exposure to light. Once plated in the 

petri dishes, the entire shoot was exposed to light, which may have triggered the production of 

new leaf primordia. In any case, eight individual shoots were capable of producing > 60 new 

plants at the highest dose in our study (Figure 4.5), which reinforces the importance of taking 

action in the early stages of an STM infestation, considering a colony 5 cm in diameter can 

contain thousands of individual shoots.  

In summary, the ED50 and ED90 values suggest that lower doses of carfentrazone are 

effective at injuring STM (Figure 4.2). Additionally, the current Quicksilver label stipulates 

spraying carfentrazone at two-week intervals. In our research, no regrowth was observed until 

after 2 WAT. Superintendents should closely monitor gametophyte colonies following an 

application of carfentrazone. This herbicide inhibits an enzyme involved in chlorophyll 

production; therefore, if STM has no green, healthy tissue, then minimal sites will be available 

for further injury. Superintendents should consider extending the application interval to three or 

four weeks, by which time some regrowth will likely have occurred.  

The ability of carfentrazone to reduce the viability of fragmented shoots, makes it a 

potentially valuable tool for use in conjunction with the cultivation practices commonly used on 

putting greens. Superintendents managing STM infestations should consider making an 

application of carfentrazone about one week before the implementation of canopy-invasive 

practices, such as core-aerification, verticutting, and brushing. Because the carfentrazone-treated 
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shoots in our study showed the ability to regenerate, a follow-up application two weeks after 

canopy-invasive practices will help control any dispersed plant material. 

It is important to acknowledge that plants are typically easier to control in a greenhouse 

or growth chamber, than in the field. However, even the lowest rates used in our study caused 

significant injury to STM, which certainly warrants testing of lower rates in the field. The STM 

injury caused at 56 g ai ha-1 (1/2X) was similar to that at 112 g ai ha-1 in this study, and after 28 

days, the 28 g ai ha-1 (1/4X) showed >90% injury to STM. These rates should be evaluated in 

field studies, using 3 to 4-week application intervals. Lastly, carfentrazone is an extremely 

valuable tool for reducing the performance of STM; however, the ability of this plant to resist 

decay is perhaps its best weedy attribute. Future research to determine practices that encourage 

the breakdown and decomposition of treated gametophytes would be valuable.  
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Figure 4.1 Lightbox images showing silvery-thread moss (Bryum argenteum Hedw.) 

gametophyte injury at 14 days after treatment from an application of carfentrazone. The six 

small, circular green patches are creeping bentgrass plugs. Doses, expressed in g a.i. ha-1, 

are shown in bottom-left corners of images. The label rate for STM control in creeping 

bentgrass putting greens is 112 g a.i. ha-1. 
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Figure 4.2 Percent silvery-thread moss (Bryum argenteum Hedw.) gametophyte injury, and ED50 

and ED90 values, as influenced by carfentrazone application rate at 28 and 49 days after 

treatment (DAT). Values within parenthesis are the standard error (±) for each ED value as 

predicted by the log-logistic model. The label rate for STM control in creeping bentgrass 

putting greens is 112 g a.i. ha-1. 
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Figure 4.3 Lightbox images showing silvery-thread moss (Bryum argenteum Hedw.) 

gametophyte injury at 49 days after treatment from an application of carfentrazone-ethyl. 

Doses, expressed in g a.i. ha-1, are shown in bottom-left corners of images. The label rate for 

STM control in creeping bentgrass putting greens is 112 g a.i. ha-1.
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Figure 4.4 Effect of carfentrazone-ethyl on gametophyte fresh- and dry-biomass harvested at 77 

days after treatment. Within each graph, treatments with the same letter above the bar are 

not significantly different (P < 0.05) according to Fisher’s protected LSD test. 
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Figure 4.5 Viability of eight plated silvery-thread moss (Bryum argenteum Hedw.) shoots 17 d 

after being harvested from pots treated with differing rates of carfentrazone-ethyl.  
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Figure 4.6 Silvery-thread moss (STM; Bryum argenteum Hedw.) shoots excised from 

carfentrazone-treated STM in a growth chamber: a) Untreated shoot producing rhizoids and 

exhibiting positive phototrophism; b) shoot excised from STM treated with carfentrazone at 

56 g ai ha-1 producing protonema and new leaf primordia.
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    P-value Associated with F 

    % Gametophyte Injury  Weight (g) 

Source  df  14 DAT  28 DAT  49 DAT  77 DAT  Fresh  Dry 

Dose  5  <.0001  <.0001  <.0001  <.0001  <.0001  <.0001 

Run  1  0.0086  0.3651  0.1291  0.001  <.0001  <.0001 

D × R  5  0.0001  0.7947  0.8386  0.0071  0.3553  0.2336 

† Highest label rate for silvery-thread moss control in creeping bentgrass putting greens. 

  

Table 4.1 ANOVA for percent gametophyte injury at various days after treatment (DAT) and gametophyte fresh- and dry-weights at 

harvest when sprayed with differing doses (0, 14, 28, 56, 112†, 224 g a.i. ha-1) of carfentrazone. 
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    P-value Associated with F 

    Total Shoots   % Protonema 

Source  df  7 DAT  14 DAT  7 DAT  14 DAT 

Dose  5  <.0001  0.0340  0.0464  0.5111 

Run  1  0.1519  0.0207  0.0034  0.2520 

D × R  5  0.4863  0.7088  0.5816  0.8440 

† Highest label rate for silvery-thread moss control in creeping bentgrass putting greens. 

  

Table 4.2 ANOVA for total number of erect shoots with > 5 leaves, and percent of shoot covered with protonema when harvested 

from STM treated with differing doses (0, 14, 28, 56, 112†, 224 g a.i. ha-1) of carfentrazone at 7 and 14 days after treatment (DAT). 
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Chapter 5 - Effect of Irrigation Water pH and Acidifying-Source on 

Silvery-Thread Moss (Bryum argenteum Hedw.) Establishment 

 

 Abstract 

Many bryophytes are intolerant of osmotic stresses; nevertheless, silvery-thread moss 

(STM) often infests golf course greens irrigated with water containing a moderate amount of 

sodium and/or bicarbonates. Because of the poor quality of such water, irrigation systems may be 

retrofitted with acid injection systems, which could potentially be encouraging the growth of 

STM. Therefore, the objective of this study was to determine if altering the pH of sodic irrigation 

water using either sulfuric- or hydrochloric acid affects the growth of STM. Secondarily, if there 

was an effect on STM growth, we sought to understand whether that effect was due to 

differences in nutrient uptake or availability under the different water pH’s and/or acidifying 

sources. Phosphate buffer solutions (0.01 M, pH=9) were titrated with each acid to obtain pH’s 

5, 6, 7, and 8. The buffer solution served as the control. Irrigation solutions were applied daily to 

pots containing a sand substrate and nascent STM for 28 d. Percent STM cover was determined 

weekly using digital image analysis. Tissue and soil analysis was conducted after 28 d. Acid-

source had no effect on moss cover, but pH significantly affected STM cover. Generally, pots 

irrigated with pH’s 5 and 6 had six- to seven-fold increases in STM cover compared to pH’s 7 

and 8. Additionally, the gametophyte tissue of pots treated with pH 5 contained twice as much 

potassium compared to pots irrigated with pH 9.  
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 Introduction 

Several bryophytes, such as silvery-thread moss (STM) are ectohydric, and capable of 

absorbing water and dissolved nutrients across the entire surface of the gametophyte (Chopra and 

Kumra, 1988). Because of this unique morphology, STM cannot extract water and nutrients from 

deep within the soil profile like vascular plants; rather, water is supplied from irrigation, rainfall, 

or dew. Vascular plants differ from STM because they rely on symplastic or apoplastic pathways 

to transport water and nutrients; however, STM can also transport water and nutrients via 

external capillary action along leaf surfaces (Proctor, 2000). The external movement of water is 

much more rapid than internal movement in STM (Glime, 2007) and a considerable amount of 

water is held in the capillary spaces of the gametophyte (Chopra and Kumra, 1988; Proctor, 

1979). Because the majority of STM’s water is stored externally, its water status is highly 

influenced by the surrounding environment. During droughty periods, evaporation exhausts 

external capillary water, and STM cells quickly dry out and cease metabolism (Proctor et al., 

2007). However, metabolism rapidly resumes when water is resupplied, so STM typically exists 

in a dessicated or fully turgid state. 

Water is arguably the most limiting factor of STM growth, which may explain its 

competitiveness in golf course putting greens. Many putting greens are constructed using a sand 

substrate, allowing for adequate drainage while resisting compaction; consequently, they often 

require irrigation two or more times weekly during the summer months. Because of this high 

irrigation frequency, STM is likely supplied enough water to remain turgid and actively 

metabolizing throughout most of the growing season. Additionally, putting greens are typically 

mown ≥ 6 times per week in the early morning; therefore, STM can absorb the dew or guttation 

water that is dislodged from leaf blades during mowing. Lastly, the microclimate created by the 

turfgrass canopy helps STM reduce and regulate water loss: In a putting green, STM is 
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submersed in the laminar boundary layer created by the transpiring turfgrass leaves, which helps 

reduce the amount of water lost via gas exchange. Several other factors contribute to the success 

of STM in putting greens (Raudenbush et al., 2015), but a plentiful supply of water is perhaps the 

most important.  

The STM gametophyte acts similar to a sponge, wherein external water is directly 

absorbed by the gametophyte and stored in the capillary spaces between shoots. Because of this 

unique adaption, STM may have increased sensitivity to changes in the chemical composition of 

supplied external water compared to vascular plants, which are somewhat protected by the 

buffering capacity of the soil (Brady and Weil, 2002). The potential sensitivity of STM to 

changes in water quality is of interest because golf course irrigation sources are frequently less 

than ideal; specifically, they may be of high pH, and contain excessive sodium and/or 

bicarbonate (Whitlark, 2010). Consequently, irrigation pump houses are often retrofitted with 

acid injection systems to acidify the water and combat these potentially harmful salts; however, 

scientific research regarding their effectiveness is limited (Christians, 1999). Bryophytes are 

reported to be relatively intolerant of osmotic stress (Glime, 2007); nevertheless, STM is often a 

successful invader of putting greens irrigated with water containing a considerable amount of 

sodium and/or bicarbonates. This incongruity raises questions about how acid injection systems 

could be influencing the growth of STM. 

Sulfuric acid is arguably the most cost effective acidifying source, and is commonly used 

to reduce irrigation water pH to ~6.5 (Whitlark, 2010), but this process may be increasing the 

competitiveness of STM. Little is known concerning the effect of pH of the irrigation water on 

STM, but Raudenbush and Keeley (2014) fertilized STM with foliar applications of either 

ammonium sulfate (AMS) or urea, and reported AMS increased STM growth more than urea. 
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They speculated that the positive effect on STM growth with AMS may have been due to a pH 

reduction of the extracellular water retained by the gametophyte, or to the additional sulfur 

supplied by AMS. 

When sulfuric acid is injected into irrigation water, it both reduces pH of the irrigation 

water, and supplies sulfate. If either of these effects increases STM growth, then golf courses 

utilizing sulfuric acid injection systems could be predisposed to STM infestations. If sulfate, but 

not lower irrigation water pH, increases STM growth, then non-sulfurous acids such as 

hydrochloric acid could be used to acidify irrigation water without increasing STM growth. 

Currently, no research is available regarding the effects of irrigation water pH or acidifying 

source on STM. Therefore, the objectives of this study were to: 1) determine if altering the pH of 

irrigation water affects the growth of STM, and 2) determine if sulfuric acid increases STM 

growth compared to a non-sulfurous acid such as hydrochloric acid. Secondarily, if there was an 

effect on STM growth, we sought to understand whether that effect was due to differences in 

nutrient uptake under the different water pH’s and/or acidifying sources. 

  

   

 Materials and Methods 

A greenhouse study was conducted in the Throckmorton Plant Science Center at Kansas 

State University, Manhattan, KS to determine the effects of irrigation water pH and acidifying 

source on STM growth and nutrient uptake. Two experimental runs of the study were conducted, 

with the second run starting one week after the first. The greenhouse was maintained at a 

day/night temperature of 20°/15° C (HOBO Pro V2, Onset Computer Corporation, Bourne, MA) 

throughout the duration of the study. The STM population used in the experiment was a colony 
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originally collected from a research green at Rocky Ford Turfgrass Research Center in 

Manhattan, KS. The population was clonally propagated in the greenhouse for several months 

prior to trial initiation to obtain sufficient plant material. The propagated plant material was 

removed from the greenhouse and allowed to air-dry in the laboratory at 20° C for 7 days. After 

7 days, 5 g of dried plant material were placed in a coffee grinder (Krups F20342, Millville, NJ) 

and ground for ~6 s, until the plant material was sufficiently shredded. 

PVC containers (10 cm dia. by 22 cm deep) were filled with pea gravel to a height of 5 

cm, and then filled with 16 cm of moist sand conforming to USGA specifications (pH: 7.9; CEC: 

2.75 meq 100 g-1) for a putting green rootzone. Containers (hereafter referred to as pots) were 

saturated and allowed to drain several times to encourage settling, and additional sand was added 

as needed to position the sand 2 cm from the top of the pot. After pots drained for 24 h, each pot 

was planted with 1.2 g of ground STM material. Plant material was evenly spread over each 

individual pot and immediately watered with a misting nozzle (Dramm 610SF, Manitowoc, WI) 

until nearly saturated. The misting nozzle was continuously moved while watering the pots to 

prevent puddling of water at the soil surface. Puddling would have allowed the ground 

gametophyte material to float and consequently migrate towards the outer edge of the pots, 

reducing uniformity. Pots were watered twice a day for 14 days. Silvery-thread moss 

gametophores began actively growing after 10 days. For each run of the experiment, 20% more 

pots were planted than were needed to complete the experiment; the pots with the most 

homogeneous STM cover were selected for each run to improve homogeneity of experimental 

units. Pots had a mean STM cover of 8% at trial initiation in run 1, and 12% in run 2. 

A two-way factorial treatment structure was used to evaluate the effect of irrigation pH (4 

levels) and acidifying source (2 levels) on STM growth and nutrient uptake. Irrigation solutions 
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were prepared in 20 L plastic buckets (Model # 05GLHD2, Home Depot, Atlanta, GA) in the 

laboratory using double-distilled water with a final solution volume of 8 L. All solutions were 

prepared from a 0.01 M phosphate buffer comprised of reagent grade NaH2PO4·H2O and 

Na2HPO4·7H2O at concentrations of 0.0002 and 0.0098 M, respectively. The previous salts were 

added to buckets containing 8 L of double-distilled water and agitated with a stirring plate and 

octagonal magnet until salts were completely dissolved. The stock 0.01 M phosphate buffer 

solution had a pH of 9. A pH probe (AB150, Accumet) was submerged into the agitating solution 

and HCl or H2SO4 was titrated into the buffered solutions to obtain pH’s of 5, 6, 7, and 8 for 

each acid. The prepared irrigation solutions were applied to the pots containing nascent STM 

every day for four weeks using a 100 mL Griffin beaker. Each pot received 40 mL of solution, 

which was slowly poured to prevent puddling and ensure uniform distribution. Because the 

solutions had moderately high EC values (~1.8 ds m-1), pots were flushed once per week with 

100 mL of distilled water to mimic a rainfall or flushing event. Additionally, pots were fertilized 

weekly with solubilized urea and dibasic potassium phosphate to supply 4.9 kg N, 0.42 kg P and 

2.02 kg K ha-1 per week. Treatments were administered for 28 d. 

Percent STM cover was determined weekly using overhead digital images, which were 

batch-processed using the methods described by Richardson et al. (2001). Images were obtained 

using a Nikon D3000 (Nikon Co., Tokyo, Japan) digital single-lens reflex camera affixed to a 

custom-built lightbox (0.5 × 0.7 × 0.6 m) containing four 6500 K-temperature fluorescent light 

bulbs (model ESL23TM/D, Feit Electric Co., Pico Rivera, CA). The camera utilized a shutter 

speed of 1/125 s, aperture of F5.6, ISO 800, and focal length of 50 mm. Images were saved as 

JPEG format because light conditions were uniform and well-controlled throughout the 

experiment.  Percent cover was extracted from images using SigmaScan Pro (Version 5.0, SPSS, 
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Chicago, IL). The program was able to selectively identify individual STM gametophores 

utilizing a hue range of 60-75 and a saturation range of 50-100. “Difference in percent cover 

from control” was determined by comparing STM cover under each irrigation treatment to STM 

cover in pots receiving only the stock 0.01 M phosphate buffer solution (pH 9). The calculation 

was as follows: Difference in % cover from control = (% cover of treatment pot - % cover of 

control pot within respective replicate). A negative value indicates a treatment had lower percent 

cover compared to the control. 

At 4 weeks after initial treatment (WAIT), STM gametophytes were carefully discarded 

and the top 2.5 cm of soil were removed from each pot and sent to the soil testing lab for 

analysis. All samples were analyzed using the methods described in “Recommended Chemical 

Soil Test Procedures for the North Central Region” (Anonymous, 1998).  Samples were analyzed 

for pH, available phosphorus, potassium, calcium, magnesium, sodium, iron, manganese, zinc, 

ammonium, and nitrate. Soil testing procedures and extractants are outlined in Table 5.1.  

An ancillary study was conducted to determine nutrient uptake by sampling the tissue 

nutrient content of STM irrigated with water having pH 5, 7, or 9. We originally intended to 

perform this nutrient analysis using gametophyte tissue from the larger, percent cover study 

mentioned above; however, there was insufficient STM tissue for analysis under several of the 

treatments. Therefore, it was necessary to administer the irrigation treatments to established 

gametophytes. To accomplish this, STM was planted in pots in the greenhouse using the same 

procedures previously described. The pots were misted twice per day using tap water and 

fertilized weekly with a 1:10 Hoagland’s solution for two months. At two months, the 

gametophyte was dense and had gametophores ~1 cm in length. Three irrigation treatments (pH 

5, 7, 9) were prepared and applied daily, as previously described, for 14 d to the two-month-old 
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gametophytes; pH’s 5 and 7 were obtained from HCl. After 14 d, a curved iris scissor was used 

to harvest the gametophore tips; approximately 4 g of fresh gametophore material was harvested 

from each pot (Figure 5.1). Tissue was dried at 70° C for 48 h and submitted to the Kansas State 

soil testing laboratory for analysis of P, K, NH4, NO3, Ca, Fe, and Mg content using nitric-

perchloric acid digest and combustion methods.  

A completely randomized design with three replicates was used in run 1, and four 

replicates in run 2, to evaluate the water pH/acid source treatments in the cover study. A repeated 

measures analysis was conducted for difference in percent STM cover from control in the 

MIXED procedure of SAS, and experimental run was treated as a random effect. The error 

structure was fit with an autoregressive heterogeneous model, as it had the lowest Akaike and 

Bayesian information criterion values. Means within each WAIT were separated using Fisher’s 

protected LSD test (P < 0.05).  

For the tissue analysis study, a completely randomized design with four replicates and a 

one-way treatment structure was used, in which irrigation water pH was the independent 

variable. Tissue and soil test data were analyzed using the GLM procedure in SAS and means 

separated using Fisher’s protected LSD test (P < 0.05). 

 

 Results and Discussion 

Silvery-thread moss cover was highly affected by pH of the irrigation water, but acid 

source had no effect (Table 5.2). It was previously hypothesized that foliarly applied AMS may 

have enhanced the growth of STM by the addition of sulfate. If this were true, we would expect 

acid-source to be significant in the ANOVA. The fact that it was not is, perhaps, a best-case 

scenario for superintendents, considering sulfuric acid is one of the most economical 
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amendments for reducing irrigation water pH (Whitlark, 2010). The effect of pH on STM growth 

changed throughout the duration of the study, causing a pH × WAT interaction; therefore, means 

for each rating date are presented separately (Figure 5.2).  

The effect of pH on STM cover was pronounced at every rating date, with pH’s 5 and 6 

having higher coverage than pH’s 7 and 8 (Figure 5.2). Trends were similar among treatments at 

2, 3, and 4 WAIT; however, the pH × WAT interaction likely stems from the results at 1 WAT 

(Figures 5.2 and 5.3). After 1 WAT, pH’s 5 and 6 were not different but always had higher 

coverage compared to pH’s 7 and 8 (Figures 5.2 and 5.4). By contrast, at 1 WAT, pH 6 had more 

STM cover than pH 5, but both had higher cover than pH’s 7 and 8.  

The slower growth of STM in pots irrigated with a pH ≥ 7 was surprising, considering 

many bryologists culture STM in vitro using distilled water, which typically has a pH ~7. In this 

study, we used a buffer comprised of mono- and di-basic sodium phosphate to ensure the pH of 

the solutions remained stable throughout the experiment, while mimicking a situation in which 

an acid injection system may be used on a golf course; consequently, solutions contained a 

moderately high amount of sodium, which is reflected in an average tested EC value of 1.8 ds m-

1. The buffer had a final solution concentration of 0.02 M Na+, and given the irrigation rates used 

in this study, we applied 22 kg Na ha-1 d-1. Our previous experience using the tap water (pH ~9, 

but low in salinity) in the Kansas State greenhouses to establish and maintain STM showed no ill 

effects on STM growth. Therefore, it seems likely that osmotic stress, induced by sodium, 

suppressed the growth of STM in these studies, rather than high pH per se. If so, the question is: 

why was this effect more pronounced at pH’s ≥ 7? 

It seems plausible that the sodium tolerance of STM in our studies was enhanced at the 

lower irrigation water pH’s of 5 and 6. Wang et al. (2008) explained that high apoplastic levels 
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of Na+ in bryophytes cause hyperosmotic stress and lead to an ionic imbalance, in which salt-

stressed plants must reestablish cellular ion homeostasis via transmembrane proteins, such as 

sodium ATPase and vacuolar H+-ATPase. Perhaps these vital enzymes were less active, or even 

denatured, at pH’s ≥ 7, but remained intact and active at pH’s 5 and 6, enabling the STM to 

better tolerate the increased salt load.  

The availability of most nutrients is highly dependent on soil chemical properties, such as 

pH; therefore, it is also possible that differences in nutrient availability and uptake are 

responsible for the large differences in percent cover observed at different irrigation water pH’s. 

Silvery-thread moss is not able to extract nutrients from deep in the soil profile; however, it may 

absorb solubilized nutrients at the interface between soil and rhizoid. Unfortunately, the 

mechanisms of nutrient absorption and movement in bryophytes are not well understood (Glime, 

2007). If STM is obtaining nutrients from the soil/rhizoid interface, then a nutrient with higher 

availability in the soil should translate into higher levels in the tissue. This possibility is why we 

measured nutrient availability in the top 2.5 cm of soil along with the nutrient content in the 

tissue. 

As one might expect, several soil nutrient levels were affected by irrigation water pH, and 

acid-source again had no effect (data not presented). However, none of the nutrients showing 

differences in soil availability correlated with tissue nutrient content. In fact, Mg and K were the 

only tissue nutrients significantly affected by irrigation pH (P= 0.003 and <.0001, respectively). 

Magnesium content was actually lower at pH 5 than at higher pH’s: STM tissue irrigated with 

pH’s of 7 and 9 contained 0.57% Mg, while STM irrigated with pH 5 water had only 0.38% Mg. 

Magnesium has many important functions in the plant; therefore, it does not seem likely that it 

was related to the increased cover we observed at pH’s 5 and 6. 
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Potassium, however, may have played an important role: The amount of K in the tissue 

increased as pH decreased, with a 2-fold increase in K for pH 5 compared to pH 9  (Figure 5.5). 

The transport and regulation of potassium is a crucial component for plants undergoing salt 

stress. During salt stress, several enzymes, such as H+-ATPase, actively attempt to maintain a 

higher K concentration compared to Na+in the cytosol (Zhu, 2003). This is necessary because Na 

and K ions have similar properties, causing Na to compete with K for major binding sites in vital 

metabolic processes (Shabala and Cuin, 2007). The increased K in gametophyte tissue could 

potentially explain why mature STM irrigated with sodic pH 5 water did not exhibit any injury, 

while STM irrigated with pH’s 7 and 9 showed visual injury mirroring the concentration of K+ 

found in the tissue (Figure 5.6). The association between tissue K content, irrigation water pH, 

and visual injury (Figures 5.5 and 5.6) makes a strong argument for K+ playing a role in the 

increased cover of STM irrigated with sodic pH 5 or 6 water, compared to pH’s ≥ 7. 

The effect of irrigation pH on STM growth is remarkable considering all solutions 

supplied pots with 22 kg Na+ ha-1 d-1. This raises a fundamental question: How did lowering the 

irrigation pH to 5 or 6 enable STM to better withstand these sodium levels? There are several 

enzymes involved in plant salt tolerance, and each has a specific pH range at which it operates 

most efficiently (Michelet and Boutry, 1995). Perhaps reducing the pH of the Na+ loaded 

irrigation water increased the activity of these crucial enzymes. Further investigation is required 

to determine the mechanisms involved that allowed STM to better tolerate this high salt 

environment when irrigation water pH was reduced. Considering the emphasis currently placed 

on water conservation and management, it would be worthwhile to investigate whether similar 

irrigation water pH effects occur with vascular plants; specifically, future research should 

determine if vascular plants benefit from reducing the pH of sodium-loaded irrigation water. 
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Figure 5.1 Shoot tip tissue harvested from pot using curved iris scissors and analyzed for tissue 

nutrient content.  
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Figure 5.2 Silvery-thread moss (Bryum argenteum Hedw.) cover when irrigated with water differing in pH, at one to four weeks-after-

initial-treatment (WAIT).  
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Figure 5.3 Effect of irrigation water pH on silvery-thread moss (Bryum argenteum Hedw.) growth at 1 week after initial treatment. 
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Figure 5.4 Effect of irrigation water pH on silvery-thread moss (Bryum argenteum Hedw.) growth at 4 weeks after initial treatment.   
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Figure 5.5 Silvery-thread moss gametophyte potassium tissue content as affected by irrigation water pH. Treatments with the same 

letter above the bar are not significantly different (P < 0.05) according to Fisher’s protected LSD test. 



104 

 

 

Figure 5.6 Silvery-thread moss visual injury as affected by irrigation water pH after irrigation treatments were applied daily for 14 d. 

  



105 

 

 

Table 5.1 Laboratory procedures and extractants used by the Kansas State University Soil 

Testing Laboratory to determine soil chemical properties and tissue content. 

Parameter  Soil Testing Procedure   Tissue Testing Procedure 

pH  1:1 (soil:water)  n/a 

Phosphorus  Mehlich 3 extraction  Nitric-perchloric acid digest 

Potassium  Ammonium acetate extraction  Nitric-perchloric acid digest 

Calcium  Ammonium acetate extraction  Nitric-perchloric acid digest 

Magnesium  Ammonium acetate extraction  Nitric-perchloric acid digest 

Sodium  Ammonium acetate extraction  n/a 

Iron  DTPA extraction  Nitric-perchloric acid digest 

Manganese  DTPA extraction  Nitric-perchloric acid digest 

Zinc  DTPA extraction  Nitric-perchloric acid digest 

Ammonium  KCl extraction  KCl extraction 

Nitrate  KCl extraction  KCl extraction 
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      Difference in % cover from control 

Source  Num DF  Den DF  F-Value  Pr > F 

Acid Source  1  191  0.26  0.6093 

pH  3  191  48.54  <.0001 

AS × pH  3  191  0.46  0.7127 

WAIT  3  191  6.27  0.0004 

AS × WAIT  3  191  0.41  0.7490 

pH × WAIT  9  191  3.78  0.0002 

AS × pH × WAIT  9  191  0.78  0.6341 

 

 

  

 

Table 5.2 ANOVA for the effects of irrigation water pH and acidying source at various weeks 

after initial treatment (WAIT) on silvery-thread moss (Bryum argenteum Hedw.) cover.  


