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Abstract 

 The sublimation recondensation crystal growth of aluminum nitride, titanium 

nitride, and yttrium nitride were explored experimentally and theoretically. Single 

crystals of these nitrides are potentially suitable as substrates for AlGaInN epitaxial 

layers, which are employed in ultraviolet optoelectronics including UV light-emitting 

diodes and laser diodes, and high power high frequency electronic device applications. 

A thermodynamic analysis was applied to the sublimation crystal growth of 

aluminum nitride to predict impurities transport (oxygen, carbon, and hydrogen) and to 

study the aspects of impurities incorporation for different growth conditions. A source 

purification procedure was established to minimize the impurity concentration and avoid 

degradation of the crystal’s properties. More than 98% of the oxygen, 99.9% of hydrogen 

and 90% of carbon originally in the source was removed. The AlN crystal growth process 

was explored in two ways: self-seeded growth with spontaneous nucleation directly on 

the crucible lid or foil, and seeded growth on SiC and AlN. The oxygen concentration 

was 2 ~ 4 x 1018cm-3, as measured by secondary ion mass spectroscopy in the crystals 

produced by self-seeded growth. Crystals grown from AlN seeds have visible grain size 

expansion. The initial AlN growth on SiC at a low temperature range (1400°C ~1600°C) 

was examined to understand the factors controlling nucleation.  Crystals were obtained 

from c-plane on-axis and off-axis, Si-face and C-face, as well as m-plane SiC seeds. In all 

cases, crystal growth was fastest perpendicular to the c-axis. 

The growth rate dependence on temperature and pressure was determined for TiN 

and YN crystals, and their activation energies were 775.8±29.8kJ/mol and 

467.1±21.7kJ/mol respectively. The orientation relationship of TiN (001) || W (001) with 

TiN [100] || W [110], a 45o angle between TiN [100] and W [100], was seen for TiN 

crystals deposited on both (001) textured tungsten and randomly orientated tungsten. X-

ray diffraction confirmed that the YN crystals were rock-salt structure, with a lattice 

constant of 4.88Å. Cubic yttria was detected in YN sample from the oxidation upon its 

exposed to air for limited time by XRD, while non-cubic yttria was detected in YN 

sample for exposures more than one hour by Raman spectra. 
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Abstract 

The sublimation recondensation crystal growth of aluminum nitride, titanium 

nitride, and yttrium nitride were explored experimentally and theoretically. Single 

crystals of these nitrides are potentially suitable as substrates for AlGaInN epitaxial 

layers, which are employed in ultraviolet optoelectronics including UV light-emitting 

diodes and laser diodes, and high power high frequency electronic device applications. 

A thermodynamic analysis was applied to the sublimation crystal growth of 

aluminum nitride to predict impurities transport (oxygen, carbon, and hydrogen) and to 

study the aspects of impurities incorporation for different growth conditions. A source 

purification procedure was established to minimize the impurity concentration and avoid 

degradation of the crystal’s properties. More than 98% of the oxygen, 99.9% of hydrogen 

and 90% of carbon originally in the source was removed. The AlN crystal growth process 

was explored in two ways: self-seeded growth with spontaneous nucleation directly on 

the crucible lid or foil, and seeded growth on SiC and AlN. The oxygen concentration 

was 2 ~ 4 x 1018cm-3, as measured by secondary ion mass spectroscopy in the crystals 

produced by self-seeded growth. Crystals grown from AlN seeds have visible grain size 

expansion. The initial AlN growth on SiC at a low temperature range (1400°C ~1600°C) 

was examined to understand the factors controlling nucleation.  Crystals were obtained 

from c-plane on-axis and off-axis, Si-face and C-face, as well as m-plane SiC seeds. In all 

cases, crystal growth was fastest perpendicular to the c-axis. 

The growth rate dependence on temperature and pressure was determined for TiN 

and YN crystals, and their activation energies were 775.8±29.8kJ/mol and 

467.1±21.7kJ/mol respectively. The orientation relationship of TiN (001) || W (001) with 

TiN [100] || W [110], a 45o angle between TiN [100] and W [100], was seen for TiN 

crystals deposited on both (001) textured tungsten and randomly orientated tungsten. X-

ray diffraction confirmed that the YN crystals were rock-salt structure, with a lattice 

constant of 4.88Å. Cubic yttria was detected in YN sample from the oxidation upon its 

exposed to air for limited time by XRD, while non-cubic yttria was detected in YN 

sample for exposures more than one hour by Raman spectra. 
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CHAPTER 1 - Introduction 

Materials and material development are fundamental to our culture, symbolizing 

major historical periods of our society. The constant development of semiconductor 

materials which form the heart and soul of all electronic devices then results in 

continuous improvement of modern life. It is expected that solid state lighting devices 

such as light emitting diodes (LEDs) will replace incandescent light bulbs and fluorescent 

lamps for energy savings and durability consideration. Group III nitrides (AlN, GaN, InN) 

and their alloys are the leading material system for, but not limited to, applications as 

LEDs and laser diodes (LDs) covering the spectral wavelength from near infrared to deep 

ultraviolet. However, AlGaInN device technology is limited by the lack of thermally and 

lattice-matched substrates. The high defect density in overgrown active layers and 

cracking of the device layers due to the large thermal mismatch degraded device 

performance and lifetime. Thus, native substrates that enable homoepitaxial growth of 

AlGaInN layers are in high demand. 

This dissertation focuses on investigating the growth of potential substrates 

suitable for the AlGaInN epitaxial layers development with improved efficiency and long 

lifetime. In this section, the basic concepts, structure and evolution of LEDs and LDs as 

well as the advantages of group III nitrides material system will be discussed in general. 

The UV LEDs will be discussed in greater detail, as challenges still remain in this field 

such as substrates limitation, while visible range LEDs have entered the age of maturity. 

The motivation of the research and a dissertation overview are also included.   
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1.1 Lighting Emitting Diodes and Laser Diodes 

1.1.1 Background 

The development of electricity and electrically powered light sources such as 

Edison's light bulb were important achievements setting the cornerstone for modern 

lifestyles. New developments in this field are constantly being made, and two of the most 

important are LEDs and LDs based on electroluminescence (EL). EL, which was 

discovered more than one hundred years ago,1 is a phenomenon in which a material emits 

light in response to the passage of an electric current or to a strong electric field. 

Compared to traditional light sources, LEDs are smaller, brighter, more reliable, more 

durable and more efficient. Electrical-to-optical energy conversion efficiencies over 50% 

have been achieved in infrared light emitting devices. If similar efficiencies were 

achieved in visible light emitting devices, the result would be a 150-200 lm/W white light 

source that is two times more efficient than fluorescent lamps, and ten times more 

efficient than incandescent lamps. This could reduce the global electricity consumption 

used for lighting by 50% by 2025.2 In fact, since device lifetimes easily exceed 10,000 

hours compared to ~1,500 hours for light bulbs, LEDs have already begun to replace 

incandescent and fluorescence in many applications, such as traffic signal lights, 

automotive instrument panels, mobile phone backlighting, aviation cockpit displays, and 

architectural directed-area lighting.  

1.1.2 History  

The history of LEDs can be traced back to more than one hundred years ago when 

Henry Round at Marconi Labs noticed light emission from a SiC crystallite in 19071. 
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Independently, a Russian scientist, Oleg Losev, discovered light emission from SiC in 

1920’s3. It was not until 1960’s that LEDs were extensively investigated, when high 

quality III-V compounds first became available. 

The year 1962 was monumental for both LEDs and LDs. Infrared LEDs and 

lasers based on GaAs which were commercialized later in 1964, were first reported by 

groups working at RCA, GE, IBM and MIT4 . The first Infrared LD was also 

demonstrated in this year by two different groups from GE and IBM respectively.5, 6 In 

same year the first visible-spectrum (red) LD was reported by Nick Holonyak Jr.7, who 

was also the first to make a practical visible-spectrum (red) LED4. However, LEDs 

suffered from low brightness and efficiency during 1960’s and 1970’s. LED displays 

could not be read under bright outdoor conditions and their high power consumption 

made frequent battery recharges necessary4. It was not until 1980's, AlGaInP visible 

LEDs was developed, which offered a higher level of versatility as far as the LED's color 

output was concerned. Today AlGaInP is still the dominant materials system for high-

brightness emitters in the red, orange and yellow spectral range. 

 
Figure 1.1 RGB color wheel and an example of LED light. 
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In order to create a full color image, the additive colors used in LED systems are 

red, green and blue (RGB color model), though RYB color model (red, yellow, blue) is 

more popular in history especially among artists. Figure 1.1 is the RGB color wheel and 

an example of LED light. By the late 1960’s, technologies for red and green LEDs were 

available, but comparable technology was not available for blue LEDs. It was not until 

nearly 30 years later that commercially viable blue LEDs were developed. In 1992, the 

first GaN LED that emitted light in UV and blue spectral range was reported8. Later, after 

the demonstration of the first viable blue and green GaInN double heterostructure LED 

that achieved efficiencies of 10% by Shuji Nakamura and co-workers9, white LEDs were 

developed. 

1.1.3 Structure  

Figure 1.2 shows the inner working of a LED; current flows easily from the p-side 

(anode) to the n-side (cathode). When an electron recombines with a hole radiatively, it 

falls into a lower energy level, emitting light. The energy of the light emitted depends on 

the band gap energy of the materials forming the p-n junction.  Therefore the larger the 

band gap, the shorter the photon wavelength.  

 
Figure 1.2 The inner workings of an LED 
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Figure 1.3 Three semiconductor laser structures 

 

Figure 1.3 shows three basic laser structures: a homojunction laser has same 

semiconductor material (e.g. GaAs) on both side of the junction, enabling Fabry-Perot 

cavity to enhance laser action; a double-heterojunction (DH) laser has a thin layer of 

semiconductor (e.g. GaAs) sandwiched between layers of a different semiconductor (e.g. 

Al xGa1-xAs); and a DH laser with strip geometry. In a DH laser, the carrier and optical 

field are confined within the active region to establish laser condition. If a strip geometry 

was build in the DH laser, the required operating current is reduced, the multiple-

emission areas along the junction are eliminated, and the reliability is improved by 

removing most of the junction perimeter.10 

1.2 Why III-Nitrides  

1.2.1 The demand for direct bandgap semiconductors 

The three basic processes for interaction between a photon and an electron in a 

solid are absorption, spontaneous emission and stimulated emission. The dominant 
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operating process for LEDs is spontaneous emission; for the LDs it is stimulated 

emission; and for photodetectors and solar cells it is absorption. Photons are emitted due 

to the recombination of the charge carriers, and photons are absorbed to create charge 

carriers. The recombination process that emits photon with the wavelength corresponding 

to the energy released is called radiative recombination, and it’s a form of spontaneous 

emission. Photons presented in the material can either be absorbed, generating a pair of 

free carriers, or stimulate a recombination event (stimulated emission), resulting in a 

generated photon with similar properties to the one responsible for the event. The 

spontaneous emission and stimulated emission occur readily in semiconductor having 

direct bandgaps, but is more difficult in semiconductors having indirect bandgaps 

because the crystal momentum is conserved and the radiative- transition probability in a 

direct bandgap semiconductor is high10. For example, Si (indirect bandgap) is extremely 

inefficient at emitting light. The electrons and holes in Si usually have non-radiative 

commonly recombination which produces no optical emission. Therefore LEDs and LDs 

are almost always made of direct band gap materials.  

 
Figure 1.4 Bandgap energy versus lattice constant of III nitrides at room temperature* 

*Published figure by E. F. Schubert4 
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1.2.2 The enormous variety of broad spectra wavelength  

Because of the wide direct bandgap of the three binary semiconductors InN, GaN, 

and AlN, the group III nitrides span a very wide range of wavelengths, covering the deep 

ultraviolet, near ultraviolet, visible, and even near infrared spectral range. The band gap 

energy versus lattice constant of AlGaInN materials system is shown in Figure 1.44. No 

other material system offers such wide range of direct bandgap. In contract, the AlGaInP 

material system is suited for high-brightness LEDs only in the red, orange, amber and 

yellow wavelength ranges; AlGaAs is limited to only red LEDs. Unlike most 

semiconductors, the radiative efficiency of group III nitrides exhibits low sensitivity to 

presence of dislocations. They have much higher tolerance towards dislocations as 

compared to group III arsenides and phosphides. 

 

1.3 Ultraviolet LEDs  

After 30 years investigation from 1960’s to 1990’s and nearly 20 years of 

development since then, visible range LEDs have entered the age of maturity and are now 

posed to replace incandescent bulbs for general lighting applications11. Beyond the 

visible range, compact high-efficiency ultraviolet LEDs and LDs are potentially more 

efficient alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. 

Microelectronic fabrication technologies need shorter wavelength light source for 

photolithography, to improve the resolution. DUV LEDs with wavelength from 260 to 

280 nm have found applications in water/air/surface sterilization and decontamination11. 

Figure 1.5 illustrates the progress in LED development with projected performance for 

UV LEDs. The energy range of AlN/GaN/AlGaN compounds allow covering the UV 



 8 

band from UVA (320–400 nm) and UVB (280–320 nm) all the way into the UVC range 

(100–280 nm) 11. The shortest achievable wave length is on the order of 210 nm based on 

c-plane (chapter two) AlN PIN (p-type/intrinsic/n-type) homojunction LED .12 This same 

wavelength has also been demonstrated for a-plane (chapter two) AlN p–n junction LED 

and its higher emission intensity along the surface normal than that of conventional c-

plane (chapter two) LED was reported.13   

 
Figure 1.5 LED achieved and projected (for DUV LEDs)* 

* Published figure by M. S. Shur and R. Gaska11.  

However, ultraviolet LEDs have not revealed their full potential yet due to the 

disadvantages of currently used substrates. The common substrates for AlGaInN epitaxial 

layers for electronic and optoelectronic devices applications are sapphire and silicon 

carbide. The large difference between the refractive indices of sapphire (1.75) and group 

III nitrides (~2.3 in GaN, ~2.15 in AlN, and ~2.9 in InN) is the origin of light 

waveguiding in a heterostructure on sapphire substrates, which lowers the efficiency of 

light extraction from the LED14. The waveguiding effect is negligible in LED structures 

grown on SiC substrates. But SiC substrates are transparent only to visible light, not to 

UV light. The problems of light extraction are so critical that it is necessary to remove the 
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substrates after the growth of LED structures to increase the overall LED efficiency.14 In 

addition, DUV LEDs require AlGaN epilayers with high aluminum content. Although 

blue and green LEDs based on InGaN work quite well despite a high density of 

dislocations (108 cm-2), the luminescence efficiency is sensitive to defect densities in the 

AlGaN epitaxial layers. High threading dislocation density (TDD) result from large 

lattice mismatch of heterostructure substrates induce an intensive non-radiative carrier 

recombination in optoelectronic devices, LEDs and laser diodes (LDs), reducing the 

internal quantum efficiency14. AlN and AlGaN films grown on such substrates beyond 

critical thicknesses suffer from cracking due to the strong tensile strain11. This problem 

can be alleviated by using native AlN substrates to form homostructures.11, 14, 15 All in all, 

aluminum nitride single crystal are good candidates for DUV LEDs substrates. 

Furthermore, AlN itself a good source of UV LDs. 

1.4 Research Overview 

The research goal of this dissertation is to investigat possible substrates suitable 

for AlGaInN epitaxial layers. Epitaxial heterostructures of group III nitrides are the 

remarkable materials for a broad range of applications in electronics and optoelectronics. 

In the applications of EL, the red, green and blue LEDs grown on foreign substrates are 

commercially available; blue solid state lasers have also been demonstrated16, but the 

technology for the UV LEDs and LDs technology remains to be developed. High TDD, 

non-UV transparence, poor thermal conductivity, and cracking of the device layers due to 

the large thermal mismatch are the major drawbacks of commonly used and 

commercialized substrates. Native AlN substrates might alleviate these problems. 

However, currently commercially available AlN substrates are still cost prohibitive and 
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have a limited usable area. Additionally, the presence of impurities in AlN such as 

oxygen degrades its thermal conductivity, causes structure failure, and consumes light 

generated by the AlN based device.  

Metal nitride substrates are attractive because their electrical conductivity can 

simplify the device structures. Electrical current can pass through the substrateas an 

option that is not possible with sapphire. This reduces resistive energy losses and the area 

required for the device making high device packing densities possible. Transition metal 

nitrides such as ScN and TiN are attractive candidates for combining as layered structures 

or alloys with gallium nitride and related group III nitride semiconductors, because they 

can have similar lattice constants, share a common element and exhibit dual properties 

characteristics of both covalent compounds and metals. 

In this dissertation, the bulk crystal growth of AlN, TiN, and YN were 

investigated experimentally and theoretically. Chapter 2 is the literature review of AlN 

and related nitrides. Chapter 3 describes the experimental equipment and material 

characterization methods. Chapter 4 provides the thermodynamic analysis for impurity 

incorporation and source purification. Chapter 5 reports bulk crystal growth of AlN 

including both self-seeded growth and seed growth on SiC. The nitial nucleation of AlN 

grown at low temperature on SiC as a function of crystal plane, and tilt degree and angle 

is studied. Chapter 6 and chapter 7 are the investigation of the bulk crystal growth and 

characterization of TiN and YN respectively. Chapter 8 is the research conclusion. 
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CHAPTER 2 - Aluminum Nitride and Related Nitrides 

The history of the production of aluminum nitride can be traced back to 19th 

century as it does not occur naturally.  Briegleb and Geyther17 first synthesized AlN as a 

powder from liquid Al and N2 gas in 1862. Later in 1899, Ahrons18 reported the synthesis 

of AlN powder by applying a direct current arc between two Al electrodes in nitrogen. 

However, both methods were limited by the protective AlN film that formed on the 

surface of Al; it prevented the further reaction and resulted in Al-rich powders. The 

synthesis of AlN has greatly advanced in 20th century; many different methods have been 

reported for producing AlN in the form of powder, crystals, whiskers and other macro 

structures. However, for applications of electronic and photovoltaic devices, growth of 

high-purity AlN single crystals remains challenging. This chapter gives a brief review of 

the crystal structure, material properties, applications and crystal growth of AlN and 

related nitrides. The structure of silicon carbide (SiC) is also discussed here as SiC is an 

good seed crystal for controlling the orientation of AlN in its crystal growth.  

2.1  Crystalline Structure of AlN, SiC and related nitrides 

In crystallography, Miller indices with three integers are the common notation 

system for planes and directions in the crystal (Bravais) lattices. A direction is defined as 

a line or a vector between two points. It is denoted as [uvw] where u, v, and w are the 

integers correspond to the reduced projections along the x, y, and z axes respectively. And 

the equivalent directions in a crystal structure are grouped together in a direction family 

denoted as <uvw>. However in hexagonal crystal structure, some crystallographic 
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equivalent directions do not have same set of indices. So in the case of hexagonal or 

rhombohedral lattice systems Bravais-Miller index with 4 numbers works better. 

Conversion from the three-index system to the four-index system, [uvw] �  [u’v’t w’] is 

accomplished by the following formulas19 : 

 3/)2(' vunu -=  (2-1) 

 3/)2(' uvnv -=  (2-2) 

 )''( vut +-=  (2-3) 

 nww ='  (2-4) 

where the u’ v’ t are the integers pertaining to the projections along the respective three 

axes which have 120o between each other in the basal plane, and w’ are the integers 

perpendicular the basal plane. The planes for a crystal structure are represented in a 

similar way. The notation (hkl) denotes a plane orthogonal to a direction [hkl] and {hkl} 

denotes the set of all planes that are equivalent to (hkl) by the symmetry of the lattice.  

2.1.1 Crystal Structure of AlN and related Nitrides 

The common group III nitrides share the same three crystal structures: wurtzite 

(� -phase), zincblende (� -phase) and rocksalt (NaCl) structures, as shown in Figure 2.1. 

At thermodynamic equilibrium, aluminum nitride, gallium nitride and indium nitride 

have the hexagonal wurtzite structure. The cubic zincblende structure for GaN and InN 

can be stabilized by epitaxial growth of thin films on the (001) crystal planes of cubic 

substrates such as Si and GaAs20. The rocksalt or NaCl structure can be induced in AlN, 

GaN and InN at very high pressures20. The rocksalt structure is also the equilibrium 

crystal structure for TiN, YN, ScN and ZrN. Detailed information on the three structures 

is listed in Table 2.1. 
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a. Wurtzite structure.  

                                                                
b.   Zincblende structure.                                                                                                    c. Rocksalt structure. 

Figure 2.1 Three common crystal structures for group III nitrides. 
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Table 2.1 Crystal structures. 

 wurtzite zincblende rocksalt 

Space group )(6 4
63 vCmcP  )(34 2

dTmF
-

 )(3 5
hOMFm  

Lattice system Hexagonal Cubic Cubic 

Structure at Equilibrium  AlN, GaN, InN, 
4H-SiC, 6H-SiC(� ) 

3C-SiC (� ) TiN, ZrN, ScN, YN 

 
The wurtzite structure has a hexagonal unit cell and is non-centrosymmetric with 

(0001) as the primary polar plane. It consists of two interpenetrating hexagonal close 

packed (HCP) sublattices that are formed by two individual atom types offset along the c-

axis by 5/8 of the cell height. It has three lattice parameters: the hexagonal prism edge 

length a, the hexagonal prism height c, and the cation-anion bond length ratio u along the 

[0001] axis in the unit of c.   

Both the zincblende and the rocksalt structure have cubic unit cells with a single 

lattice parameter a. The zincblende has (111) as the primary polar plane with atom 

positions the same as the diamond crystal structure and can be considered as two 

interpenetrating face centered cubic (FCC) sublattices that are formed by two individual 

atom types offset by one quarter of the distance along a body diagonal. The rocksalt 

crystal structure has a NaCl structure with (111) as primary polar plane and can be 

described as interpenetrating FCC sublattices each with one type of atom, but offset along 

the cube edge by half the edge length.  

Both the wurtzite and the zincblende crystal structures have close-packed planes 

and each atom (i.e. nitrogen) is tetrahedrally coordinated by four atoms of the different 

type (i.e. III-metal atoms). But the stacking sequence of the N and metal atom bilayers 

along their primary polar plane directions either [0001] or [111] is different. The second 

nearest neighbor atom pairs are eclipsed in the wurtzite structure but are staggered in the 
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zincblende structure (Figure 2.2a). If the atom pairs in the basal plane are labeled as A, 

then the atom pairs in the next layer may sit at either position B or C (Figure 2.2b). Thus 

the stacking sequence of the close-packed primary polar plane (0001) for wurtzite is 

ABABAB; while the stacking sequence of the close-packed primary polar plane (111) for 

zincblende is ABCABC. As a result, the zincblende polytype is related to the wurtzite 

polytype by rotations and translations within the unit cell. 

 

           
a                                                                            b  

Figure 2.2 Possible atom stacking orientations in close packed structure 
 a: Comparison of bonds between close packed planes for the wurtzite (l) and zinc blende (r) 
structures; b: Possible stacking orientations of atoms in a close packed hexagonal structure. 

The planes terminating with either all group III atoms or all nitrogen atoms are 

called polar crystal planes. All of the above three structures contain polar planes. In cubic 

crystal structures, group III (Al Ga or In) terminated planes are denoted as (111) or (111) 

A and group V terminated planes are denoted as (-1-1-1) or (111)B. In the wurtzite 

structure, the atoms along the <0001> direction are arranged in bilayers consisting of two 

closely spaced hexagonal layers, one with Al atoms and the other with nitrogen atoms. 

Therefore, the AlN basal surface can be either Al- face or N- face and the (0001) and 

(000-1) surfaces of AlN are inequivalent (Figure 2.3). By convention, the 
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crystallographic [0001] axis points from the N-face to the Al-face. The terms Al-face and 

N-face referred to the orientation of the AlN lattice, and describe lattices related to each 

other by an inversion operation. The Al-face and N-face polarities are also referred to as 

+c and –c polar, respectively. Here, Al-face / N-face is different from Al-terminated / N-

terminated. Termination should only be used to describe a surface property18. Both an Al-

face and a N-face orientation might be either Al-terminated or N-terminated; as a result, 

AlN possesses different properties along different <0001> polar directions. Both bulk and 

surface properties can vary significantly depending on whether the surface is nitrogen or 

metal face18. An extended defect consisting of a region of material with a polarity 

opposite to the polarity of the surrounding crystal matrix is known as inversion domain. 

 

 
Figure 2.3 AlN primitive unit cell indicating (a) Al-polar and (b) N-polar structures. 

2.1.2 Crystal Structure of SiC 

The crystallography and polymorphs in silicon carbide play important roles in 

controlling the nature of the surfaces available for the epitaxial growth of III-nitride 

semiconductors. The basic unit of SiC is a covalently bonded tetrahedron of Si atoms 

with a C at its center or vice versa, i.e. either CSi4 or SiC4
21. The bonding of silicon and 

carbon atoms is 88% covalent and 12% ionic, with a distance between the Si and C atoms 
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of 1.89 Å22. The shortest distance between the nearest Si atoms is approximately 3.08 Å. 

SiC exists in more than 250 polytypes – one-dimensional variations of the stacking 

sequence of close packed biatomic planes23. The various polytypes are distinguished by 

the stacking order between the succeeding double layers of carbon and silicon atoms. The 

stacking of the bilayers follows one of three possible relative positions which have 

already been shown in Figure 2.2. Other than wurtzite and zincblende, the other polytype 

structures in silicon carbide may be a combination of these two. There are two common 

ways to describe the crystal structures in the silicon carbide system, as proposed 

separately by Jagodzinski24,25 and Ramsdell26 

In Jagodzinski’s method24,25, each layer is described as having either a local cubic 

(k) or hexagonal (h) structure, based on the position of the center atom or centroid of the 

immediate layer neighbors. If the positions of the centroid in the layers above and below 

are different, the structure is described as cubic. For example, ABCABC stacking 

sequence describes a cubic bilayer structure. If the centroid of the two layers above and 

below is in the same spatial position, then the layer is described as hexagonal, such as 

each bilayer in the ABABA stacking sequence. Therefore two stacking sequences exist in 

this method: sequences with layer transitions only, which is denoted by "kkkk", and 

sequences with layer transitions and rotations denoted by "hhhh". For instance, (hkk)2 

and hkhk describes a unit cell with six bilayers (6H) and 4 bilayers (4H) respectively.  

The second method was proposed by Ramsdell26 and is based on hexagonal 

symmetry consisting of a number followed by a letter. The number is used to describe 

how many double layers are there in the stacking sequence before the sequence is 

repeated. The letter represents the crystal symmetry (hexagonal (H), cubic (C), 
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rhombohedral (R)).  In the silicon carbide system there are five small period polytypes 

which occur most often within the crystal structures and may be considered the 'basic' 

structures: 2H, 3C, 4H, 6H, and15R. Each of the longer period polytypes may be 

considered as a combination of these five short period polytypes. This latter notation will 

be utilized in the remainder of the dissertation. By observing the SiC crystal 

perpendicular to the c-axis, the stacking sequence of 2H, 3C, 4H, 6H- SiC can be 

projected21 as shown in Figure 2.4. The height of the unit cell, c, varies with the different 

polytypes hence the ratio c/a also differs from polytype to polytype. The measured c/a 

ratios are approximately 1.641, 3.271 and 4.098 for the 2H-, 4H- and 6H-SiC polytypes, 

respectively, very close to the ideal values (3/8, 23/8 and 33/8)21. The frequently 

mentioned planes and directions in hexagonal SiC is shown in Figure 2.5, they are also 

work for other hexagonal structures. 

 
Figure 2.4 Stacking sequence for 4 main polytypes of silicon carbide  

2.1.3 Crystal Structure of Related Transition Metal Nitrides 

As the crystal growth and characterization of TiN and YN was invested in this 

study, the basic structures and composition for their nitrides group is reviewed here. By 
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convention, the term nitride is only applied to those compounds that nitrogen forms with 

elements of lower or about equal electronegativity.27  According to the nitrides 

classification based on their electronic structure and bonding characteristics,28 there are 

five general categories. Transition metal nitrides in Group IVB and group VB including 

TiN, ZrN and VN are interstitial nitrides; while group IIIB nitrides (ScN and YN) are 

saltlike nitrides. Because of the large difference in electronegativity and atomic size 

between nitrogen and the metal in the interstitial, the nitrogen atom nests readily in the 

interstices of the metal lattice. And their bonding is mostly metallic with some covalent 

and ionic bond components, giving those metallic characteristics such as high electrical 

and thermal conductivities.29  For saltlike nitrides, atomic bonding is ionic as the 

difference in electronegativity between other elements and nitrogen is large.  Although 

some of these nitrides have high melting points, they are sensitive to hydrolysis and react 

readily with water or moisture to give ammonia and the corresponding metal oxide or 

hydroxide29, for example YN30. Table 2.2 is the crystal structure for transition metal 

nitrides and their host metal and Table 2.3 is the lattice constants and molar mass for 

AlN, SiC and related nitrides. 

 
Figure 2.5 Common planes and directions in hexagonal structure 
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Table 2.2 Crystal structure for transition metal nitrides and their host metal 

Host 
Metal 

Sc Y Ti Zr Hf V Nb Ta 

Crystal 
struture 

hcp hcp 
� : hcp   
b: bcc 

� : hcp   
b: bcc 

� : hcp   
b: bcc 

bcc bcc bcc 

Nitrides 
structure 

fcc fcc fcc fcc fcc hcp (M2N)   
fcc(MN) 

hcp (M2N)   
fcc (MN) 

hcp (M2N)   
fcc (MN) 

Note: �  is the low temperature form, bbbb is high temperature form  

Table 2.3 Lattice constants and molar mass for AlN and related nitrides 

Lattice Constant  
Wurtzite  

Molar 
mass 
g/mol a  (Å) c (Å) 

Lattice 
Constant a (Å) 

Zincblende 

Lattice 
Constant a (Å) 

Rocksalt 

AlN 40.9883 3.11218   4.982 18 4.38 20 4.04 20 

GaN 83.7298 3.18918 5.185 18 4.49~4.55 20 4.098 20 

InN 128.8250 3.5418 5.705 18 4.98-5.17 - 

SiC 40.0962 4H: 3.073022  
6H: 3.080622   

4H: 10.05322 

6H:15.117322 
3C:  4.359622 - 

TiN 61.8738 - - 4.24  

ZrN 105.2309 - - 4.567  

ScN 58.9626 - - 4.50  

YN 102.9126 - - 4.88  

 
Figure 2.6 Thermal expansion of GaN, AlN, Al2O3, 6H-SiC, and ZnO*  

*Published figure by  R. R. Reeber and K. Wang 37    (a) a-axis; (b) c-axis.  
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2.2 Material Properties 

The properties of materials are determined in part by their structure. The 

anisotropic of crystalline lattice AlN is reflected in its properties. For example, the 

thermal expansion of AlN is anisotropic due to the direction-specific nature of the 

wurtzite bonding, therefore the coefficients of thermal expansion are different in the a 

and c directions. The wurtzite structure has the highest symmetry compatible with the 

existence of spontaneous polarization31,32,33 and the piezoelectric tensor of wurtzite has 

three non-vanishing independent components. Thus the polarization in AlN has both a 

spontaneous and a piezoelectric component. 

2.2.1 Thermal Properties and Mechanical Properties   

Because of the anisotropic thermal expansion perpendicular and parallel to c axis 

in hexagonal materials, the c/a ratio becomes smaller with increasing temperature. The 

thermal expansion of AlN has been determined experimentally20, 34 , 35 over a broad 

temperature range (77-1623 K) and has been predicted over a broader temperature range 

(25–2000K) using a semi-empirical multi-frequency Einstein model.36,37 Figure 2.6 is the 

calculated thermal expansion of GaN, AlN, Al2O3, 6H-SiC, and ZnO.37 

Its high melting temperature and high thermal conductivity are the important 

beneficial properties of AlN for substrate applications. The melting temperature for AlN 

is 3023 K between 100 and 500 atm of nitrogen .38 Although the theoretically estimated 

value at room temperature was 3.2 W/cm K20, the measured thermal conductivity for 

single crystal AlN varied from 2.5 to 3.4 W/cm K20, 39, 40, 41. Differences in the purity and 

density of the AlN account for the large variations in thermal conductivity. Oxygen 

impurities in particular degrade the thermal conductivity. Oxygen enters the nitrogen 
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sublattice substituting on nitrogen sites39; simultaneously, aluminum vacancies are 

created for charge compensation. For every three oxygen atoms incorporated on nitrogen 

sites one aluminum vacancy is created. The resulting Al vacancies cause a reduction in  

lattice constants. These defects and impurities scatter phonons, which are the heat carriers 

in AlN thus reducing the thermal conductivity. Hence, to achieve the maximum thermal 

conductivity, the oxygen concentration in AlN must be as low as possible. 

Several researchers have reported on the mechanical properties of AlN. Different 

methods have been applied to determine the single crystal elastic constant matrix for 

AlN20. Gerlich and co-workers reported Young’s modulus of 308 GPa and bulk modulus 

of 160 GPa from sound velocity measurement42, while another study43 measured Young’s 

modulus and Poisson’s ratio to be 329.7 GPa and 0.239 respectively. In Goldberg’s 

book44, the bulk modulus was reported to be 210 GPa. With Knoop diamond indenter, the 

hardness of AlN was obtained to be -12 GPa on the basal plane (0001). 

2.2.2 Electronic and optical properties 

In order to determine the electrical and transport properties, intentionally doped 

materials of high crystal quality are necessary for Hall measurements. This is difficult for 

AlN due to the large ionization energies of most dopants. The unintentionally doped 

single crystals have been reported to have high resistivity in the range of 107-1013 � cm20. 

And the relative dielectric constant of AlN was reported to be as high as 8.545. These 

reasons make it difficult to test the electrical properties of AlN. 

AlN has a direct energy band gap at the center (�  point) of the Brillouin zone 

(BZ). Figure 2.7 is the schematic diagram for the band structure of wurtzite AlN based on 

Christensen and Gorczyca‘s research46. AlN conduction band has a single minimum (� 7c) 
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at BZ �  point, while the valence band is split at the �  point by the crystal field and the 

spin-orbit interaction. The band gap for wurtzite AlN is generally over 6 eV as measured 

various methods including optical absorption47, 48, ellipsometry49, cathodoluminescence50 , 

photoluminescence51, 52, and the commonly quoted value at room temperature is 6.2 eV. 

However, measurements of the band gap for zincblende AlN are lacking. 

 

 
Figure 2.7 Band structure of wurtzite AlN* 

*Published figure by  N. E. Christensen, I.Gorczyca 46. 

The fundamental band gap energy of unstrained AlN was reported to be 6.096 eV 

at 1.7 K53, while the crystal field splitting parameter was –230 meV and the exciton 

energies were 6.025, 6.243, and 6.257 eV for the A, B, and C excitons, respectively. The 

A transition is allowed for light polarized parallel to the c-axis. This may explain why 

earlier absorption measurements consistently resulted in larger values for the band gap; 

these measurements were typically performed with light polarized perpendicular to the c-

axis, and likely probed the B or C transitions. These results imply that (0001)-oriented 

devices grown with AlN or high Al content AlGaN alloys will be better edge emitters 

than surface emitters53. 
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Raman spectroscopy provides information on the vibrational states of GaN, 

AlGaN and AlN that are sensitive to the crystalline quality, the stress, the free carrier 

concentration, the aluminium composition and the temperature, and therefore can be 

employed for process and crystal growth monitoring. Because of the wurtzite structure, 

AlN has eight sets of phonon modes: 2E2, 2A1, 2E1 and 2B1, of which both E2 sets, one A1 

set and one E1 set are Raman active and the B1 modes are silent54. By comparing the 

phonon modes of crystal sample, information on crystal properties and quality can be 

obtained. For instance, the width of the E2 Raman peak reflects the crystalline quality and 

stress affects the E2 phonon frequency54. Information on the free carrier concentration can 

also be obtained as collective excitations of free carriers (plasmons) interact with the 

A1(LO) longitudinal optical phonons, but not with the non-polar E2 phonons, which are 

only affected by stress and the crystalline quality54. The change of aluminum composition 

x in AlxGa1-xN layers can affect both the E2 and the A1(LO) phonon frequency, therefore 

the composition information can be collected from Raman modes54.  

Raman spectra of optical phonons in AlN were taken in backscattering geometry 

on different well-developed facets of a self-seeded bulk crystal55, and the dependence of 

phonon spectra on crystal orientation was reported. The results indicated that facets 

belonging to the same crystal class showed similar Raman spectra, while the appearance 

or absence of the A1(LO), A1(TO), E1(LO), and E1(TO) phonon bands in the spectra 

could be used to distinguish the basal c-plane facets from the prismatic {10-10} facets 

Besides E2 modes, C-plane facets showed A1 (LO) and E1 (TO) bands, while prismatic  

facets showed the A1 (TO), E1 (LO) and E1 (TO) bands.  
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2.3 History and Application of AlN 

2.3.1 History 

The earliest report of AlN crystal production is probably the study of Fichter and 

Oesterheld in 191556. They heated AlN powder in the one atmosphere nitrogen ambient 

in  an electrically heated furnace consisting of graphite or tungsten tubes to obtain AlN 

crystals. Metallic Al and AlN crystals were found in the recondensed materials, and the 

graphite apparatus also introduce carbon to the material.   

It was not until 1960’s that the reports of bulk AlN single crystal growth started 

increasing. Vapor transport in nitrogen by sublimation of AlN powder57 , 58 , 59 , 60or 

vaporization of Al metal were most common methods57, 61, 62. The crystal morphology 

varied with the temperature. Taylor and Lenie57 reported various crystal morphology at 

different growth temperature, including whiskers between 1450°–1750°C, prismatic 

needles between 1800 – 1900°C, and thin platelets at temperatures above 1900°C. Drum 

and Mitchell59 observed whiskers at source temperature below 1900°C, and a mixture of 

basal platelets and whiskers at source temperatures range of 1950°–2150°C. The size and 

color of the AlN crystals varied. Taylor and Lenie57 got prismatic needles 0.5 mm in 

diameter and up to 30 mm long. Davies and Evans60 obtained whiskers 18–20 mm long 

with an average growth rate of 1.5 mm/h. Crystals were colorless61,62 or varied in color 

from white57,  to various shades of blue57,62 and brown62. 

Taylor and Lenie57 claimed that blue coloration was due to the presence of 

aluminum oxycarbide (Al2OC), which is isomorphous with AlN. They proposed that a 

solid solution formed between AlN and Al2OC from a reaction between Al and the 

carbon monoxide (CO) expected to be present in furnaces lined with graphite. Crystals 
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were grown in controlled atmospheres of pure nitrogen, nitrogen with 0.5–2% carbon 

monoxide, and nitrogen with 1% methane. Blue crystals were grown only in the presence 

of CO, and a deeper shade of blue was observed with increasing amount of CO in 

nitrogen. Chemical analysis confirmed the presence of C and O in the crystals57. 

2.3.2 Application 

Group III-nitrides and their alloys are good candidates for optoelectronic devices 

because they form a continuous alloy system whose direct optical band gaps in the 

wurtzite phase range from 0.7 eV for InN to 6.1 eV for AlN, potentially allowing band 

gap engineering in a wide wavelength range from infrared (~1770 nm) to deep ultraviolet 

(~200 nm). Their high thermal and chemical stability, breakdown electric fields, and 

maximum electron velocities are advantageous for application areas such as high-power, 

high frequency, and high-temperature devices where classical semiconductors, such as 

silicon, and the conventional III-Vs (e.g. GaAs, AlAs, AlP) have fundamental limitations. 

In addition, the piezoelectric properties of AlN make it highly suitable for surface 

acoustic wave devices.  

Presently, epitaxial heterostructures involving these semiconductors are being 

grown on a number of substrates. The two most commonly used substrates, sapphire and 

SiC, are not closely lattice-matched to the III-nitride overlayers, leading to a high defect 

density in the overgrown active layers, limiting device performance and lifetime. 

Additional limitations of the currently available substrates include device layers cracking 

due to the large thermal mismatch, and poor thermal conductivity. Thus, the performance 

of III-nitride semiconductor devices will be greatly improved by the availability of native 

substrates. High-quality, single crystalline AlN substrates with low dislocation densities 
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are expected to decrease defect density in the overgrown device structures by several 

orders of magnitude and, thereby, greatly improve the performance and lifetime of III-

nitride devices.  

AlN has a number of excellent properties that make it a highly desirable candidate 

as a substrate for III-nitride epitaxy. Its crystalline structure is the same as that of GaN, 

with a lattice mismatch in the c-plane of approximately 2.5% (Table 2.3 Lattice constants 

and molar mass for AlN and related nitridesTable 2.3). Since AlN makes a continuous 

range of solid solutions with GaN, it plays an important role in GaN-based devices and is 

highly suited as a substrate for AlGaN devices with high Al concentrations or structures 

with graded layers. Its high thermal conductivity makes it desirable for high-temperature 

electronic and high power microwave devices where heat dissipation is critical. Its high 

resistivity us important for power microwave devices. The direct, large optical bandgap 

of AlN makes it suitable for ultraviolet applications such as light-emitting diodes and 

laser diodes down to wavelengths as short as 200 nm.  

2.4  Crystal Growth 

III- nitrides films and crystals have been fabricated by many different methods on 

different substrates, such as vapor phase epitaxy including hydride vapor phase epitaxy 

(HVPE), molecular beam epitaxy (MBE) including plasma-induced molecular beam 

epitaxy (PIMBE), metal organic vapor phase epitaxy (MOVPE), metal organic chemical 

vapor deposition(MOCVD), pulse laser deposition (PLD), supersonic molecular beams, 

reactive sputtering, and high-temperature/ high pressure growth, including physical vapor 

transport (PVT, for AlN) and liquid solution growth (high-pressure solution, 

ammonothermal, and Na flux method for GaN). The growth of large-size and high-
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quality AlN and GaN crystals for substrates is still in its infancy. The production of high 

quality crystalline materials with improved structural perfection and large size at a low 

cost (1) and bulk crystal growth of materials with extreme thermodynamic characteristics, 

such as high temperature melting points, high melting dissociation pressures, incongruent 

phase diagrams, and anisotropic segregation (2) are the two main challenges of today’s 

crystal growth63. In this part of dissertation, the focus is on the bulk sublimation crystal 

growth of AlN and related nitrides.  

 
Figure 2.8 Physical vapor transport 

2.4.1 Physical Vapor Transport  

The majority of commercialized semiconductor bulk crystals are grown using 

melt growth methods such as Czochralski (CZ), float-zone (FZ), and vertical Bridgman 

growth. However, the melt growth is precluded if the melting point temperature is too 

high, or if the melt decomposes, or the melt reacts with the crucible. Physical vapor 

transport (PVT) growth techniques, provides an alternative crystal growth method and is 

the most successful bulk crystal growth method for aluminum nitride to date. 

AlN sublimes, hotter region 

AlN recondenses, colder region 
AlN (s) ««««  Al (g) + N2 

AlN (s) ««««  Al (g) + N2 

   Vapor Phase 
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The process (Figure 2.8) starts with the source sublimation at a temperature below 

the melting point. A temperature gradient is maintained between the high temperature 

source sublimation zone and relatively low temperature crystal recondensation zone. 

Then the source substance is transported to the lower temperature zone through the gas 

phase and recrystallizes there. The process takes place in a closed or semi-open system 

(crucible). It is called seeded growth if a selected substrate or seed crystal is applied for 

the source to crystallize on, or self-seeded growth if the nucleation occurs spontaneously 

at crucible walls. 

Sublimation crystal growth can be modeled by considering the following 

phenomena. The temperature gradient provides the driving force of the crystal growth.  

At the temperatures below its triple point, a pure solid can sublime, and equilibrium 

pressure for a particular temperature is called the solid/ vapor saturation pressure psat. 

Consider the system to be initially in a non equilibrium state with respect to mass transfer 

between phases and possible reactions. Then any changes which occur in the system take 

the system ever closer to an equilibrium state. If the chemical potential of each species in 

all phases are equal, the system reaches its phase and chemical equilibrium. At the source 

zone (highest temperature), the chemical potential difference between the vapor and solid 

phase drive the mass transport from solid phase to vapor phase; while at the crystal zone 

(lowest temperature), the reverse process results in crystallization. 

The driving force of the crystallization or growth affinity can be defined as 

chemical potential difference: sv mmm -=D ; where � v and � s are the chemical potentials 

of the vapor and solid, respectively. Crystallization occurs when the vapor pressure p of 

the gaseous species at the vapor-crystal interface is higher than psat, which is a function of 
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temperature. The degree of supersaturation can be defined as satsat ppp /)( -=s  If the 

vapor is ideal gas, the chemical potential difference can be expressed in terms of local 

vapor pressure p and saturation pressure psat: 

 )/ln( satppkT=Dm  (2-5)  

where k is Boltzmann’s constant( 1.38 x 10-23 J/K)  and T is the temperature of the solid.  

According to the kinetics gas theory, one can estimate the maximum growth rate 

through Hertz-Knudsen equation. It is shown that the incident flux, F , is related to the 

gas density above the surface by 

 4/ncF =  (2-6) 

where n is molecular gas density (molecules/m3) and average molecular speed c (m/s) is 

given from the Maxwell-Boltzmann distribution of gas velocities by integration: 

 pmkTc /8=  (2-7) 

where m is molecular mass (kg). Consider the vapor as ideal gas [ )/(/ kTPVNn == ], 

then the net vapor flux J to the surface based on Hertz-Knudsen equation is:  

 
mkT

P
FJ

p
a

a
2

==  (2-8) 

where �  is the sticking coefficient, defined as the probability that an impinging vapor 

particle is adsorbed onto the surface. Neglecting the effects of gas phase diffusion 

between source and crystal and assuming that the sticking coefficient is one, the 

maximum growth rate V from the equilibrium vapor pressures over the source (p) and 

seed (psat) can be estimated as following: 
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r
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where Va is the atomic volume. Obviously, the maximum growth rate estimated above is 

proportional to the vapor supersaturation.  Another prerequisite of this estimation is that 
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the crystal surface is rough or there are enough kink sites (kink sites are special surface 

positions whose chemical potential is equal to that of the bulk crystal; they are favorable 

incorporation sites for adatoms and help determine the equilibrium with the vapor phase) 

on the surface, therefore there are sufficient sites available on the crystal surface for 

incorporation of adsorbed atoms. 

If the substrate/surface reaction process is the growth rate limiting step, for 

example at a high gas species flow rate, one should also considered the process of: a) 

adsorption,  dissociation and desorption at growth surface; b) mobility of the species 

(possible reactants and products) on the surface; c) incorporation at the lattice sites. These 

are critically dependent upon the physical and chemical state of the growth surface. 

Burton, Cabrera, and Frank64 developed an analytical model for crystal growth by step 

propagation in terms of steady- state motion of an equidistant train of flat steps across a 

crystal surface. The BCF theory explains the equilibrium structure of crystal surfaces, the 

step velocity on crystal surfaces, and the growth rate of crystal surfaces. The ledge and 

kink density, ie surface roughness, of a particular crystal plane depends upon the inter-

atomic bonding forces between surface atoms and their neighbors. The mechanism for 

step movement was the deposition of atoms onto the terraces and subsequent capture and 

in corporation of the diffusing atoms at the step edge. Based on the theory assumption, an 

analytical solution for step velocity and growth rate can be obtained.  

The BCF theory assumes there is a flux of atoms from the vapor phase impinging 

on the surface during the growth process. Atoms become adsorbed and these adatoms can 

execute jumps to adjacent surface sites or back to the vapor phase. Defining the average 

amount of time an adatom spends on an infinite flat surface before desorbing back to the 



 34 

gas phase as �  and the diffusion coefficient as D, the average distance x that the as atoms 

diffuse during the life time �  can be calculated by Einstein formula: 

 tdiffdiff Dx =2  (2-10)  

Where  )/exp('2 kTEaD diffdiff -= u  and  )/exp(1 kTEa
-=ut , a is the lattice constant, �  

and � ' are frequency factors on the order of the atomic frequency of vibration (~1013 s-1), 

and Ediff and Ea are the activation energies for surface diffusion and desorption. Once the 

adatoms attach at a kink, the kink moves forward one step. The growth rate can be 

obtained by indentifying the forward speed of the step (step velocity).  

The near steps adatom surface concentration ne and the far from steps adatom 

surface concentration satisfy satsat
ee pppnnn /)(/)( -==- s . Thus the velocity of a 

single step on surface is  

 diffdiffe xDV /2sq=¥  (2-11) 

Where � e is equilibrium surface coverage, it is denoted as ne divided by total surface site 

concentration nt
65. If the average spacing between steps is l and the step height is h, the 

velocity of a parallel train of steps and vertical growth rate are given by  

 )2/tanh( diffBCF xlVV ¥=  (2-12) 

 )/( lhVr BCFBCF =  (2-13) 

Therefore, in the steady state, all steps move at the same velocity, and both the step 

velocity and vertical growth rate is proportional to the supersaturation. 

2.4.2 Bulk Crystal Growth of AlN by PVT 

Bulk AlN crystal growth can be obtained at a temperature as low as 1800 °C, but 

temperature higher than 2200 °C are required to achieve commercially viable growth 

rates of 500 � m/ hour with good crystal quality66. Such a high operation temperature is 
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quite demanding on the furnace design and materials of construction. Besides the 

requirement of high durability at a high temperature, the selected material has to be inert 

to chemically aggressive Al vapor, a negligible source of contamination to the growth 

process, reusable for multiple growths, relatively inexpensive, and manufacturable in 

various shapes and dimensions. Studies suggest that graphite and boron-containing 

crucibles should be avoided66, while tungsten67  and sintered TaC68  crucibles offer 

acceptable performance.  

In practice, at such high growth temperatures, the experimental growth rate can be 

thousands of times less than the maximum, predicted from thermodynamics, i.e. the 

equilibrium pressure difference between the source and seed. The vapor transport 

mechanisms in AlN sublimation was investigated at different conditions.69, 70 At high 

pressure (760 Torr), vapor transport was controlled by diffusion in the gas phase, while at 

low pressure (10-4 Torr), it was dominated by drift of the reactive species, Al and N2. A 

2-dimensional71, 72 model and a 1-dimensional 73 model have been established for vapor 

phase transport, the 2D model can reveal more important information than the 1D model, 

such as recirculation and radial components distribution. Considering the case of no 

adsorption or nucleation barriers at the source and seed interfaces, a detailed two 

dimensional model accommodating the thermal convection and Stefan flow was 

formulated for AlN sublimation growth by Edgar’s group71, 72. The dependence of growth 

rate distribution on various process parameters was studied experimentally and explained 

by modeling calculation. The growth rate was related to the process parameters such as 

pressure, temperature, temperature gradient, and distance between source and seed: 
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where the k, A and B are constants, the temperature gradient d/TD  is obtained from 

temperature difference � T and source-seed distance 	 . The T1.2 has a more profound 

effect than the exponential factor and the growth rate is proportional to P-1.5 and 

temperature gradient. The activation energy for AlN growth was 681 kJ/mol, which is 

close to the heat of sublimation of AlN, 630 kJ/mol.  

The process was defined as self-seeded growth if no crystal seeds/substrates were 

provides and the nuclei formed on the crucible lid during the early stage of the growth. 

Then the growth competitions between different nuclei resulted in single crystal regions 

of varying sizes and orientations. This growth process has been invested by several 

groups74, 75, 76, 77, with shapes changing from long needles to well-faces crystals. A crystal 

boule up to 15 mm in diameter and several cm in length was achieved75. Epelbaum and 

coworkers studied the natural growth habit of AlN bulk crystals at temperature range of 

2050–2250°C with a small temperature gradient of 3–5°C/cm78. The morphology and 

color of the crystals changed as the temperature was increased, from nearly transparent 

six-sided prismatic needles, to columnar crystals, and to thick platelets. The color of the 

crystals also varied from transparent to dark amber or brownish as the temperature 

increased.  

 SiC is most commonly used for substrate of AlN growth due to the availability of    

high quality SiC single crystal wafers and the lack of commercial AlN single crystal 

wafers. The small lattice mismatch with AlN, which is about 1% for 6H-SiC and 1.2% 

for 4H-SiC of the a lattice constant (Table 2.3), and the ability to control the polarity and 

orientation of AlN crystals are additional advantages of SiC seeds. A series of extensive 

studies were reported from Dr. Edgar’s group79, 80, 81, 82,83.The growth temperature was 
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typically 1800°C. SiC wafers (both on-axis and off-axis) with silicon and carbon 

terminations were used as substrates. Continuous thick layers of AlN on SiC were 

achieved by first using an AlN buffer layer that was deposited by MOCVD, although 

cracks formed during cool down due to stress resulting from the thermal expansion 

coefficient mismatch79. Without the buffer layer, AlN nucleated as individual hexagonal 

hillocks and platelets in an island-like growth mode80. AFM images revealed scratches 

and steps on as-received 6H-SiC substrates, which served as nucleation sites for 

individual AlN grains grown81. Another procedure introduced an AlNSiC alloy interlayer 

to reduce the cracking of the AlN bulk layer82. It was predicted83  that AlN grown on 6H-

SiC should be at least 2 mm thick in order to avoid cracking during cool down from a 

growth temperature of 2000°C. Thus the stability of the SiC seeds and the cracking of the 

AlN layers due to the high process temperature involved and the difference in thermal 

expansion between AlN and SiC and are still important issues need to be addressed for 

this process.  

Seeded growth on recently available AlN native seeds eliminates many of the 

problems associated with heteroepitaxial growth. Schlesser et al84 produced transparent, 

single-crystal c-platelets prepared by vaporization of Al in N2 using AlN seeds. The 

growth temperature was 2200°C with a temperature gradient of about 3°C/mm, and X-ray 

rocking curves confirmed good single crystal quality. The growth rates on the two c-faces 

of opposite polarity differed by a factor of 2–3, with the Al polarity showing slower and 

smoother growth. By continuing growth of AlN on a previously prepared AlN seed, 

Noveski et al85produced a boule up to 1.5” in length and 1.25” in diameter. Centimeter-

sized, single-crystal grains were observed in polished cross sections of boules and 
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epitaxial re-growth was demonstrated regardless of the orientation of individual grains. 

Herro et al 86 investigated AlN growth on seeds of differing polarities. They conclude 

growth along the <0001> polar directions was more stable on N-polar seeds, which was 

controlled by single growth center and leading to a mirror like growth facet. The growth 

on Al-polar seeds showed numerous growth centers leading to a deterioration of crystal 

quality, which suggested a lower supersaturation required for Al-polar direction. A 

comparison of seeded growth of AlN boules on m-(101-0) and c-(000-1) AlN seeds was 

reported recently by Lu et al87  who found that the with a dislocation density in both 

crystals in the range 102–105cm-2. The study showed that the impurity concentration 

varies with seed orientation88. The oxygen concentration in m-plane grown AlN crystals, 

2 x 1018 cm�3 , was about 1/5 of that in c-plane grown crystals, whereas the carbon 

concentration in m-plane grown crystals, 2 x 1019 cm�3 , was twice of that in c-plane 

grown crystals. 
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CHAPTER 3 - Experimental 

3.1 Equipment 

The sublimation-recondensation technique was performed in a system comprised 

of a resistively-heated tungsten furnace with a growth chamber, a controller, and a 

vacuum system as the main components (Figure 3.1). The power output was controlled 

by the controller, which was also used to monitor, and/or control process parameters such 

as heater temperature, growth temperature, chamber cooling water temperature, chamber 

pressure and pump inlet pressure. The vacuum system include a mechanical pump, a 

diffusion pump and gas supply cylinders, which can provide base pressure to the  

chamber as low as 10 x 10-7 torr. 

  
Figure 3.1 Schematic diagram of the furnace. 
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Figure 3.2 Schematic diagram and photo of the furnace chamber. 

 

Figure 3.2 shows a schematic diagram of the growth chamber, as well as a photo 

of the chamber. The two wire mesh tungsten heating elements were surrounded by 

tungsten heat shields enclosed in a water cooled jacket. The temperature inside of the 

heating elements was measured by an optical pyrometer on the top the chamber. The 
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axial temperature increased in the vertical direction so crystal sublimation- 

recondensation growth could occur and the vertical temperature gradient was established 

from a pre-measured temperature profile. Since Al vapor seriously deteriorates the 

tungsten components, especially the heating elements and thermal shields, and its loss 

from the crucible reduces the growth rate, a covered crucible where crystal growth 

occurred, was placed in a covered retort to help confine the Al vapor. The nitride crystals 

formed on the crucible lid in the case of self-seeded growth, or on seed crystals placed 

between the lid and top of the crucible in the case of seeded growth. All components in 

the furnace were made of tungsten. The height of the retort support system was adjustable 

so that the temperature gradient could be varied. By adjusting the input power, the source 

sublimation and crystal recondensation temperatures were controlled. The highest 

operation temperature the furnace was capable of reaching was about 2400°C. Based on a 

comparison between AlN growth rate in this furnace and that reported by other 

researchers using other furnaces, the actual furnace temperature may be 100 °C higher 

than what was measured with the optical pyrometer.  

3.2 Source Purification  

Oxygen and carbon were residual impurities having highest concentration in the 

AlN source powder. Both as-received AlN powders and AlN samples exposed to the air 

needed purification before being used in experiments. The procedures involved for these 

two types of sources are different. The process for the AlN powder source is more 

complicated, aimed at reducing the maximum possible impurities. The source / seeds / 

crystals exposed to the air when the furnace was opened need a purification process 

before continuing a growth, to remove surface oxides and hydroxides.  
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For the as-received AlN powder source purification, two methods have been 

proved effective for reducing the impurities especially oxygen. In the first method, a low 

temperature source anneal at about 1000 ~ 1200 °C with ultra pure nitrogen ambient was 

first applied followed by high temperature sintering (>1900 °C) under an ultra pure 

nitrogen. The first and second steps usually last about 1 ~ 2 hours and 4 ~ 6 hours, 

respectively. In the second method, a carbothermal reduction step was added into and 

between the two steps at about 1500°C for about 2 hours. These methods last a similar 

amount of time as carbothermal reduction can reduce the high temperature sintering time. 

A detailed description, including the theory explaining its basis is presented in chapter 4. 

For long duration growths, additional source had to be added to the crucible as the 

original source was consumed. When the growing crystal was exposed to the air, oxides 

and hydroxides formed on the surface, so an additional purification step was needed. 

After the air-exposed sample was put back to the growth chamber, it was first annealed in 

a 5% hydrogen and 95% argon gas mixture at about 1200°C and a pressure higher than 

one atmosphere for 1~4 hours depending on how long the samples were exposed to air 

and then followed the desired growth procedure.  

3.3 Metal Nitridation 

For TiN, ZrN, ScN and YN crystal growth, a nitridation step was sometimes 

needed if a metal source was used. This was necessary if a commercial nitride source was 

not available. The metal sources were nitridized in the ultra pure nitrogen ambient with 

pressure higher than one atmosphere (800~900 torr). The temperature required for 

nitridation varied from metal to metal, from 1200°C to 1800°C. This is discussed in detail 

in chapter 5. The conversion of the metal to nitride was monitored by measuring the mass 
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change of the source to determine its metal/N ratio. If the solid mixtures tended to sinter 

together, nitridation was performed in multiple heat treatments with grinding in between, 

to ensure good contact of nitrogen gas with the solid. 

3.4 Sublimation Growth 

If no seeds were employed, the growth was called self-seeded growth. Crystals 

spontaneous nucleated and grew either on the thick tungsten lid or thin tungsten foil. 

Generally, the resulting crystals were polycrystalline, except in the case if TiN, ehich was 

epitaxial on individual tungsten grains (This is also discussed in chapter 5). Ultra high 

purity nitrogen was used as ambient gas. Because of the temperature gradient, the solid 

source sublimed in the higher temperature zone (source sublimation) and drives the 

following reaction in the forward direction, then recondensed in the lower temperature 

zone (crystal recondensation) and drives the reaction in the reverse direction: 

)()(2)(2 2 vNvMsMN +« . Seeded growth was also investigated in this research. 

Commercialized SiC wafers were used as substrates. Since Si vapor from SiC can form a 

low temperature eutectic with tungsten, with SiC substrates, the growth temperature was 

limited to 1800 °C to avoid this problem. All the substrates including the foil/lid for the 

AlN recondensation were cleaned by solvents in the order of TCE, acetone, methanol, 

and then rinsed by DI water, before crystal growth. 

3.5 Characterization 

3.5.1 X-ray Diffraction 
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Figure 3.3 Schematic diagram for X-ray Diffraction 

 

Information regarding the crystal structure, chemical composition, and physical 

properties of the crystals was obtained by x-ray diffraction (XRD). X-rays are 

electromagnetic radiation with typical photon energies in the range of 100 eV - 100 keV. 

X-rays striking the material are scattered in all directions. In addition, regularly spaced 

atoms in a crystal structure can diffract X-rays. Strong diffraction occurs when Bragg's 

law is satisfied89: ql sin2d= , where angle 
  is the half angle between the diffracted 

beam and the original beam diffraction, �  is the wavelength of the X-rays, and d is the 

interplanar spacing between the planes that cause constructive reinforcement of the beam. 

A geometric explanation for this phenomenon is shown in Figure 3.3. The lower ray in 

each figure must travel a farther distance than the upper. If the extra distance (A-B-C) is 

exactly an integer number of wavelengths (1, 2, 3 ...) then the two X-rays will leave in-
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phase. If the distance A-B-C is not an integer number of wavelengths, the two rays will 

be out of phase, destructive interference will occur. Using a known wavelength (� ) of X-

rays, and measuring the angle 
 , the spacing d of various planes in a crystal can be 

obtained. From a comparison of the diffraction pattern with expected peak positions,  the 

crystal structure of materials can be determined. 

There are several x-ray diffraction techniques that provide specific types of 

information about the crystals. Powder XRD is commonly used to identify unknown 

substances, the materials crystal structure, the lattice constant, and the magnitude of 

strains in crystalline materials. Thin film XRD can be used to characterize the 

crystallographic structure and preferred orientation of thin films deposited on substrates. 

Single-crystal XRD is usually used to solve the complete structure of crystalline materials, 

for example proteins. In an x-ray pole figure, one can investigate the distribution of 

crystalline orientations within a crystalline thin-film sample. X-ray rocking curves can 

quantify the grain size and mosaic spread in crystalline materials.  

In this study, powder XRD was used to distinguish the nitrides from metal source, 

and the fraction of metal converted to nitride, especially for YN. X-ray rocking curves 

were used to studied the crystal quality, which is indicated by peak widths. X-ray pole 

figures were used to investigate the orientation distribution of crystals on a substrate. A 

pole figure is a stereographic projection showing the orientation distribution of a certain 

direction (pole) within the crystals of the specimen. Figure 3.4 is the x-ray pole figure for 

AlN crystals on tungsten foil. The distribution for 5 orientations associated with 

diffraction peaks from AlN are listed.  The goal for this research was to investigate the 

initial growth stage of AlN crystals. The basal plane was set to be (001) and one can 
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identify the distribution for selected orientation from the pole figure. With tungsten as the 

substrates (self seeded growth), AlN deposits with a textured orientation, with the (002) 

plane (C axis up) parallel to the substrate after only 10mins of growth. 

 
Figure 3.4 X-ray pole figure for thin layer AlN crystals on tungsten substrate. 
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Figure 3.5 Optical photo of pits produced by defect slective etching on TiN crystals. 

3.5.2 Microscopy  

Optical microscopy was usually the first step used to study the crystal surface 

morphology. Low magnification images from 10x up to 1000x were obtained. The crystal 

size, characteristic shapes and visual color were viewed. It was also used to determine the 

defect selective etching pits densities (Figure 3.5). In this study, optical microscopy was 

also used to monitor the oxidation of YN crystals as the variation of thickness of surface 

oxides affects the crystal color under the light (described in Chapter 5). 

Scanning electron microscopy (SEM) (Figure 3.6) was also used in this study. 

This technique uses a focused beam of high-energy electrons to generate a variety of 

signals at the surface of solid samples. A beam of electrons is produced at the top of the 

microscope by an electron gun and is accelerated to an energy in the range 0.1- 30keV90. 

The beam travels through electromagnetic fields and lenses, which focus the beam down 

toward the sample. The accelerated electrons carry significant amounts of kinetic energy, 

and this energy is dissipated as a variety of signals produced by electron-sample 

interactions when the incident electrons are decelerated in the solid sample. These signals 

include secondary electrons (used to produce SEM images), backscattered electrons 
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(BSE), diffracted backscattered electrons (EBSD that are used to determine crystal 

structures and orientations), photons (characteristic X-rays that are used for elemental 

analysis), visible light (cathodoluminescence--CL), and heat. 

 
Figure 3.6 Schematic diagram for SEM. 

 
Secondary electrons and backscattered electrons are commonly used for imaging 

samples. Secondary electrons are most valuable for showing morphology and topography 

on samples. Backscattered electrons are most valuable for illustrating contrasts in 

composition in multiphase samples. Both types of images were used in the study. Figure 

3.7 are the SEM top view photos for AlN deposited on SiC substrates. Fig.3.6a is 

produced by secondary electrons and Fig.3.6b is produced by backscattered electrons at 
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same region. In order to show the morphology better, the left photo was used in this 

thesis. Figure 3.8 showed SEM photos for the cross section of the AlN crystal on SiC. 

The upper region is mainly AlN and the bottom region is mainly SiC. Obviously, the 

photo produced by BSE can give a better detail as it provided cleared contrast.  

  
a                                                                             b 

Figure 3.7 SEM top view photo for AlN on SiC produced by SE (a) and BSE (b). 
 

  
a                                                                             b 

Figure 3.8 SEM side view photo for AlN on SiC produced by SE (a) and BSE (b). 
 

SEM is also capable of performing analyses of selected point locations on the 

sample with energy dispersive x-ray spectroscopy integrated. An energy-dispersive (EDS) 
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detector is used to separate the characteristic x-rays of different elements into an energy 

spectrum, which is analyzed to determine the abundance of specific elements. This 

analysis is non-destructive as x-rays generated by electron interactions do not damage the 

sample. This approach is especially useful in qualitatively or semi-quantitatively 

determining chemical compositions. For example in the AlN seeded growth on SiC 

substrate study, the SiC usually decomposed at the temperature for AlN growth. EDS was 

used in this study to identify the composition of the crystals on the substrates especially 

at the initial growth stage.   

An SEM that is equipped with electron backscattering diffraction detectors 

(EBSD) can be used to examine the crystallographic orientation for crystals. Accelerated 

electrons in the primary beam of a SEM can be diffracted by atomic planes in crystalline 

materials. These diffracted electrons can be detected when they impinge on a phosphor 

screen and generate visible lines, called Kikuchi bands, or EBSP's (electron backscatter 

patterns). These patterns are effectively projections of the geometry of the lattice planes 

in the crystal, and they give direct information about the crystalline structure and 

crystallographic orientation of the grains. In this study, EBSD was used to determine the 

orientation of single TiN crystal grains relative to the orientation of the tungsten grains 

that it was deposited upon. The relationship between the crystals and the underline 

substrate was determined by examining a series of samples.   

Like EBSD, Electron Channeling Contrast Imaging (ECCI) is also a scanning 

electron microscope diffraction based techniques.91 It consists of a commercial scanning 

electron microscope (SEM) coupled with diode detectors to collect electrons 

backscattered or forescattered from a crystalline sample.92 ECC images are produced 
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from electrons which channel down the crystal planes. When the crystal specimen is 

tilted near a Bragg angle, because of the localized bending of lattice planes by the 

individual dislocations, strong fluctuations in the backscattered or forescattered electron 

yield are created92. These changes in electron yield are recorded as dark/ bright intensity 

fluctuations in the resulting backscattered / forescattered electron images and provide a 

value for the total dislocation density from the images.  Tilt, strain, the presence of 

defects which distort the crystal planes such as changes in crystallographic orientation or 

in lattice constant91,  threading dislocations (TDs) and surface steps93 make changes in 

grey scale in the ECCI image, and can then be can be revealed. ECCI is used in 

metallurgy91 and reported recently to image screw or mixed dislocations in GaN and 

SiC92. In this study, dislocations in the AlN crystals were investigated by ECCI.  

3.5.3 Raman  

Raman is a common vibrational spectroscopy for assessing molecular motion and 

fingerprinting species, which is similar to IR (infrared spectroscopy). When a 

monoenergetic beam of light impinges upon a sample, photons are absorbed and scattered 

by the material. Most of these scattered photons have exactly the same wavelength as the 

incident photons and are known as Rayleigh scatter (Figure 3.9), but a tiny portion of the 

scattered radiation shifted to a different wavelength: Raman scattering. This shift in 

energy gives information about the phonon modes in the system, and information of 

materials can be collected. Most of the Raman scattered photons are shifted to longer 

wavelengths (Stokes shift), but a small portion are shifted to shorter wavelengths (anti-

Stokes shift).  



 57 

By compare the phonon modes of crystal sample, information on crystal 

properties and quality can be obtained. For instance, the width of the E2 Raman peak 

reflects the crystalline quality and stress affects the E2 phonon frequency94 . The 

application of Raman on the Al composition in AlxGa1-xN layers and growth temperature 

monitor of GaN layers has been proved94. In this study, Raman was used to characterize 

YN and strain in the AlN crystals. 

 
Figure 3.9 Energy-level diagrams 

Energy-level diagrams of: Rayleigh scattering, Stokes scattering, and anti-Stokes scattering. 

3.5.4 Other methods  

Auger spectroscopy is another common surface analytical technique based on 

Auger effect that named after its discoverer -- a French physicist Pierre Auger: The 

emission of an electron from an atom accompanying the filling of a vacancy in an inner 

electron shell.95 It utilizes the emission of low energy electrons in the Auger process and 

is one of the most commonly employed analytical techniques for determining the 

composition of the surface layers of a sample. In this study, scanning auger microprobe 

was used to measure the surface monolayer elemental composition such as Al, N and O 

for the crystals, substrates and cross-sectional area. With sputtering attached, the depth 

profile of each element can be obtained. 
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Wet etching is a simple method to characterize the crystal polarity and defects. In 

defect selective etching, defects such as dislocations etch faster than regular area. Only 

nitrogen polarity basal plane of AlN crystal etches in aqueous potassium hydroxide 

(KOH), while aluminum polarity basal plane is inert. Both aqueous (KOH) liquid and 

eutectic KOH/NaOH solution was used in the etching studies. The samples were then 

rinsed with DI water and blown dry with nitrogen. An example of TiN crystals defect 

selective etching was shown in Figure 3.5. 

LECO analysis is a common technique in this study to measure the overall 

element concentration in the sample such as C, O, N, Al and Si. LECO is the “generally 

accepted” industry standard for combustion analysis. It employs a solid- state infrared (IR) 

and thermal conductivity (TC) detector, with accuracy and precision to five orders of 

magnitude (sub-ppm to tens of percent).  
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CHAPTER 4 - Thermodynamic Analysis and Source 

Purification of AlN  

The unintentional incorporation of impurities in AlN crystals growth by PVT is a 

significant problem caused by the relatively low purity of source materials and the 

extremely high temperature employed. Typically, the bulk crystal produced by this 

technique have high oxygen concentration, on the order of 1019 O atoms/cm.3 96 , 97 

Currently, commercial AlN powders are produced mainly by the carbothermal nitridation 

of Al2O3 and direct nitridation of aluminum98. Impurities introduced in these processes 

such as carbon and oxygen are probably the origin of the principle impurities in the final 

AlN crystals. Moreover, aluminum has a strong affinity for oxygen99; hence additional 

oxygen and hydrogen was introduced to the source AlN powder because of the native 

surface oxide or hydroxide. In addition, the application of graphite furnace or graphite 

components in the bulk crystals growth also introduces the carbon impurity. Additionally , 

SiC , a commonly used substrates can be additional source of Si and C.  

The effect of impurities on the final product has been widely studied. The main 

optical absorption band of AlN was extended from 3.5 to 5.5 eV for samples with 

O~1021/cm3, thus the present of oxygen in the AlN consumes light generated by the AlN 

based device 100, hence greatly reduce the efficiency of the device. Oxygen incorporation 

also degrades AlN thermal conductivity101 , 102 and crystal quality has been found to 

degrade dramatically at high oxygen concentrations101. Adding select impurities can be 

benefitis: Fukuyama’s group103 , 104 showed that adding carbon can reduce oxygen 
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content. In addition, the oxygen effect on the AlN crystal growth also has other effects. M. 

S. Ramm’ group analyzed the role of oxygen in the sublimation growth105; closed-box 

thermodynamics calculations on six selected gaseous species indicated that the vapor 

contamination by oxygen gives rise to gaseous Al2O and AlO promoting Al-containing 

species transport to the seed at temperatures lower than 2000 K. Additionally, the critical 

oxygen fraction in the vapor corresponding to Al2O3 inclusion generation on the AlN 

surface was determined105. Thus, High degree of AlN powder purification is required to 

prevent the growing AlN crystals from inclusions. Obviously, in order to get AlN crystals 

with good quality, the residual impurities concentration should be limited. However, few 

studies have focused on the AlN powder purification process; purification procedures are 

still under investigation. This chapter is the combination of past efforts on impurities 

incorporation and AlN source purification based on published results.106 , 107 , 108  Both 

thermodynamic analysis and experiment results are reported.  

4.1 Thermodynamic Analysis 

The goal of this thermodynamic analysis is to understand which volatile species 

form and can transport impurities through the gas phaseduring the AlN crystal growth. 

This analysis assumes there are no adsorption or nucleation barriers at the source and 

seed interfaces. Pure N2 gas was the ambient gas. The total pressure was calculated from 

the ideal gas law knowing the initial temperature and pressure. Two solid-vapor 

equilibriums were assumed, one at the source sublimation zone at temperature Ts, the 

other at the crystal growth zone at temperature Tc. The furnace was modeled as a one 

dimensional temperature gradient along the sublimation-recondensation direction.  
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Table 4.1 Possible species formed for each system of elements 
 Al-O-C-N system      Al-O-H-N system  
     Al-O-N system      
               

 N-C-O Al-C N-C N-O Al-N Al-O Al-H-O H-N H-N-O  

Solid   Al4C3     AlN   Al(OH)3*     Liquid  
    C,    AlON* Al, Al2O3 AlOOH*    Solid 

Liquid          Al   H2O       

Gas CO2, C, CNN, NO, Al, O, H2O, H3N, HNO, Gas 
  CO, C2, NCN, NO2, Al2, O2, H2O2, H4N2, HONOcis   

  C3O2, C3, CN, NO3, N, O3, HO, H2N2, HONOtrans   
  C2O, C4, C2N, N2O, N2, Al2O, AlH, H2N, HONO2   
  NCO C5, C2N2, N2O3, N3, AlO, OAlH, HN,     
    AlC C4N2 N2O4, AlN Al 2O2, AlOH, H2     

        N2O5   AlO2 OAlOH       

    CH CH2 CH3 CH4 C2H C2H2 C2H4     

      CHN CHNO CHO C2H4O CHNO       

       Al-O-C-H-N system        
           

 Si-C-Al-N system incude (Al-N, Si-C, Al-C, Si-N)  

  Si-C Si-N   

Gas Si, Si2, Si3, Si2C, SiC, SiC2 Si2N   SiN,   
Liquid  Si        

Solid      Si SiC       Si3N4     
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The crystal growth zone was assumed to be 5 to 50 °C lower in temperature than 

the source sublimation zone, thus � T equals Tc minus Ts. Reactions used in 

thermodynamic calculation were represented as: 

 )()()()( gDdgcCgbBsaA +=+  (4-1) 

Then the equilibrium constant of the reaction were expressed by: 
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Where � i is the activity of the reactants or products i with reference to their 

standard states (pure substance, activities of unity and 0.1 M Pa) and �  is the 

stoichiometric coefficients. Free energy of formation � fG
0
i comes from JANAF data109. 

All possible electrically neutral species for which thermodynamic data was 

available in the JANAF table109 were considered in this study. They are listed in Table 

4.1 in three columns: Al-O-N, Al-O-C-N, and Al-O-H-N. Impurities and their 

concentration in the as-received AlN powder according to the analysis by the supplier are 

listed in Table 4.2. An inert gas fusion technique (LECO analysis) was used to measure 

the hydrogen concentration since it is not reported by the AlN source powder supplier, 

and to verify the oxygen concentration as aluminum has a strong affinity for oxygen. To 

simplify the thermodynamic analysis, impurities with concentrations lower than 0.01 at% 

were assumed to be negligible. Values of 0.9wt% oxygen and 0.024wt% hydrogen were 

obtained.  

Table 4.2 The concentration of impurity elements in AlN powders*. 

Element Al N O C H Ga Si Fe Ni 

Wt% 65.4 
Wt % 

33.6% 0.84% 0.06% 0.02% 70ppm 30ppm 10ppm 10ppm 

*: O and H are from LECO analysis, others are from110 
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To simplify the analysis, simple systems considered for 4 cases according to the 

impurity source: Al-O-N, Al-O-H-N from, Al-O-C-N, and Al-N-Si-C representing 

sublimation recondensation growth in a tungsten furnace (or other non-reacting furnace) 

with oxides only, a tungsten furnace with oxides and hydroxides, a graphite furnace 

( 1=
SCa ), and AlN growth on SiC seeds respectively. Al-O-N system was investigated at 

the Ts range of 1700 C to 2400 C, which spans the full range of temperatures typically 

employed for AlN crystal growth by PVT. As we previous summarized the analysis by 

several groups on AlN hydroxides107, and experimentally demonstrated that a heat 

treatment under 900C in either vacuum or under nitrogen can decompose the aluminum 

hydroxides, the investigated temperature for Al-O-H-N system was started from 900 C. 

These two systems can be considered for the cases that impurities came only from the 

purchased AlN powder. The highest temperature of interest for AlN growth on SiC seeds 

is lower than the other cases, as higher temperatures lead to rapid SiC decomposition. 

4.1.1 Al-O-N  

Thermodynamics calculation predicted that the major gas-phase species present 

are N2, Al, Al 2O, Al2, and AlO; gas species AlN, Al2O2, AlO2, NO, NO2, N2O, N3, O, O2 

with pressure lower than 10-6 atm are negligible, while other gas species NO3, N2O3, 

N2O4, N2O5, O3, N with pressure lower than 10-28 atm are unlikely to be present in the 

vapor. Figure 4.1shows the partial pressure of the major gas species as well as AlN. 

Aluminum gas (Al) has the highest partial pressure. Dialuminum monoxide (Al2O) is 

strongly favored over all other possible oxygen containing compounds. A possible 

representative reaction for the formation of Al2O is:  
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Figure 4.1 Partial pressure of the majority gas species in Al-O-N system. 
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Figure 4.2 O/Al ratio in vapor and element vapor/total mole% for sublimation zone 
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  )(3)(4 )( 232 gOAlgAlsOAl Û+  (4-3)  

And equilibrium constant (in logarithmic form) for this reaction is: 

LogK: 3.328(2100 K), 3.164(2200 K), 3.010(2300 K), 2.865(2400 K), 2.728(2500 K) 

All the reactions forming other oxygen containing species have negative LogKs. 

Figure 4.2 shows the quantity of Al and O entering the vapor phase in percentage 

of the total element mole number and the O/Al mole ratio in the vapor phase for AlN 

sublimation zone. Both Al and O begin to enter the gas phase at 1900C.  Much of the 

oxygen originally present in the source enters the gas phase: 56.3% at 2200C and 99.5% 

at 2300C. In comparison, less of the Al present in the source enters the gas phase: 6.0% 

at 2200C and 17.1% at 2300C. The O/Al ratio in the vapor is always higher (>0.03885) 

than in original source (0.02314) reaching a maximum around 2200 C. This maximum is 

probably the consequence of the relatively strong stability of Al2O at high temperature 

drawing the equilibrium to the right, while depletion of oxygen from the source and 

higher Al vapor pressure from AlN causes a decrease in the O/A as the temperature 

increases.  

Figure 4.3 shows the O/Al ratio in the vapor phase of crystal growth zone as a 

function of the temperature difference (TD); each curve represents AlN sublimation-

recondensation process at same sublimation temperature (Sub-T) but different growth 

temperature (Grow-T).  The O/Al ratio increases then decreases as the Grow-T decreases 

from 5 to 50°C in the Sub-T range of 1700C ~1900C, for instance, looking at the 

1800C curve, the O/Al ratio is 0.0862 in the source zone (when TD is 0); it increases to 

0.1012(when TD is -30°C) and then decreases to 0.0985(when TD is -50°C). In 

comparison, in the Sub-T range of 1900C ~2400C, the O/Al ratio never decreases but 
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keeps increasing, which suggests Al2O is not stable in the gas phase when Sub-T is below 

1900 C. As most of the oxygen goes to vapor (Sub-T: 2200C ~2400C), O/Al ratio 

increases much faster (dashed curve is sharper than real curve) as the Grow-T decreases 

from 5 to 50°C, which implies that oxygen tend to stay in vapor at high temperature. 
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Figure 4.3 O/Al ratio in the vapor phase of the crystal growth zone 

 

4.1.2 Al-O-H-N  

When aluminum oxides react with water vapor in the air, hydroxidation occurs. 

As native hydroxides are always accompanied with native oxides, the hydrogen impurity 

is adding to the above basic system now and the new system is Al-O-H-N.  Aluminum 

hydroxides are easily decomposed in the AlN source annealing process. The amorphous 

thin film that forms may be a mixture of one or several Al-O-H compounds such as 

aluminum trihydroxide Al(OH)3, aluminum oxide hydroxide AlOOH / Al2O3�H2O, or 

aluminum oxide Al2O3
111 . Aluminum hydroxides are easily decomposed; several 



 68 

studies107 showed significant amounts of water desorbing after simple heating process at 

temperature lower than 900 °C. According to our thermodynamic calculation, all the H 

enters vapor phase and the Pp of hydrogen containing species remain unchanged in the 

typical Ts range of 1700 C to 2400 C.  

When the studied temperature range was reduced to 900 °C to 1200 °C, for a total 

pressure of 500 torr (0.658 atm, Figure 4.4a) and 1 torr (0.001 atm, high vacuum, Figure 

4.3b), thermodynamics calculation predicted that the major gas-phase species present are 

N2 and OAlOH. Although the Al vapor higher pressure is higher under vacuum (about 

10-9), it is a minor gas species. Gas species Al2O, Al2, AlO, AlN, Al 2O2, AlO2, NO, NO2, 

N2O, N3, O, O2 with pressure lower than 10-10 atm are negligible, while other gas species 

NO3, N2O3, N2O4, N2O5, O3, N, H2O, H2O2, HO, H2, AlH, OAlH, AlOH, H3N, H4H2, 

H2H2, H2N, HN, HNO, HONOc, HONOt, HONO2, with pressure lower than 10-28 atm are 

unlikely to be present in the vapor. While Al2O gas is only stable at high temperature 

(higher than 1900C), OAlOH gas is stable at lower temperature regardless of the 

ambient. In addition, the lower Al/O mole ratio in OAlOH (0.5) than Al2O (2) indicates 

less source mass is lost during the removal of oxygen from the solid phase. Since no 

crystal growth process is happening, the species OAlOH is actually removing the O and 

H from the source.  
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Figure 4.4 Partial pressure of the selected gas species in Al-O-H-N system  
a, total pressure is 500 torr (0.658 atm); b, total pressure is 1 torr (0.001atm). 
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4.1.3 Introduced impurities 

In addition to impurities from the source powder, impurities can also originate 

from the environment and the substrates. For example, graphite is a common material for 

furnace, retort, and crucibles in the AlN sublimation crystal growth process, adding 

carbon impurities to the system. Without native substrates, various available foreign 

substrates such as silicon carbide may also introduce impurities. 
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Figure 4.5 Partial pressure of the majority gas species in Al-O-C-N system. 

 

4.1.3.1 Al-O-C-N 

If a graphite furnace/components was considered for the above Al-O-N system, 

infinity carbon is available ( 1=
SCa ) during in the crystal growth process, therefore the 

three elements system become four elements system Al-O-C-N.  



 71 

All the species whose concentrations are negligibly small in the Al-O-N system 

are not changed by the addition of carbon, and carbon species CNN, NCN, C, C2, C3, C4, 

C5, C3O2, C2O, AlC, and NCO with pressure lower than 10-10 atm can be negligible too. 

N2, CO, Al, CN, C2N2, Al2O, Al2, AlO, C2N, C4N2 CO2 are the majority species in vapor 

(Figure 4.5), among which CO is the main species containing carbon and oxygen with 

pressure even higher than Al gas. The presence of carbon changed the oxygen 

distribution in the gas phase; CO is easily formed and is much more stable than all other 

O containing species including Al2O. Possible reactions forming CO include: 

  )(3)(2)(3 )(32 gCOgAlsCsOAl +Û+  (4-4) 

  )(3)()(3 )( 232 gCOgAlsCsOAl +Û+  (4-5) 

  )(2)()( )( 232 gCOgOAlsCsOAl +Û+  (4-6) 

  )()(2)( )(32 gCOgAlOsCsOAl +Û+  (4-7) 

The Al species subsequently react to form AlN by carbothermal reduction in a 

nitrogen rich condition. 99.962% of oxygen impurity goes to vapor phase in the form CO 

as the AlN sublimates at 1700C, and only 0.001% of oxygen is left as AlN sublimates at 

1900C.  The CO partial pressure is almost unchanged in crystal growth zone, which 

implied most C and O impurities tend to stay in the gas phase during the crystal growth.  

In the absence of oxygen, carbon can still be transported by cyanogen (CN) and 

dicyanogen (C2N2).  The partial pressure of these species is significant, on the same order 

as that for aluminum.  Besides being responsible for the transport of carbon in the vapor 

phase and potentially its incorporation into the growing AlN crystal, all graphite 

components are subject to erosion through the formation of CN and C2N2.  The lifetime 

of graphite components in nitrogen is limited at high temperatures due to the formation of 
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these compounds.  Thus, the use of graphite components should be avoided in the crystal 

growth of AlN.   

4.1.3.2 SiC substrate  

Silicon carbide is the most common single crystal employed in seeded growth of 

bulk AlN because of its large availability and orientation control of AlN. Here the Al-N-

Si-N system is investigated with Ts range from 1700 C to 2400 C. SiC is not stable at 

high temperature; it decomposed at temperature much lower than that commonly required 

for AlN bulk crystal growth.  
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Figure 4.6 Partial pressure of the majority gas species in Al-C-Si-N system. 

 

Although Al gas has the highest partial pressure, significant partial pressure of Si, 

CN and C2N2 were predict by the thermodynamic model, additional silicon and carbon 

gaseous species present in nitrogen ambient including Si2N, Si2C, SiC2, Si2 and C2N. 
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Moreover, Al2 has similar order of magnitude as Si2. Partial pressure of all the other 

gaseous species are lower than 10-10 atm. Figure 4.6 shows the partial pressure of major 

gas species in crystal growth zone at temperature 50 C lower than source sublimation 

zone. Possible reactions are in table II.  The most probable volatile species originating 

from SiC seed are Si, Si2C, SiC2, Si2, The presence of nitrogen accelerates the 

decomposition of the SiC through the formation of additional vapor phase species such as 

Si2N, CN, C2N2 and C2N. 

Table 4.3 Reactions and equilibrium constant forming Si2N and Si2C 
Log K at T Reaction 

2100K 2200K 2300 K 

(4-8)  )()()( gCgSisSiC +Û  -13.787 -12.480 -11.287 

(4-9) )( )()(2 2 gCSigCgSi Û+  13.223 11.990 10.864 

(4-10) )( )(2)( 2 gSiCgCgSi Û+  18.063 16.617 15.297 

(4-11) )(2 )()(4 22 gNSigNgSi Û+  6.544 5.410 4.374 

(4-12) )(2 )()(2 2 gCNgNgC Û+  7.740 7.010 6.352 

(4-13) )( )()(2 222 gNCgNgC Û+  15.761 14.193 12.782 

 

4.1.4 Complex System   

Based on the analysis above, one can conclude that all the three impurities 

oxygen, hydrogen, and carbon have corresponding gas species stable at certain 

temperature range, which indicates the possibility of removing these impurities by 

heating process (annealing / sintering). It is highly possible to remove hydrogen impurity 

before the crystal growth process occurs. Although graphite components should be 

avoided for the crystal growth of AlN, carbonthermal reduction is effective in producing 

AlN from Al 2O3. The removal process of hydrogen and carbon can also remove oxygen. 

Therefore, it is important to select the heating process temperature range for removing the 

maximum impurities possible before the crystal growth process. In order to optimize the 
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process, non-reacting furnace/components and substrate were selected for the following 

analysis. Carbon was considered as both residual impurity for as-received powder and 

introduced impurity for carbonthermal reduction.  

For the system with carbon, thermodynamic analysis shows that the major gas-

phase species present are still N2 and OAlOH (with pressure of about 10-3). Consider 

carbon as a residual impurity in the as-received powder; figure 4-7a represents the partial 

pressure for the gas species that has partial pressure higher than 10-13 at the calculated 

temperature range. Between 900 °C to 1200 °C, CO is a minor gas species (with a partial 

pressure between 10-6 -10-8). The addition of carbon does not change the concentrations 

of those species which are negligibly small in the Al-O-H-N system. Carbon containing 

species C2N2, C2N, C4N2, CNN, NCN, C, C2, C3, C4, C5, C3O2, C2O, AlC, NCO, CH, 

CH2, CH3, CH4, C2H, C2H2, C2H4, CHN, CHNO, CHO, C2H4O and CHNO with pressure 

lower than 10-12 atm are also negligible. Between 1400 °C� to 1600 °C (Figure 4.7a), CO 

gas with pressure between 10-4 -10-6 become the third most major gas species. Between 

1900 °C to 2100 °C (Figure 4.7), both the Al and Al2O partial pressures increased faster 

than that of CO gas as the temperature increased. The Al2O partial pressure finally 

exceeds CO above 2050 °C.  Since the partial pressure of cyanogen (CN) is lower than 

10-10 at 1400 to 1600 °C and 10-8 at 1900 to 2100 °C, CO is the main carbon containing 

gas species in Al-O-C-H-N system in an inert reactor. 



 75 

Temperature C

1.E-13

1.E-06

1.E+01

0.4 0.5 0.6
Reciprocal Temperature  1000/T(K)

P
re

ss
ur

e 
at

m

Al
Al2
AlN
AlO
Al2O
Al2O2
NO
N2
OAlOH
CN
CO
AlC

�������������������������������� �������������������������������� ���������������������������������������������������������������� ��������������������������������

�D�D�D�D
 

Temperature C

1.E-13

1.E-06

1.E+01

0.4 0.5 0.6
Reciprocal Temperature  1000/T(K)

P
re

ss
ur

e 
at

m

Al
Al2
AlN
AlO
Al2O
Al2O2
NO
N2
OAlOH
CN
CO
AlC

������ ������ �� ������ �� ������ �� �� �� ���� ���� ���� ���� ���� ���� ���� �� �� ���� ���� ���� ���� ���� ���� ���� ������ �� ������ �� ������ �� ������ �� �� �� ���� ���� ���� ���� ���� ���� ���� ��

�E�E�E�E
 

Figure 4.7 Partial pressure of the selected gas species in Al-O-C-H-N system. 
(a), as received AlN source;  (b), AlN source with additional carbon  
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Aluminum oxides and hydroxide can be written as (Al2O3 )x(H2O)y to emphasize 

the water they contain. By adding carbon, oxygen can be removed by transferring all the 

oxygen from Al2O3 to CO, thus the total moles of carbon are the same as that of oxygen 

in Al2O3. Then partial pressures for this new system were represented in Figure 4.7b. 

Compare Figure 4.7a and Figure 4.7b, N2 and OAlOH are still the major gas species at all 

the calculated temperature range (900 °C to 2100 °C) for the system with added carbon 

(Figure 4.7b) . CO is become the third major gas and has significant pressure increasing 

since 1400 °C. At the same temperature, the partial pressure of CO is higher for the 

system with added carbon (fig.2b). The pressure of cyanogen is lower than 10-10 in this 

temperature range. Between 1900 °C to 2100 °C, the sharp increasing in the Al2O partial 

pressure was constrained by additional CO, and was always lower than that of CO.  

4.2 Source Purification of AlN    

Based on the thermodynamic analysis, one step of high temperature treatment 

(>1900 °C) should remove most of the impurities in theory. In fact, one step high 

temperature sintering (>1900 °C) has been proved to be effective at reducing oxygen 

concentration107 as surface area of the AlN source was reduced, hence much less surface 

oxides and hydroxides formed if the source was exposure to the air or water vapor in the 

air after the treatment. However, as the crystal growth process all occurs at this 

temperature, long time sintering at this temperature results in high source mass loss. 

Besides, the effect of high temperature sintering on impurities diffusion in the material 

has not been considered.  The process can effectively reduce the impurities concentration 

before crystal growth process happening need take into consideration.   
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According to thermodynamic analysis, OAlOH, CO, and Al2O are the major 

impurity-containing species when the AlN source is directly heated to temperature higher 

than 1900 °C. Their significant higher partial pressure compared to Al and stability in the 

vapor helped impurities removal from the solid phase. In contrast, OAlOH is the only 

impurity containing species if first annealing AlN source at about 1000 °C. The oxygen 

and hydrogen can be removed first through OAlOH volatilization and then by Al2O 

forming when the temperature is increased to 1920°C. The low Al/O ratio of OAlOH 

over Al2O indicates the source purification with low AlN source mass loss.  

Three sets of experiments were run to remove oxygen from the AlN source and 

compared: 1�Èdirectly sintering at1950 °C, 2, a previous 1000 °C annealing followed by 

high temperature sintering, and carbothermal reduction at 1500°C after low temperature 

annealing before high temperature sintering. Figure 4-8 shows the O (a) and H (b) 

concentration in the AlN source vesus source mass loss. Comparing the two sets of 

experiments (triangle stands for the source only sintering at 1950°C; diamond stands for 

the source annealing at 960�" 1000 °C followed by sintering at 1920°C), for the same 

AlN source mass loss, the experiments with the low temperature annealing step have 

lower O and H concentration in general, indicating more effective source purification. 

Additional carbothermal reduction improved this result; with only 5.5% of mass loss, the 

purification produced a source with low O, H, and C concentrations of 0.018 wt%, 6 

ppm, and 0.006wt%. 

Thermodynamic analysis predicts that CO is the major oxygen containing species 

and only carbon containing vapor species between 1400 °C to 1600 °C, thus a 

carbothermal reduction at 1500°C after the 1000°C annealing can further reduce oxygen 
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with nearly zero source mass loss. Considering that as-received AlN powder has an 

impurity concentration of 0.9 wt% O, 0.024wt% H, and 0.06wt% C, the atomic ratio of 

C:H:O is 4:19:45. Since aluminum oxides and hydroxides can be written in the form of 

(Al 2O3 )x(H2O)y, additional C is need to remove oxygen from the aluminum oxide while 

minimizing the mass source loss. After high temperature sintering, O and H concentration 

were tested (the circle in Figure 4.8 ). With only 5.5% of mass loss, More than 98% of O, 

99.9% of H and 90% of C originally in the source was removed. 
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Figure 4.8 Impurities (wt%) in the AlN source as function of the source mass loss.  

� - source only sintering at 1950°C; �  - source annealing at 960–1000 °C followed by sintering at 
1920°C; o - source with added carbon for carbothermal reduction during the annealing process. 

However, the theoretical calculation may only refer to the oxygen and hydrogen 

that originates from surface aluminum oxides and hydroxides. If the impurities were 

trapped inside of the materials (or volume impurities), for example, the impurities 

dissolved in the bulk AlN or trapped at internal surfaces of voids, the impurity diffusion 

kinetics need take into consideration. Therefore there is a minimum impurity 

concentration that sintering can achieve, which has been addressed before101 in our study 

from different point of view. Meanwhile, the stability of the major impurity containing 

species OAlOH, CO, and Al2O in the gas phase suggest that impurities trapped inside of 

the materials (or volume impurities) may be removed by recrystallization of aluminum 

nitride by, for example, completely subliming and recondensing the source material. 
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CHAPTER 5 - Sublimation growth of AlN Crystals 

5.1 Self-seeded growth of AlN Crystals 

Self-seeded growth of AlN starts from spontaneous nucleation. AlN crystal 

growth process by PVT occurs in several steps: (1) sublimation of source material, (2) 

mass transport of gas phase species, (3) adsorption of gas phase species on the growth 

surface, (4) nucleation, including surface diffusion and incorporation, and (5) desorption. 

The decomposition of AlN in higher temperature zone (source zone) is commonly 

assumed to proceed by the forward reaction of: 

  )()(2)(2 2 gNgAlsAlN +Û  (5-1) 

The temperature gradient established between source and seed provides the driving force 

for mass transport of gas phase species,  then the crystals condensed in the lower 

temperature zone (crystal zone), which can be described reverse reaction of (5-1).  The 

PVT growth of AlN crystals is typically performed in nitrogen atmosphere (partial 

pressure of N2 gas is higher than that of the Al gas by several orders of magnitude). Since 

vapor transport is the rate limited step,71,72 the growth rate is proportional to the flux of 

Al gas transported in the gas phase, thus proportional to the Al gas equilibrium partial 

pressure difference between the source and seed surfaces. 

 
Figure 5.1 AlN crystal boule (l) and wafer (r) 
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In this study, as-received AlN powder was purified according to the methods 

described in earlier chapters before being used as the source of AlN crystal growth. The 

growth rate was determined  by dividing  the crystal mass change that occurred during 

growth by the  growth time. After hours of growth, polycrystalline AlN boules with 

preferential (0001) orientation were obtained (Figure 5.1l); then the AlN wafer (Figure 

5.1r) was produced by slicing the ingot  and preparing the surface  by grinding/lapping, 

which gives good geometrical parameter; mechanical polishing, which reduce the surface 

roughness; and chemical mechanical polishing, which is the best way to produce a 

surface without any scratches or surface damage 

 
Figure 5.2 Grain expansion 

 
Because of competition of neighboring grains during growth, some grains 

expanded, while other grains disappeared. Thus  larger and larger grains were produced 

with growth (Figure 5.2). With only  20 hours of growth, the grains were tiny and their 
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density was high. With an additional 20 hours growth, the grain size increased, but were 

still small. After 110 hours,  both the grain size and ingot height had obviously increased. 

With 218 hours of  boule growth, grains  3mm x 5mm were apperent on the top of the 

ingot. With a total of 346 hour of growth, an AlN boule 27mm in height and 5mm x 8 

mm in top size was obtained. By slicing the crystal boule along the c-axis, cross section 

of the crystal ingot can be studied. The top area of the boule had lighter color and fewer 

cracking compared to the bottom area of the boule. 

   
Figure 5.3 Cross section of AlN boule  

 
The best condition for AlN bulk crystal growth by sublimation is the temperature 

and pressure that produces a growth rate approaching 100 micron/h. This requires a 

temperature above 2050 °C and a pressure of 400~500 torr. However, this condition 

always produces dark brown AlN crystals, presumably due to a high aluminum vacancy 

concentration. At a lower temperature and higher nitrogen pressure, the equilibrium 

nitrogen vacancy concentration may be much less.  Therefore, annealing the crystals at a 

lower temperature (yet still high enough that solid state diffusion can take place) may 

reduce the alunimum vacancy concentration. Figure 5.4 shows the original source 

crystals (dark brown) and crystals after annealing at 1700°C and 960 torr for 24, 48, and 

84 hours; the color changed from dark brown, toamber and light gold. After annealing 24 

hours (Figure 5.4b), the bottom half of the AlN source changed color completely while 
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the top half of the AlN source retained its original dark brown color. There are new 

lighter color pyramid grains formed on the surface of the middle-up part of the AlN 

source, but not on the very bottom part. No prismatic single grains were observed but 

pyramid grains only. After annealing 48 hours, the source was lighter still in color 

(Figure 5.4c), but not obviously color change from the previous one. No single grains 

formed on the surface suggesting that the sources are all in the subliming zone where 

single grains are less likely to form. After annealing 84 hours (Figure 5.4d), the color was 

lighter than samples annealed for shorter times, but the change in color was not as 

pronounced. New pyramid shaped single crystal grains formed on the surface. 

 
a source crystal                b  after 24 hrs annealing 

 
c after 48 hrs annealing                         d after 84 hrs annealing 
Figure 5.4 Source crystals and annealing after different time 
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5.2 Low Temperature AlN Crystal growth on SiC by PVT 
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5.2.1 Introduction  

Because of their superior properties112, such as a wide direct bandgap (direct 

bandgap spanning from 0.8 to 6.1 eV), high breakdown voltage, high electron mobility, 

and high saturation velocity, group III nitride semiconducting compounds have become 

the basis for a multibillion dollar worldwide device market since 1990’s. However 

AlGaInN device technology is limited by the lack of thermally and lattice matched 

substrates. Aluminum nitride is the most promising substrate for AlGaInN based device 

heterostructures, because it has small mismatches of physical properties with respect to 

AlGaInN materials, has a high resistivity, high thermal conductivity (is better at 

dissipating heat generated by devices), and is transparent in the UV range (does not 

absorb UV light generated by the device). It is especially well-suited for the UV 

optoelectronics including UV laser diodes (LDs) and RF power electronic applications 

which require aluminum-rich AlxGa1-xN layers.  

AlN wafers/substrates are now produced from bulk AlN crystals that are grown 

by physical vapor transport (PVT) technique113. In recent years, several groups112 have 
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independently developed processes and models for crystal growth of AlN by this 

technique. PVT can produce AlN bulk crystals of high quality and large sizes appropriate 

for use as substrates for Group III nitrides device technology. The process can be 

separated into self-seeded or seeded growth, depending on whether seed crystals are 

employed in the growth process.  Further improvement of the PVT technique are needed, 

specifically concerning the perfection of the crystal quality (defects and impurities 

reduction, stoichiometry refinement) and enlargement of the crystal boule diameter. 

The seeded PVT growth of AlN on SiC is a potential way to scale the process to 

large diameter crystals, since SiC substrates are available in diameter as large as 150 mm. 

and to control the polarity and orientation of AlN crystals. Balkas et al114 reported the 

growth at temperature range of 1900 to 2250°C with Single-crystal 6H-SiC (0001) as 

substrates. The growth rate was 0.5 mm/h at 2150°C and 30–50 � m/hr at 1950 ~ 2050°C, 

but obviously SiC degradation and AlN crystal cracking were observed. Studies on 6H-

SiC single crystal substrates were then reported by Edgar’s group115, 116, 117, 118, 119, 120, 121. 

To avoid heavy degradation of SiC substrate, the growth temperature was typically 

around 1800°C. Both on-axis and 3.5° off-axis115 6H-SiC with silicon and carbon 

terminations were used. Crystal growth on as-received Si-terminated SiC were reported, 

while no growth was observed on C-terminated as-received SiC. AlN buffer layer was 

deposited by metal-organic chemical vapor deposition (MOCVD) prior to enhance the 

two-dimensional (2D) growth115. The method was modified to reduce the cracking in the 

following studies116, 117, In addition to the AlN epilayer, an (AlN)x(SiC)1-x alloy layer was 

introduced. The intermediate properties of the alloy layer helped reduce cracking in the 

overgrown AlN. The initial stages of AlN growth on SiC were studied118. AlN nucleated 
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as individual hexagonal hillocks and platelets, the grain size increased as the growth 

temperature was increased or growth temperature was decreased. The surface 

morphology and stress in AlN crystals grown on SiC substrates were also 

characterized119, 120. AFM images revealed scratches and steps on as-received 6H-SiC 

substrates, which served as nucleation sites for individual AlN grains grown in a three-

dimensional mode sublimation from a source mixture of AlN-SiC powders. Surface 

morphology varied across the sample, from flat surfaces to regions with large steps (120 

nm) separated by large terraces (up to 5 � m). For comparison121, Self-seeding produces 

crystals of the highest perfection, lowest stress, and low Si and C impurity content, but 

the crystals grow in random crystallographic orientations; while AlN crystals seeded on 

6H-SiC(0001) have a single crystallographic orientation and the largest dimensions are 

perpendicular to the c-axis, determined by the size of the substrate. Cracking and voids in 

the AlN layer produced by differences in thermal expansion coefficients of AlN and SiC 

and decomposition of the SiC were ameliorated by depositing an AlN–SiC alloy layer on 

the SiC before growing the AlN layer. Epelbaum et al.122 studied AlN crystal growth on 

SiC with different orientations. At seed temperature of 2000°C in 350 mbar N2 pressure, 

AlN layers were obtained in the thickness of of 200–500 � m. Hexagonal hillocks were 

obtained from the growth on Si-face, c-plane SiC substrates; whereas, growth on a-plane 

substrates resulted in more stable growth showing a smooth morphology. Non-polar AlN 

single crystals growth on m-plane SiC was also reported123. Stacking faults initiated from 

the interface toward the growth surface in AlN/SiC (1�100), the dislocation density 

decreases up to 5 × 104/cm2 at the thickness of 10 mm. 



 88 

However, substrate stability and crystal cracking are still the major drawbacks for 

seeded AlN growth on SiC substrates. Although AlN bulk crystal growth can be achieved 

at temperatures as low as 1800 °C, obviously grain size expansion was reported  at a 

growth temperature around 2000 °C.124  As such a high process temperature, SiC 

substrates readily decomposed. Meanwhile, the difference in thermal expansion between 

AlN and SiC results in the cracking of the AlN layers. Recently, Chemekova et al125 used 

a SiC substrate to scale the process of bulk single AlN crystals boule from 15 mm in 

diameter to 2-inch in diameter.  Another study reported the fabrication of stress-free AlN 

single crystal wafers by the assistance of 2H-SiC pyramids on the 4H-SiC substrate126. 

First at about 1400 °C, asymmetric hexagonal pits formed on the SiC substrate due to 

thermal etching at the emergence of threading dislocations. Then at about 1800 °C, an 

AlN–SiC alloy nucleated inside the pits. As growth proceeds, hexagonal hillocks develop 

on the filled etch pits and later convert to hexagonal pillars. At 400 mbar, the AlN first 

expands in the direction perpendicular to the c-axis results in disklike tablet, and then 

form microrods. Finally, hexagonal microrods with six nonpolar {1-100} planes as side 

facets form on the pyramids with 30° rotation in respect to the pyramid facets in a plane 

parallel to the (0001) SiC substrate. For a longer growth time, the AlN microrods 

coalesce and yield an AlN layer, which can be easily separated from the underlying 

hexagonal pyramids. 

This study addresses the challenging issues involved in PVT growth of AlN on 

SiC substrates including SiC degradation and the impacts of the SiC orientation and tilt 

direction on nucleation and orientation of the AlN. Based on former thermodynamics 

analysis, the AlN was grown at relatively low temperature (no higher than 1650 °C) on 
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SiC substrates with different orientation, tilt, and face, to limited SiC decomposition. 

Oxygen impact was also investigated. The as received AlN powder with oxygen 

concentration of 0.9wt% and bulk polycrystals with oxygen concentration of about ~1018 

cm�3  were used as the sources.  

5.2.2 Experimental  

The aluminum nitride crystals were grown at low temperature on SiC substrates in   

a resistively-heated tungsten furnace with vertical temperature gradient of about 5 °C 

/cm. The source and substrates were placed in a covered tungsten crucible within a 

covered tungsten retort. The distance between the source zone and the crystal growth 

zone was maintained as 1 cm. As received AlN powders (about 1 wt% oxygen) and 

polycrystalline AlN crystals (<10-5 wt oxygen?) were used as sources. Substrates types 

include both Si-terminated and C-terminated c-plane 4H-SiC with on axis, 8o off (11-20) 

and 7o off (1-100) orientations, and m-plane 6H-SiC.  

The sources were baked in a 5% hydrogen and 95% argon gas mixture at 1000°C 

for about 1 hour to reduce the surface oxide before the experiment. The growth 

temperature was measured by an optical pyrometer focused on the top of the retort. Ultra 

high purity nitrogen was used as ambient gas, and the growth time was varied from 2 to 

30 hours. In order to minimize the thermal etching of the SiC substrate, the highest 

growth temperature in the study was 1650 °C. The lowest growth temperature was the 

minimum at which AlN crystals could be observed at a magnification of 1000x at desired 

pressure after 2 hours growth. Based on the results of this study, the grwoth temperature 

varied from 1432 °C to 1650 °C and the growth pressure varies from 125 torr to 888 torr. 
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Electron channeling contrast imaging (ECCI) was used to identify the dislocations 

types and density in the AlN crystal. This technique has demonstrated the ability to image 

screw or mixed dislocations in GaN and SiC127. This nondestructive approach can 

employ a commercial scanning electron microscope (SEM) coupled with diode detectors 

to collect electrons backscattered or forescattered from a crystalline specimen. When the 

crystal specimen is tilted near a Bragg angle, strong fluctuations in the backscattered   

forescattered electron yield are created due to the localized bending of lattice planes by 

the individual dislocations. These variations in electron yield are registered as dark/ 

bright intensity fluctuations in the resulting backscattered/ forescattered electron images. 

The sum of these fluctuations could provide a value for the total dislocation density, if in 

fact all dislocation types are imaged by ECCI.  

5.2.3 Results and Discussion  

AlN crystals growth through PVT can be enhanced by increasing temperature or 

decreasing pressure118, 128. With two hours growth, obviously AlN grains were observed 

under 1000x microscope with temperature as low as 1432 °C and pressure as high as 888 

torr. Most AlN crystals appeared as individual platelets or coalesce with neighbor gains. 

At the investigated temperature range (1432 ~ 1650 °C), AlN crystals lateral expanding 

that perpendicular to the c-plane were promoted under growth enhancing condition or 

with longer growth time, and then form the continuous AlN film on the SiC substrate. 

SiC thermal etch pits can still be observed under 1000x microscope for the samples 

grown at temperature higher than 1520 °C. For the samples growth at temperature lower 

than 1480 °C with polycrystalline AlN as source, the thermal etch pits were scarcely 

observed under 16000x SEM.  
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a, AlN crystals originated from polycrystalline source on SiC  

 
a, AlN crystals originated from powdersource on SiC  

Figure 5.5 Optical photos of AlN crystal on Si-SiC seeds at 1620 °C 
 



 92 

5.2.3.1 Source comparison 

The different between two types of sources employed in the study are their 

morphology and oxygen content. Powder source is composed of small particles that are 

less than 1–2 mm in diameter. It has the highest oxygen concentration (~0.9 wt%) among 

all kind of AlN sources. The crystal source is bulk polycrystalline AlN ingot produced 

from previous study with oxygen concentration of about ~1018 cm�3 .  

After 2hour’s growth at 1620 °C and 780 torr on same SiC substrates, hexagonal 

shaped AlN tablets formed on substrates surface on both types of samples (Figure 5.5).  

Thermal etch pits and surface steps were observed on SiC under optical microscope. And 

their crystal grain size is similar from about 15 micron to about 50 micron. Samples 

originated from O-rich source had obviously much more thermal etch pits on substrate. 

When the growth temperature reduced to 1520 °C, after 2hour’s growth at 780 torr on 

same SiC substrates, the samples from different source presented different morphology. 

With polycrystalline AlN as source, the obtained crystals were hexagonal tablets shaped 

with size varying from bigger than 20 micron to smaller than 1 micron. The grain 

distribution was uniform, and thermal etch pits can be found under most of the crystals. 

While the crystals nucleated from powder source were more localized. The sample 

surface was covered with massive tiny pyramids. The hexagonal shaped crystal density 

was much lower than the sample grew at same condition but from crystal source. And 

their substrates surface was great etched than that on crystal source samples. Figure 5.7 

are the EDS studies on specific point and selected areas of these pyramids on O-rich 

source sample, indicating the composition of the pyramids were more like the mixture of 

SiC and AlN, which was similar to that Yazdi’s report126.   
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a, AlN crystals originated from polycrystalline source on SiC 

 
b, AlN crystals originated from powder source on SiC 

Figure 5.6 SEM photos of AlN crystals on SiC with different sources at 1520 °C 
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 Figure 5.7 EDS on selected area of AlN on SiC grown from o-rich source 

 
Then the growth temperature and growth pressure was reduced to about 1440 °C 

and 622 torr. The morphology of the samples originated from different sources is totally 

different. For AlN grown on Si-face of c-plane 8o off (11-20) SiC for 24 hours, the 

crystals formed tilted thin hexagonal tablets with c-axis parallel to the substrates c-axis. 

No thermal etch pits were observed under 16000x SEM (Figure 5.8a). The SiC 

decomposition was greatly reduced. However, SiC substrates were for the sample from 

O-rich powder source were heavily etched (Figure 5.8b). Deep hexagonal thermal etch 

pits and holes were observed on the surface. The continuous film was formed and 

covered majority area of the O-rich source samples, and the thickness of the film was 

bigger than that of the tablets on crystal source samples, implying higher growth rate for 

samples originated from O-rich source. Even with a shorter growth of 4 hours at same 

condition for O-rich source, SiC substrates are still heavily etched (Figure 5.8c).  

Although there were single crystal grains, the continuous film was also formed and the 
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crystal surface coverage of this sample was still higher than sample from crystal source. 

EDS mapping for samples from O-rich source confirmed that both crystal tablets and 

continuous films are AlN. Hexagonal pyramids can only be found on the samples from 

O-rich source and EDS mapping on area covered with massive pyramids showed 

extremely high concentration with Si and C. However, most of the pyramids are 

symmetric in stead of unsymmetrical tilted shape126. On the area deposited with 

hexagonal pyramids, the crystal grains originated from these pyramids and covered them.  

 
a                                                                         b 

 
c                                                                          d 

Figure 5.8 SEM photos of AlN crystals on SiC with different sources at 1440 °C 
a, AlN crystals originated from polycrystalline source on SiC. b, c, d, AlN crystals originated from 
powder source on SiC. a, b, d, growth for 24 hours. c, growth for 4 hours. 
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Obviously, oxygen increases the SiC degradation. The source for AlN crystal 

growth on SiC substrates should be purified to minimize the oxygen in order to minimize 

the SiC decomposition.  In addition, the present of oxygen enhances AlN crystal growth. 

It was agreed with our previous thermodynamic study and literature105 that oxygen 

promotes Al transport to seed at temperature lower than ~2000 K. 

5.2.3.2 Substrate face and tilt directions comparison  

4H-SiC substrates were studied mainly on c-plane (0001) orientation both Si-

terminated and C-terminated but different tilt directions, including 8o off (11-20) SiC 

(titled to the corner of hexagon, Figure 5.9), 7o off (1-100) SiC (titled to the edge of 

hexagon, Figure 5.10l), on -axis SiC (Figure 5.10r). The diagram of planes and directions 

can be found in Figure 2.5. As etch pits can still formed on the SiC at a growth 

temperature of 1520°C above or with O-rich source, the growth temperature in this 

section was reduced to 1432 °C ~ 1440°C, the growth pressure was 600 torr ~ 620 torr, 

the growth source was polycrystalline AlN and the growth time was 24 ~ 30 hours. Later 

growth of the AlN dominated from the crystal nucleation to the film formation.  

The crystals were successfully deposited on both Si- face and C-face for the same 

substrate, but the nucleation coverage on the C-face is much lower than that on the Si-

face (Figure 5.9). Nucleation preferentially occurs at scratches on the substrates, resulting 

in many crystals following the scratches on both Si- and C- terminated SiC substrates. 

The nucleated crystal grain tilt directions were clearly affected by the substrate tilt 

directions. Although the crystals were all deposited on c-plane SiC, the obtained crystal 

c-axis is always tilted to same direction with substrate c-axis; therefore the growth 

surface of the grains is always parallel to the c-plane. If the substrates are off axis, the 
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growth surface of the crystal then has angle with the substrate surface; crystal grains 

nucleated on 8o off (11-20) interacted the growth substrates on the hexagon corner and 

crystal grains nucleated on 7o off (1-100) interacted the growth substrates on the hexagon 

edge (Figure 5.11). If the substrate are on-axis, no angle was observed between growth 

surface and substrate surface (Figure 5.10r).  

   
Figure 5.9 AlN growth on the Si-face (l) and C-face (r) of c-plane 8o (11-20) SiC 

   
Figure 5.10 AlN growth on c-plane Si-face SiC 7o (1-100) (l) and on-axis(r) 

         
Figure 5.11 AlN on the c-plane Si-face SiC 8o (11-20) (l) and 7o (1-100) (r)  
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ECCI was used to identify the dislocations for the sample deposited on 8o off (11-

20) and 7o off (1-100) 4H-SiC substrates. For the previous substrate, Flatter areas, far 

from the spiral are generally defect-free. Spiral areas show more dislocations. The edge 

growing off of the SiC substrate is highly defective. The etch pits density was in the 

range of 106cm-2. For the later substrate, the areas where dislocations were indicated were 

localized with etch pits density was in the range of 108cm-2 

5.2.3.3 Substrate Orientation comparison 

 C-plane and m- plane orientation 6H-SiC was used as substrate in the experiment. 

Three growth temperatures of 1440 °C, 1520 °C, and 1620 °C were tested. At growth 

temperature of 1520 °C and 1620 °C, pressure of 780 torr, after 2 hours growth very few 

crystals but etch pits were found on the sample, and they didn’t follow the orientation 

with the substrate. At growth temperature about 1436±12°C and a pressure of about 820 

torr, after 24 hours growth, hexagonal AlN grains were obtained. The growth rate along 

the a-axis is higher than that along the c-axis, resulting hexagonal tablet shaped grains. 

The crystals have multiple orientations including c-axis parallel to the substrates, c-axis 

perpendicular to the substrates, and c-axis interacted with substrates (Figure 5.12). After 

40 hours growth at similar temperature and pressure conditions, more and more crystals 

have orientation of c-axis parallel to the substrate. Figure 5.13 are the SEM photos on the 

top view (l) and cross section view (r) of the sample, and hexagonal tablets with diagonal 

size more than 100 micron were obtained. After 48 hours growth at 1448°C and 820 torr, 

c-axis parallel to the substrates became the major orientation of the sample (Figure 5.14). 

Crystals expanded with a higher growth rate along a-axis than that along the c-axis. 
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Figure 5.12 AlN growth on m- plane SiC 24 hours at about 1440 °C 

   
Figure 5.13 AlN on m-plane SiC 40 hrs; top view (l) and cross section (r) at 1440 °C 

  
Figure 5.14 AlN on m-plane SiC 48 hrs; view (l) and cross section (r) at 1440 °C 
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5.2.4 Conclusion  

SiC are thermally etched at temperature higher than 1520 °C, and the AlN grown 

at this temperature or above tend to crystallize from the etch pits At growth temperature 

of about 1440 °C (1432 ~1460°C), no etch pits were found for samples originated from 

polycrystalline AlN. The crystals had a relative uniform distribution over the substrates. 

The use of O-rich AlN powder source in the growth increases the SiC decomposition and 

promotes Al transport. The substrates were heavily etched even at conditions in which no 

thermal etching was found in the growth with very low oxygen-containing source. 

However if the substrate surface was scratched, crystals tend to nucleate from these 

scratches. As a result, low temperature growth with low oxygen concentration source is 

more effective to protect SiC substrate from thermal etching. The AlN crystals can be 

deposited on both Si-face and C-face of c-plane SiC, as well as m-plan SiC substrates. 

The growth surface of grains is always parallel to the c-plane. The grains tend to have 

same tilt with the substrate. However, the growth conditions for m-plan SiC is very 

critical. Continuous AlN crystals growth on m-plane SiC was achieved at 1428 ~1460 C 

and 600 torr. Very few irregular crystals but etch pits was found at same pressure but 

temperature higher than 1520 C; therefore, low temperature growth is more effective for 

m-plan SiC.  
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Abstract 

  

The sublimation-recondensation growth of titanium nitride crystals with N/Ti 

ratio of 0.99 on tungsten substrates is reported. The growth rate dependence on 

temperature and pressure was determined, and the calculated activation energy was 

775.8±29.8kJ/mol. The lateral and vertical growth rates changed with the time of growth 

and the fraction of the tungsten substrate surface covered.  The orientation relationship of 

TiN (001) || W (001) with TiN [100] || W [110], a 45o angle between TiN [100] and W 

[100], occurs not only for TiN crystals deposited on (001) textured tungsten but also for 

TiN crystals deposited on randomly orientated tungsten. This study demonstrates that this 

preferred orientational relationship minimizes the lattice mismatch between the TiN and 

tungsten.  

 

Keywords: TiN, sublimation growth, tungsten substrate, activation energy, 

orientation 
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6.1 Introduction 

Transition metal nitrides such as ScN and TiN, are attractive candidates for 

combining as layered structures or alloys with gallium nitride and related group III nitride 

semiconductors, because they can have similar lattice constants, share a common element 

and exhibit dual properties characteristics of both covalent compounds and metals129. 

Usui et al130 studied the role of a TiN layer in GaN epitaxial growth and crystal quality in 

a void-assisted separation method. The small GaN islands that formed on the TiN nano-

net in the beginning of epitaxy have crystal facets that introduce dislocation bending and 

reduce the threading dislocation density in the GaN layer. Thus, the TiN layer separates 

the GaN layer from the substrate and improves the crystal quality. Chen et al131 employed 

TiN as a reflective layer between the GaN device layer and its silicon substrate.  This 

improved the efficiency of GaN light emitting diodes compared to those grown directly 

on silicon.  More recently, Oliver et al132 used a composite ZrN/AlN layer on silicon for 

similar purposes. The ZrN reduced the light lost by reflecting it away from the substrate 

and facilitated electrical contact formation.  Moram et al133 investigated nitride layers of 

zirconium, hafnium, niobium, chromium, and scandium on silicon to block the threading 

of dislocations in the epitaxial gallium nitride.  Scandium nitride layers were the most 

effective at reducing the GaN dislocation density to a minimum value of 3 x 107 cm-2.  

Bulk ScN crystals have also been proposed as a substrate for gallium nitride, due to its 

small lattice constant mismatch, -0.1%134. Furthermore, epitaxial growth of TiN was 

investigated on Si and GaAs substrate135. Both orientation relationships of TiN [001] || 

GaAs [110] and TiN [110] || GaAs [110] have been found for TiN growth on GaAs 

(001).  



 105 

In addition, titanium nitride is a major industrial material because of its excellent 

properties, including abrasive wear resistance, good lubricating characteristics and low 

diffusivity. This latter characteristic makes it a good diffusion barrier between Si and Al, 

Si and Ag, and Ti and Pt136 . Titanium nitride belongs to the Fm3m space group and has a 

rock salt structure (lattice constant 4.240 Å), which is an FCC crystal structure with all 

octahedral interstitial positions occupied. TiNx is stable in the composition range of 

TiN0.6 to TiN1.1, with nitrogen atom vacancy concentrations up to 50 atomic %136. The 

high melting point (2930C)137, extreme hardness (2000kg/mm2)138, good resistance to 

wear and corrosion, as well as the high phase stability (thermodynamic, metallurgical and 

chemical), of TiN results from the covalent nature of the Ti-N bonds, and its rock salt 

crystal structure139, while its relatively low thermal conductivity (19.2 W/m·C)136, 

compared to Cu (401 W/m·C)140,  AlN (285 W/m·C) or GaN (130 W/m·C) 141, and low 

electrical resistivity (20±10 �� ·cm)136 are from its metallic characteristics. 

Although physical vapor deposition methods are typically employed to prepare 

TiN thin films to ensure a low thermal budget142, many other methods have also been 

used including chemical vapor deposition with TiCl4 and NH3
143  or TiCl4-N2-H2 

mixtures144 , reactive sputtering Ti metal in an Ar/N2 gas mixture145 , evaporation and 

laser physical vapor deposition. To produce bulk crystals, sublimation growth, one of the 

physical vapor transport growth methods, is an attractive approach, as it has higher 

growth rates, morphological stability and is an easily implemented process, and produces 

crystals with lower defect density compared with CVD growth. Sublimation growth has 

been most successfully employed to grow SiC146 and AlN147 bulk single crystals.  



 106 

In our previous study148 , we investigated the morphology and crystallographic 

orientation of TiN crystals grown by sublimation at temperatures of 1820C ~ 1920C, 

and pressures of 0.2 atm ~ 1.2 atm. The TiN crystals deposited on W (001) exhibited a 

preferred orientation of TiN (001) || W (001) and TiN [100] || W [110], which resulted in 

a 45° angle between TiN [100] and W [100]. Therefore, the orientation of TiN crystal 

growth is easily controlled since W [100] is a common orientation of rolled tungsten 

sheet, providing an additional advantage for TiN crystal growth compare to other 

materials grown by sublimation.    

In this study, the sublimation growth of titanium nitride crystals on tungsten 

substrates is reported in more detail. The TiN crystals orientation is further studied not 

only on (001) textured tungsten substrates, but also on non-(001) orientated (random) 

tungsten substrates. The dependence of the growth rate on temperature and pressure was 

established and compared with AlN sublimation growth under similar conditions. The 

activation energy was also calculated based on the change in the TiN growth rate with 

temperature. The elemental composition and the N/Ti ratio before and after crystal 

growth of the source materials were measured to see if there were any significant 

variations in the TiN composition with growth conditions.  The morphology of the TiN 

crystals during different stages of growth was studied to determine how their 

characteristics changed with time. The overall growth rate was divided into two parts, the 

vertical rate (perpendicular to the surface) and lateral rate (parallel to the surface),  and 

their relationship with the overall growth rate, dependence on the length of growth, and 

function on crystal morphology were investigated and discussed.   
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6.2 Experimental 

The TiN crystals were grown in a resistively-heated tungsten furnace using a 

tungsten crucible within a tungsten retort to contain the titanium vapor. TiN crystals were 

deposited on a tungsten foil (25 mm diameter) placed on the top of the crucible. The 

source, TiN powder with oxygen as the main impurity, was sintered before crystal growth, 

to reduce the oxygen concentration. The TiN powder source was sintered by first baking 

in a 5% hydrogen and 95% argon gas mixture at 1000°C for about 2 hours, then heating 

in ultra pure nitrogen gas to 1900°C for another 4 hours. Chemical analysis was 

performed of some of the nonmetallic elements (C,N, and O) in the TiN source to 

determine how their concentrations were changed by sintering. The elements’ 

concentrations in the TiN source before and after this process were measured by the gas 

fusion method.  Before each growth, the source was again baked in 5% hydrogen and 

95% argon gas mixture at 1000 °C for about 1 hour to reduce the surface oxide. The 

growth temperature was measured by an optical pyrometer focused on the top of the 

retort, and a temperature difference of approximately 50°C was maintained between the 

source zone and the crystal growth zone. All the experiments were performed in pure 

nitrogen, and the growth time was varied from 30 minutes to 15 hours. The growth rate 

was investigated as a function of a number of temperature (1980 - 2110 °C) and pressure 

(0.06 - 1.25 atm) combinations  

The overall growth rate, defined as mass change per unit time, was determined by 

dividing the TiN crystal weight increase by the time at the growth conditions.  The film 

thickness of each sample was estimated by )/( rSmh = , knowing the total weight 

increase-m, density-� , and the area-S of the deposited material.  The grain sizes (the 
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projected area of individual crystals) and the grain heights were measured using scanning 

electron microscopy (SEM – FEI Philips XL-30, Eindhoven, The Netherlands) and 

averaged from a number of condensed TiN crystals at each growth condition. The 

average crystal dimensions were determined by measuring twenty four crystals selected 

at random from different regions of each sample, then eliminating the two largest and 

smallest crystals from the calculation, and averaging the remaining twenty.  

The orientation of the TiN crystals and the underlying tungsten substrate were 

determined independently by both X-ray diffraction (XRD) and electron backscatter 

diffraction (EBSD) in a SEM. Pole figures from individual TiN crystals and their 

underlying tungsten substrate grains were collected by EBSD to determine their relative 

orientation relationships. Families of (001) planes were used to reveal the orientation 

relationship between the TiN and W lattices. The elemental composition for TiN powders 

and crystals were measured by Auger electron spectroscopy.  Auger analysis was done 

using a Phi-680 scanning Auger nanoprobe (Physical Electronics, Inc. Chanhassen, MN) 

with a field emission electron gun, cylindrical mirror electron energy analyzer, and Ar-

ion sputter gun.  The energy and current of the probe electron beam was 20 kV and 10 

nA, respectively and give a spot size for the probe beam of ~15 nm.  The beam was held 

at fixed points to yield spectral information (i.e. surface composition) for that feature or 

was rastered over a given area to give either secondary electron images or Auger 

elemental maps.  Depth profiling was performed in selected areas by monitoring the 

Auger signal of selected elements while alternately sputtering for a given amount of time.  

The sputter rate that was used (calibrated for a standard SiO2 film) was 150nm/min.  The 

base pressure of the analysis chamber was ~5x10-10 torr and was maintained by 
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introducing samples through a turbo-pumped load-lock.  Data was acquired and analyzed 

using Phi PC-Access and Phi Matlab software, respectively.   

6.3 Results and Discussion 

Though several solid and vapor phase species that may form in the Ti-N system 

according to the available thermal data in JANAF table137, the most probable gas phase 

products of TiN decomposition are those species with the lowest Gibbs free energy of 

formation: Ti(g) and N2(g). Thus the crystal growth process begins with source 

decomposition and the reaction: 

 )()(2)(2 2 gNgTisTiN +«  (6-1)   

which has a Gibbs free energy of 273.96 kJ/mol at 2300 K (2027 °C) and 251.96 

kJ/mol at 2400 K (2127 °C)137) . Because the reverse reaction has a large negative Gibbs 

free energy change, the crystals readily condense in the cooler region of the furnace.  

It is useful to compare the sublimation of TiN to another material, aluminum 

nitride, since sublimation growth has been successfully employed to produce AlN with 

decomposition and the reaction: 

 )()(2)(2 2 gNgAlsAlN +«  (6-2) 

Titanium nitride has a higher melting point (2930C)147 than aluminum nitride 

(m.p. = 2200C and b.p. = 2517C149). Although the standard formation enthalpy of 

titanium nitride and aluminum nitride are similar (TiN, -337.649 kJ/mol; AlN, -317.98 

kJ/mol at 298.15C), the standard formation enthalpy of titanium gas is about 100 kJ/mol 

larger than that of aluminum gas at the temperature below their boiling point. Hence, 

titanium’s vapor pressure over TiN (for stoichiometric decomposition) is significantly 

lower than aluminum’s vapor pressure over AlN under the same conditions. For pure 
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material sublimation under the ideal case of equations (6-1) and (6-2), assuming a 

constant inert gas pressure of 0.1 MPa, the calculated Ti vapor pressure over TiN ranges 

from 2.6 Pa at 1927 °C to 78.8 Pa at 2227 °C137, while the calculated Al vapor pressure 

over AlN ranges from 980 Pa to 15,000 Pa137 at the same conditions. With nitrogen as the 

ambient gas, which is typical in sublimation growth of metal nitrides, both the Ti vapor 

pressure over TiN and Al vapor pressure over AlN are lower than the calculated values, 

since the extra nitrogen will drive reactions (6-1) and (6-2) to the left side.  In short, 

because of the much lower vapor pressure of Ti, its growth rate will be much lower than 

that of AlN for the same conditions, which was also confirmed by the experiment results.  

 
Figure 6.1 Optical microscope images of TiN crystals grown on W. 

6.3.1 Composition and morphology 

The measured weight percents of nitrogen, oxygen, and carbon in the original TiN 

powder were 22.0%, 0.51%, and 0.049%, respectively. After using the same TiN source 

for several crystal growth experiments, the concentration of these elements were 22.0%, 

0.32%, and 0.26%, respectively. Thus, the oxygen concentration was reduced while the 

carbon concentration was increased. Assuming the impurities formed compounds with 
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stoichiometries of TiC and TiO2, then the N/Ti ratio in the original powder is similar to 

that found in the remaining source, TiN0.984 and TiN0.989, respectively. For the crystals, 

Auger analysis showed that the N/Ti ratio was the same regardless of the temperature and 

pressure under which they were grown. Auger analysis also confirmed that the oxygen 

concentration in the crystals was lower than in the original powder and the N/Ti atomic 

ratio in the crystal was similar to the powder.   

 
Figure 6.2 SEM top view of TiN crystals.  

TiN crystals grown for 30 mins at 2100 C, 1.25 atm (a), 2000 C, 0.8 atm (b), 15 hrs at 2000 C, 0.2 
atm (c, d). After 30 mins growth, some preferential crystal nucleation takes place along the tungsten 
grain boundaries (a), the crystals within the same tungsten grain have similar shapes and orientions 
(b). After 15 hours growth, the top surfaces of single TiN crystals are square or rectangular (c), 
grains merged together display more irregular shapes (d). 

The TiN crystals were a bright golden color and most of the large single grains 

have an orthorhombic shape, as shown in Figure 6.1. Figure 6.2shows SEM images 

(parallel to the growth direction) for TiN crystals grown for 30 mins at 2100 C, 1.25 atm 

(a), 2000 C, 0.8 atm (b), and 15 hours at 2000 C, 0.2 atm (c, d). The crystals that 

formed within 30 minutes were square, rectangular, or triangular in morphology/shape. 

The crystals tended to nucleate along the grain boundaries of the tungsten substrate 
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(Figure 6.2a). Within the same tungsten grain, many of the individual TiN crystals had 

similar shapes and were oriented in the same direction (Figure 6.2b). These TiN crystals 

continued to grow with the same orientation as it nucleated. After several hours of growth, 

some single grains still maintained square or rectangular surfaces (Figure 6.2c), but the 

majority of grains merged together to display less regular shapes (Figure 6.2d). The side 

view (perpendicular to the growth direction) SEM images of TiN crystals provide more 

details about their morphology, as shown in Figure 6.3 and Figure 6.4. The lateral 

dimensions of the crystals are generally larger than their vertical dimension for samples 

grown for short times, less than 30 minutes. The TiN crystal grains are thin, flat tablet-

shaped. Those crystals with square or rectangular top areas exhibited different shapes, 

either thin orthorhombic (Figure 6.3a) or wedge (Figure 6.3b), while those with triangular 

surfaces exhibited shapes of either truncated cubes (Figure 6.3c) or titled wedges (Figure 

6.3d). For growth times of 12 hours and longer, though most crystals retain an 

orthorhombic shape (Figure 6.4a), the majority of the TiN crystals form a continuous film 

(Figure 6.4b) that were separated from the tungsten substrate in some regions. This 

separation initiates at voids formed between merged TiN grains and expands by the 

thermal expansion coefficient mismatch between TiN and tungsten during cooling from 

the growth temperature. Furthermore, for samples grown for 30 mins, the majority of the 

crystals had similar size and shape within the same sample, which suggested that most 

crystals nucleated at roughly same time. For samples grown more than 12 hours, the 

majority of crystals that merged together had a smaller size than individual crystals, 

which suggests that lateral growth was limited by proximity to neighboring crystals. 
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Figure 6.3 SEM side-view images of TiN crystals. 

TiN crystals grown for 30 mins at 2000 C, 1.25 atm (a and b) and 2100 C, 1.25 atm (c and d). 
Crystals with square or rectangular surfaces were orthorhombic (a) or wedge (b) shaped, and 
crystals with triangular surfaces were titled wedges (c) or truncated cubes (d). 

 
Figure 6.4 SEM side-view images of TiN crystals. 

TiN crystals grown for 15 hrs at (a) 0.2 atm, 2000 C, where most individual crystals maintain an 
orthorhombic shape, and (b) 2100 C, where TiN crystals have merged to form a continuous film, the 
TiN separates from the tungsten substrate in places (shown by arrow). 
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6.3.2 Orientation 

EBSD analysis on the tungsten substrate and condensed TiN crystals revealed the 

orientational relationship TiN (001) || W (001) with normal direction TiN [100] || W 

[110], a 45o rotation between the TiN and W lattices, as defined by their primary unit cell 

directions [100]. If the tungsten substrate (001) plane was parallel to the growth surface, 

the TiN crystal (001) planes were also parallel to the surface, producing an orthorhombic 

crystal shape. If the tungsten substrate (001) plane was slightly offset (tilted) from the 

surface, the TiN crystal (001) planes were also slightly offset from the surface, but were 

still parallel with the underling W (001) plane with normal direction TiN [100] || W [110], 

producing either a truncated cube or tilted wedge crystal shape. Figure 6.5 and Figure 6.6 

are the EBSD results for a group of TiN crystals grown on the tungsten substrate that 

were aligned in two linear arrays near the grain boundaries. The 12 randomly selected 

TiN grains were all oriented with a TiN [001] plane normal at the center of the pole 

figure (perpendicular to the substrate) and their other [010] and  [100] plane normals 

lying in the plane of the substrate (Figure 6.5). Five different points (1, 5, 6, 7 and 8) for 

the underling tungsten grain and 3 different points (2, 3 and 4) for nearby tungsten grains 

(corresponding to the solid and hollow symbols, respectively) were selected for EBSD 

analysis (Figure 6.6).  The tungsten grain underlying the selected TiN crystals clearly is 

oriented with W [001] perpendicular to the substrate and that there is a 45o angle between 

TiN [100] and W [100] (see respective pole figures in Figure 6.5 and Figure 6.6). The 

three adjacent tungsten grains exhibit significantly different orientations from the center 

grain. Figure 6.7 and Figure 6.8 are the EBSD results for TiN crystals grown on three 

adjacent tungsten grains having different orientations, i.e., both the W (001) plane for 
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these three different tungsten grains and the TiN (001) plane for the TiN crystals grown 

on these grains are tilted with respect to the surface normal. Nevertheless, their (001) 

planes are parallel, with a 45o angle between the perpendicular TiN [100] and W [100] 

directions. For example, the TiN crystals labeled 3 and 4 in Figure 6.7 are grown on the 

tungsten grain at point 3 in Figure 6.8, and the normal TiN [001] lies at the same position 

with normal W [001]; though there is 180o angle between two crystals’ TiN [010] 

normals, they still have same orientation as the <100> of rock salt crystal structure is a C4 

rotation axis; obviously there is a 45o angle between TiN [100] and W [100]. Similar 

orientations are seen between the TiN crystals at points 1 and 2 in Figure 6.7 and 

tungsten grain at point 1 in Figure 6.8; between TiN crystals at points 5 and 6 in Figure 

6.7 and tungsten grain at point 2 in Figure 6.8. This orientation relationship was 

confirmed by XRD for samples grown for more than 12 hours. The XRD analysis of the 

original polycrystalline tungsten foil substrate along the growth direction displayed a 

highly oriented (200) texture. Small (111), (220), and (311) diffraction peaks were also 

observed, but had negligible intensity relative to the (200) diffraction peak. The XRD 

pattern from a 6 mm TiN crystal sample grown on the highly-oriented W (200) foil also 

displayed highly oriented (200) texture (Figure 6.9).   

This orientation preference between TiN crystals and tungsten substrates 

minimizes the lattice constant mismatch. Since the lattice constant of TiN (4.240 Å) is 

much larger than tungsten (3.165Å), their cube-on-cube lattice mismatch is quite large, 

33.96% (based on tungsten). However, rotating the unit cell by 45o and considering the 

square that is formed by the nearest 4 titanium atoms or nitrogen atoms as a unit (Figure 

6.10), the nearest atom distance in this new square is 2.998 Å which give a cube-on-cube 
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atom distance mismatch of 5.28% (based on tungsten). Thus, the TiN crystals orient on 

tungsten to minimize the lattice mismatch. Therefore a 45o angle exist between the 

tungsten unit cell and TiN unit cell, and result in orientational relationship TiN (001) || W 

(001) with normal direction TiN [100] || W [110]. Even if the surface W {001} planes are 

slightly tilted off-axis, the above orientational relationship is still followed as it offers the 

minimum lattice mismatch, with TiN(001) parallel to W(001), slightly offset from the 

growth surface. 

 
Figure 6.5 SEM image and pole figure of selected TiN crystals in sample 1. 

All TiN grains were oriented with [001] normal to the substrate (center of the pole figure) 
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Figure 6.6 SEM images and pole figure of tungsten grains in sample 1. 

Tungsten grain (points 1, 5, 6, 7, 8) underlying the selected TiN crystals in Fig. 5a were oriented with 
(001) surface normal (solid symbols in the pole figure); Adjacent tungsten grains (points 2, 3, 4) 
showed orientations with (001) offset from the substrate normal (hollow symbols in the pole figure) 
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Figure 6.7 SEM images and pole figure of TiN crystal in sample 2. 

TiN crystals grown on same tungsten grain (1 and 2, 3 and 4, 5 and 6) were oriented in the same way 
(one symbol pattern in the pole figure represents one orientation, symbols for different TiN grains 
with the same orientation overlap). 
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Figure 6.8 SEM images and pole figure of the tungsten grains in sample 2.   

The adjacent tungsten grains underling the TiN crystals (1, 2 and 3) were oriented with (001) offset 
from the substrate normal ; all selected TiN were oriented with (001) parallel to the underling 
tungsten (001) with a 45o angle between TiN (100) and W (100). 
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Figure 6.9 XRD on TiN layer (6mm, 2000 oC, 0.2 atm) with strong (200) texture 

6.3.3 Overall growth rate 

The sublimation growth rate for TiN crystals on W is much lower than that for 

AlN under similar growth conditions. For instance, the AlN sublimation growth rate is 

1950 mg/hr(unpublished work by Li Du and J.H.Edgar) while the TiN crystal growth rate 

is only 6 mg/hr at 2100 °C, 0.8 atm (measured in this study). Increasing the temperature 

or decreasing the pressure enhances the TiN growth rate; the highest growth rate in this 

study was 98.89 mg/hr at 2100 °C and 0.06 atm. Figure 6.11 and Figure 6.12 show the 

dependence of the growth rate on temperature and pressure: the logarithmic growth rate 

is first order dependent on reciprocal temperature, while growth rate itself varies with 

reciprocal pressure to the 1.5 power.  
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Figure 6.10 Schematic diagram of TiN and W lattice 

Gray spheres are tungsten, orange spheres and green spheres are Ti and N, respectively.   
Top: top view, bottom: side view, left: TiN [100]� � � � W [100], right: TiN [100] � W [100]= 45o. The 
orientation of TiN (001) || W (001) with 45o angle of their in-plane [100] can minimize the lattice 
constant mismatch. 

By combining the Arrhenius equation with sublimation-recondensation kinetics, a 

general expression can be obtained to determine the activation energy of TiN sublimation 

growth: 
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 (6-3)        

where Ea is the activation energy, A is the pre-exponential factor or frequency 

factor, R is the ideal gas constant, r is the growth rate, a is the degree of conversion, and 
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)(af is a mathematical function whose form depends on the reaction type. For the Ti+N 

system, the relationship between the rate constant k and the growth rate above�ü�ü

)()/( aa kfdtd = �ü�ü has not yet been determined. However, as the transport of growth 

species from source to growing surface is often the rate limiting step in vapor crystal 

growth150, equilibrium can be assumed at the surfaces of the source and seed.  So for 

reaction (5-1): 
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Since the growth pressures used in this study were not high (<1.25 atm), solid 

species activity is close to unity and gas fugacity can be represent by gas species partial 

pressure, that is: 

 )()(
2

2 eq
N

eq
Ti

eq PPK =  (6-5)          

For a fixed growth temperature and pressure, the local gas phase species 

concentration at the growth surface remains the same and )(af  is approximately 

constant. Therefore, the sublimation growth rate is proportional to the rate constant and 

yields a first order dependence of logarithmic growth rate on reciprocal temperature at 

same pressure (confirmed in Fig. 8): 

 )(
ln
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d

r
RT
Ea

dT
rd a

==  (6-6)          

The calculated activation energy is 775.8±29.8kJ/mol (from Figure 6.11), which 

is very close to enthalpy of TiN sublimation from available thermodynamic data137 with 

781.6 kJ/mol at 2300K (2027°C) and 779.7 kJ/mol at 2400K (2127°C) in the growth 

temperature range.  
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Figure 6.11 Growth rate and growth temperature 

The variation of the logarithmic growth rate on reciprocal temperature at constant pressure. 
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Figure 6.12 Growth rate and growth pressure 

The growth rate variation with reciprocal growth pr essure at constant growth temperature. 
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6.3.4 Lateral and vertical growth rates 

The average size and height of the condensed TiN crystals changed with growth 

temperature, pressure and time. Generally, at the same temperature and pressure, longer 

growth time resulted in larger crystals, and after the same growth time, crystals were 

larger at a higher temperature or a lower pressure because of a higher growth rate. For 

example, after 30 mins growth at 1.25 atm, when the temperature was increased from 

2000 °C to 2100 °C, the average size of the crystals increased from about 110 � m2 to 594 

� m2 (a factor of 5.4), while after 30 mins growth at 0.8 atm, when the temperature was 

increased from 2000 °C to 2100 °C, the average size of the crystal increased from about 

215 � m2 to 1150 � m2 (a factor of 5.4). For crystals grown over several hours, with varied 

temperature and pressure, the average size change was not as clear as the size changes 

observed after 30 mins growth, since most TiN crystals merged together after longer 

times. Two examples are two sets of experiments for size change after 15 hours growth at 

0.2 atm and 12 hour growth at 0.06 atm (see Figure 6.2 and Figure 6.4). When the 

temperature was increased from 2000 °C to 2100 °C, the average size of the TiN crystals 

grown at 0.2 atm increased from about 1.75x104 � m2 to 5.83x104 � m2 (a factor of 3.3), 

while the average size of the crystals grown at 0.06 atm increased from about 5.06 x104 

� m2 to 1.37 x105� m2 (a factor of 2.7); these two factors are smaller than the size change 

factors for samples grown in 30 mins. However, the average TiN crystal heights changed 

with the growth temperature; when the temperature was increased from 2000 °C to 2100 

°C, the average height increased from about 77� m to 392� m (a factor of 5.1) for crystals 

grown at 0.2 atm (see Figure 6.4) and from about 169� m to 954� m (a factor of 5.7) for 

crystals grown 0.06 atm. 
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Although the overall growth rate depends on temperature and pressure in general, 

the lateral and vertical growth rates also changed with time. The lateral growth rate is 

much higher initially (30 mins for example) for individual crystals and decreases after 

many of the grains have merged together. The vertical growth rate follows an opposite 

trend. To investigate the lateral and vertical growth rates of the TiN crystals, we define 

the lateral rate as the projected area (or size) change of the crystal per time with units of 

� m2/hr, and vertical rate as thickness (or height) change of the crystal per time with the 

unit of � m/hr. Since the lateral rate has different units (µm2/h) than the vertical rate, 

(� m/hr), a basic arithmetic comparison may not be effective, hence we will compare each 

with the overall growth rate at different growth stages. As the crystal structure of TiN is 

rock salt, if we consider the volume of each grain to be equal (prism) or proportional 

(pyramid) to the product of the grain size (s) and grain height (h), and the majority of the 

crystals nucleated at same time (changes in crystal quantity can be neglected), the growth 

rate r yields: 

 )(
dt
ds

h
dt
dh

sCn
dt
dV

Cnr +== rr  (6-7)           

where C is a constant, �  is density, n is the crystal quantity and V is average 

volume of a crystal.  

At the initial growth stage, the majority of TiN crystals form as individual crystals, 

therefore competitive growth between neighboring crystals can be neglected. Thus, the 

logarithmic value for one of the two variables on the right side of equation (5-7), s and h, 

shows first-order dependence on reciprocal temperature only if the other is constant or 

nearly constant. This leads to the following deduction: 
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Two sets of experiments were conducted, for 30 min growth times to guarantee 

that a majority of crystals are present as individual crystals, to investigate the lateral and 

vertical growth rates at the initial growth stage; (1) 0.8 atm with temperature range from 

2000 °C to 2100 °C and (2) 1.25 atm with temperature range from 2000 °C to 2100 °C. 

The logarithmic lateral growth rates versus reciprocal temperature for each are plotted in 

Figure 6.13. Each shows a first order dependence on the reciprocal temperature. The 

products of the two slopes and the general gas constant give activation energies of about 

752.0 and 757.3, which are in the range of the calculated activation energy 

775.8±29.8kJ/mol. This implies that the lateral growth rate for each experiment is 

proportional to the overall growth rate, and their vertical rates can be neglected.  
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Figure 6.13 Lateral growth rate and logarithmic vertical rate vs temperature 

Logarithmic lateral growth rate vs reciprocal temperature for two 30 mins growths and logarithmic 
vertical rate vs  reciprocal temperature for 12 hrs and 15 hrs growth
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After the TiN crystals merge together, the TiN crystals grew vertically as the 

height increased and laterally by competitive growth with neighboring crystals. Fast-

growing crystals will increase in lateral size as slow-growing grains will be blocked and 

eventually disappear from top view. Two sets of experiments with growth time longer 

than 12 hours were conducted to compare lateral and vertical growth rates after many 

TiN crystals had merged together; (1) 12 hours growth at 0.06 atm with temperature 

range from 2000 °C to 2100 °C and (2) 15 hours growth at 0.2 atm with temperature 

range from 1980 °C to 2110 °C. The logarithmic vertical growth rates show a first order 

dependence on the reciprocal temperature and are also plotted in Figure 10. The products 

of the four slopes and the gas constant give values that are all in the range of the 

calculated activation energy 775.8±29.8kJ/mol (777.5 and 746.9, respectively), indicating 

the vertical growth rates for these two sets of experiments are proportional to their overall 

growth rates and are significantly higher than those observed at the initial stage of growth. 

Regarding the lateral growth rates for these two experiments, both the crystal 

morphology (SEM images) and size statistics described previously showed that they are 

limited by interaction between the neighboring crystals and lower than at the initial stage. 

These results show that lateral growth predominates initially, while vertical 

growth becomes more important after the crystals have merged together and the surface 

of the tungsten becomes covered with TiN.  Growth is more likely to be 2D growth 

initially. The length of the initial stage may vary depending on the growth temperature 

and pressure. In this study, growth for 30 mins was within the initial growth stage at 1.25 

atm and 0.8 atm between 2000°C to 2100°C. As a result of the much higher overall 

growth rate, the initial growth stage at 0.2 atm and 0.06 atm between 2000 °C to 2100 °C 
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(TiN grains merged together much quicker) are much less than 30 mins and negligible 

compare to 12 hours, so that the ‘zero’ vertical rate in this stage does not affect the 

overall vertical rate in the calculation. 

6.4 Conclusions 

The sublimation-recondensation technique is a viable method to produce TiN bulk 

crystals on tungsten substrates.  The stoichiometry of the crystals (N/Ti ratio) is 0.99. 

Lateral growth predominates initially and vertical growth becomes more important after 

TiN crystals merge together. The crystal growth rate increases exponentially with 

temperature, inversely with the total pressure to the 1.5 power, and the calculated 

activation energy is 775.8±29.8kJ/mol. The XRD and EBSD analysis revealed that the 

TiN crystals and underlying tungsten substrate grains have an orientation relationship of 

TiN (001) || W (001) with TiN [100] || W [110], which leads a 45° angle between the TiN 

and W lattice. For tungsten substrate grains with W (001) planes offset from the surface, 

the TiN (001) planes are still parallel to W (001) planes to minimize the lattice mismatch.  
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Abstract 
 

The sublimation-recombination crystal growth of bulk yttrium nitride crystals 

is reported. The YN source material was prepared by reacting yttrium metal with nitrogen 

at 1200 °C and 800 torr total pressure. Crystals were produced by subliming this YN 

from the source zone, and recondensing it from the vapor as crystals at a lower 

temperature (by 50 °C). Crystals were grown from 2000 °C to 2100 °C and with a 

nitrogen pressure from 125 torr to 960 torr.  The highest rate was 9.64 x 10-5 mol/hr (9.92 

mg/hr). The YN sublimation rate activation energy was 467.1±21.7kJ/mol. Individual 

crystals up to 200 microns in dimension were prepared. X-ray diffraction confirmed that 

the crystals were rock-salt YN, with a lattice constant of 4.88Å. The YN crystals were 

unstable in air; they spontaneously converted to yttria (Y2O3) in 2 to 4 hours. A small 

fraction of cubic yttria was detected in the XRD of a sample exposed to air for a limited 

time, while non-cubic yttria was detected in the Raman spectra for a sample exposed to 

air for more than one hour.    

 

Key words: A1: Crystal morphology, Crystal structure, X-ray diffraction, 

Characterization    A2: Growth from vapor, B1: Yttrium compounds, Nitrides,  

PACS code: 61. Structure of solids and liquids; crystallography 
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7.1 Introduction 

The transition metal nitrides exhibit a wide range of physical (electrical, 

magnetic, and optical) and chemical properties that are of technological interest and have 

commercial applications. Examples include TiN151 and HfN152 diffusion barriers for 

integrated circuits153; CrN for hard, wear resistant coatings; ScN for high temperature 

Ohmic contacts to IIIA nitride semiconductors154; and VN which is being investigated as 

a catalyst155. The transition metal nitrides also form alloys, which can be exploited to 

control their lattice constants and electrical properties, as has been demonstrated with Ti1-

xScxN
156 and Y1-xScxN

157.   

Many researchers are investigating the possibility of combining  transition metal 

nitrides with the IIIA nitride semiconductors (aluminum nitride, gallium nitride, and 

indium nitride) either as layered structures or as alloys, to realize new functional 

properties. The similar lattice constants and the shared common element (N) have 

inspired efforts to combine layers as epitaxial films. Scandium nitride158 and zirconium 

nitride159 have been employed as buffer layers between silicon substrates and GaN 

epitaxial films, to block the initiation and propagation of defects. Additions of chromium, 

magnesium, and iron to AlN and GaN have all been studied in attempts to create a 

ferromagnetic semiconductor 160, 161. 

Yttrium nitride is particularly intriguing because it is one of the few transition 

metal nitrides that is also a semiconductor (as is scandium nitride). Several groups 

reported the rocksalt crystal structure for YN with lattice constants between 4.8 Å and 4.9 

Å 162, 163, 164, 165. No other crystal structure has been experimentally reported for YN, but a 

recent first principle calculation compared the wurtzite and bcc structures to the rocksalt 
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structure (the latter was the most stable)166.  Although no measurement has been reported, 

studies predicted an indirect bandgap for YN of 0.8eV166, 0.85eV167, and 0.544eV168. 

Yttrium nitride is also predicted to exhibit a high Mn solubility, which could impart it 

will good magnetic properties while retaining its semiconductor properties169. 

In the past, only a few studies have reported the synthesis of YN. In the 1950’s, a 

group produced YN powder by first converting yttrium metal to YH2 by reacting with 

hydrogen at 550°C in a quartz tube, then heating this gas to 900°C in the presence of 

nitrogen162. Later in the 1960’s, YN powders were obtained by reacting yttrium metal 

with nitrogen at 1400°C163 and arc-melting under 0.3 MPa nitrogen164. Recently, YN thin 

films were grown on both silicon and sapphire substrates by laser ablation deposition 170 

and reactive magnetron sputtering171 respectively. Although the lattice constants reported 

from these different material preparation methods are very close, there are still variations. 

In the present study, the sublimation recondensation growth method was 

employed to produce YN bulk crystals.  This technique is attractive for its ability to 

produce bulk crystals with  much low dislocation densities than in  thin films on foreign 

substrates. In addition, its growth rate can be orders of magnitude higher than thin film 

techniques, ie greater than 10 microns/h. Previously, our group showed ScN172 and 

TiN173 crystals produced by this technique have defect selective etch-pit densities on the 

order of 106 cm-2. The YN growth process was analyzed and the materials produced were 

thoroughly characterized. The YN crystal morphology was studied by optical and 

scanning electron microscopy, while its crystal structure and lattice constants were 

evaluated by x-ray diffraction. The dependence of the YN growth rate on temperature and 

pressure was established and compared with ScN and TiN sublimation growth under 
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similar conditions. Lastly, the stability of the YN crystals in air was examined, and the 

resulting oxidation products reported. 

   
Figure 7.1 The sketch of Y metal nitridizing setup.  

The metal chunks turned into nearly black lump one hour later and were ground before continuing 
nitridizing. The color of Y/YN changed to blue-green as the nitridizing time was increased 

 

 
Figure 7.2  Schematic sketch of YN crystal growth.  
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Tungsten foil was added and served as substrate 
 

7.2 Experimental 

The experiments started with YN source synthesis, which was used for the YN 

crystals growth. Both YN synthesis and crystal growth were conducted in a resistively-

heated tungsten furnace with tungsten wire mesh heating elements that provided an axial 

temperature drop between the source and crystal growth zones. A covered tungsten 

crucible within a covered tungsten retort was used as the reactor/crystal growth chamber, 

and the growth temperature was measured by an optical pyrometer focused on the top of 

the retort. 

The YN source was produced by nitridizing the yttrium metal (99.9%) in ultra 

pure nitrogen atmosphere of 800 torr at 1200°C (Figure 7.1). The conversion of the 

yttrium metal to YN was monitored by measuring the mass change of Y/YN solid 

mixture in the crucible to determine its Y/N ratio. The Y/YN mixture was ground into 

small pieces after the weight measurement, to ensure good contact of nitrogen gas with 

the mixture in the subsequent nitridizing step. 

In the YN crystal growth process, tungsten foil (25 mm diameter) served as the 

substrate for the deposited YN crystals (Figure 7.2). The YN source was annealed before 

each growth to reduce the surface oxide as YN crystal easily reacts with oxygen and 

moisture in ambient air. First, the YN source was baked in a 5% hydrogen and 95% argon 

gas mixture at 900 torr and 1200°C for about 4 hours. Then it was heated in ultra pure 

nitrogen gas at 250 torr and 1900°C for another 8 hours. A similar process has proven 

effective in reducing the surface oxide in our AlN174 and TiN173 crystal growths. The YN 

growth rate was investigated as function of growth temperature (2000 - 2100 °C) pressure 
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(125 - 960 torr) and time (16 to 48 hours). A temperature difference of approximately 

50°C was maintained between the source and crystal growth zones. The overall growth 

rate was determined by dividing the YN crystal mass increase by the growth time. After 

the YN crystals were synthesized, some were sealed into glass tubes at high vacuum (2 x 

10-5 torr) to prevent oxidation during storage. 

Characterization of the YN crystals included Raman spectroscopy and x-ray 

diffraction.  Raman measurements were performed with a Renishaw InVia micro-Raman 

system using a 488 nm Ar ion (60mW) laser as excitation source. To identify the phases 

presented by x-ray diffraction, both the source materials and grown crystals were ground 

into fine powders and stored in an air sensitive sample holder (to prevent oxidation). . 

The XRD data were collected on a PANalytical X’Pert Pro diffractometer with Cu Ka 

radiation (45 kV / 40 mA) using parabolic mirrors with parallel plate collimator (0.09°) 

and miniprop point detector. Continuous scans were taken between 20° to 100° (2-theta). 

Diffraction patterns were analyzed using the ICDD powder diffraction files and JADE or 

High Score software packages to identify crystalline materials. The grain sizes (the 

projected area of individual crystals) were measured using scanning electron microscopy 

(SEM, S-3500N, Hitachi Science Systems, Ltd, Japan ) and averaged from a number of 

condensed YN crystals 

7.3 Results and Discussion 

Yttrium metal has a melting point of 1509 °C and boiling point of 3030 °C175 , 

and it is easily nitridized at 1200 °C in a pure nitrogen atmosphere with the possible 

reaction of: 

 )()(5.0)( 2 sYNgNsY «+  (7-1)    
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Figure 7.3 The calculated nitrogen to yttrium atom ratio versus nitridizing time 

 In ultra pure nitrogen atmosphere of 800 torr at 1200°C. 
In analyzing yttrium nitridation, the loss of yttrium by vapor transport to the 

furnace chamber was negligible; it is prevented by employing double containers (crucible 

and retort). Thus, the mass increase is due primarily to the addition of nitrogen to the 

solid. From the change in mass, the nitrogen to yttrium atom ratio can be calculated. 

Figure 7.3 showed the calculated nitrogen to yttrium atom ratio versus nitridizing time. 

After only one hour of nitridizing, the nitrogen to yttrium atomic ratio increased rapidly 

from 0 to 0.79.  Subsequently, the rate slowed, increasing to 0.89 and 0.90 after the 

second and third hours. This ratio stayed nearly constant around 0.91 with longer 

nitridation times. Although the Y/YN solid mixture was ground into powder every time 

before the next nitridizing step, heating still caused it to sinter together. This sintering and 

reduction of exposed surface area may slow down nitridation, preventing its completion.   

After nitridizing for more than 90 hours, the source materials were metallic gray blue-
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green, with the cubic crystal grains formed on the source surface. X-ray diffraction 

confirmed that there was no un-reacted yttrium metal left in the source material.  

Thus the reactions involved in the crystal growth process were yttrium nitride 

sublimation in the source zone at a relatively high temperature and recondensation in the 

crystal growth zone at a relatively low temperature: 

 )()(2)(2 2 gNgYsYN +«   (7-2)   

7.3.1 Morphology  

The as-received yttrium was hard silvery metal chunks. After one hour nitridizing, 

the chunks turned black and were easily fractured. As the nitridizing time was increased, 

the color of the Y/YN mixture changed towards the blue-green. In the end, the YN 

produced by sublimation crystal growth is a gray blue-green crystal as shown in Figure 

7.4 

 
 

Figure 7.4 Optical microscope image of YN crystals on tungsten 
 As-produced the YN is gray green and cube or cubiod is the regular shape of the crystals 
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Figure 7.5 SEM top view of YN crystals grown for 16 hours at 960 torr, 2000 C 

Most individual grains were regular shaped, while merged grains were less regular, and had rough 
surfaces. Lines (b) on the surface and micro hollows (a) with size about 2 ~ 3 micron on the grain 
boundaries were observed. 

Figure 7.5 shows the SEM image for YN crystals grown 16 hours at 960 torr, 

2000 C. After 16 hours growth, although most grains were regularly shaped cubes or 

cuboids, wedge, tetrahedron, pyramid, frustum, truncated octahedrons, and truncated 

tetrahedrons were also observed. As the grains merged together, they displayed less 

regular shapes, and the surfaces became rough. Straight lines on the parameters of the 

crystals and micro hollows (upper-left in Fig. 5) with size about 2 ~ 3 micron on the grain 

boundary were observed. The straight lines were seen on all the samples while micro 

hollows were found mostly on samples grown at higher temperature or longer time. The 

line features were found on the merged grains (Fig.5b1), on the grains grown on substrate 

grain boundary (Fig.5b2), and also on single grain grown on single substrate grain 

(Fig.5b3). If the lines occurred at regular shaped grains (cubes or cuboids), they usually 
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were at an angle of 45 ° to the square edges. For the same growth time and pressure, the 

average crystal size for higher growth temperature was larger, increasing from 1.5 x 10-

3mm2 at 2000 C to 2.5 x 10-3mm2 at 2050 C (Fig. 6a) and 5.0 x 10-3mm2 at 2100 C(Fig. 

6b,c,d). This result was the same for other transition metal nitride ScN172 and TiN173 

crystal growth in our previous studies. However, the lines and micro hollows became 

more evident at higher temperature as more crystal grains merged together. Fig. 6b shows 

the nearby micro hollows on the crystal boundary 16 hours at 960 torr, 2100 C. Whereas 

single crystal grains on the sample still maintained cube, pyramid (Fig. 6c), or frustum 

(Fig.6d) shapes.  

 
Figure 7.6 SEM imagines of YN crystals  

YN crystals grown for 16 hours at 2050 C, 960 torr(a) and 2100 C, 960 torr (b, c, d) Most grains 
were cubes and cuboids(a), other shapes like wedge(c) and fustum(d)were also observed; micro 
hollows became more evident at higher temperature as more crystal grains merged together(b)  

Reducing the pressure also has a significant effect on growth rate. Growing 

crystals for the same amount of time and temperature but at a lower pressure produced 
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larger crystals. For a YN sample grown 16 hours at 740 torr, 2000 C, the estimated 

average grain size of crystals was 10 x 10-3 mm2 - much larger than one grown at 16 

hours at 960 torr, 2100 C. This result is also confirmed for ScN [22] and TiN [23] crystal 

growth in our previous studies. 
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Figure 7 The variation of the logarithmic growth rate on reciprocal growth temperature at 

constant growth pressure. 

7.3.2 Overall Growth Rate  

The temperature and pressure effects on the sublimation growth of YN is the 

same as the other transition metal nitrides, ScN and TiN; increasing the temperature or 

decreasing the pressure enhances its crystal growth rate.  However, the growth rate of YN 

is lower than either ScN or TiN. The YN sublimation growth rate was 3.24 x 10-5 mol/hr 

(3.33mg/hr) at 2000 °C, 125 torr, while the ScN sublimation growth rate from our 

unpublished work was 9.65 x 10-5 mol/h (5.69 mg/hr) at same temperature but higher 
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pressure of 150 torr. The highest growth rate for YN in this study was 9.64 x 10-5 mol/hr 

(9.92 mg/hr) at 2100 °C and 125 torr, while the TiN had a growth rate of 3.22 x 10-4 

mol/h (19.92mg/hr) at same temperature but higher pressure of 150 torr from our 

previous study176. Decreasing the pressure has a more significant effect on overall growth 

rate than increasing the temperature Figures 7 and 8 shows the dependence of the growth 

rate on temperature and pressure: the logarithmic growth rate is first order dependent on 

reciprocal temperature, while growth rate itself varies approximately linearly with 

reciprocal pressure.  
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Figure 8 The growth rate variation with reciprocal pressure at constant growth 

temperature. 
 

The activation energy of the growth was determined by combining the Arrhenius 

equation with sublimation-recondensation kinetics: 
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where Ea is the activation energy, A is the pre-exponential factor or frequency 

factor, R is the ideal gas constant, r is the growth rate, a is the degree of conversion, and 

)(af is a mathematical function whose form depends on the reaction type.  

In equation 3, although the relationship between the rate constant k and the 

growth rate ( )()/( aa kfdtd = ) has not been determined for Y+N system,  we previously 

showed that if the equilibrium can be assumed at the surfaces of the source and seed, 

)(af is approximately constant [25]. The demonstration is as following: 

Since the transport of growth species from source to growing surface is often the 

rate limiting step in vapor crystal growth [20], equilibrium can be assumed at the surfaces 

of the source and seed. For reaction (4): 
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The growth pressures used in this study were not high (<1.25 atm), so solid 

species activity is close to unity and gas fugacity can be represent by gas species partial 

pressure, that is: 

 )()(
2

2 eq
N

eq
Y

eq PPK =  (7-5) 

For a fixed growth temperature and pressure, the local gas phase species 

concentration at the growth surface remains the same and )(af  is approximately 

constant. Therefore, the sublimation growth rate is proportional to the rate constant and 

yields a first order dependence of logarithmic growth rate on reciprocal temperature at 

same pressure (confirmed in Fig. 7): 
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The deduced YN sublimation activation energy is 467.1±21.7kJ/mol (from Fig. 

7), which is similar with activation energy of ScN (456.0 kJ/mol172), and lower than that 

of TiN (775.8±29.8kJ/mol176). 

7.3.3 Composition and structure  

The YN crystals grown for 48 hours at 2000 °C and 740 torr were ground into a 

fine powder and examined by x-ray diffraction (Figure 7.7). Table 1 lists the peak 

position, peak intensity, d-spacing and corresponding crystal planes of the eight strongest 

peaks. The space group of the sample was identified as Fm-3m and the crystal structure 

was confirmed as rocksalt (NaCl), with 4 YN per unit cell. The calculated lattice 

parameters were 4.88Å (a=b=c) and 90o (� =� = ) with a cell volume of 116.27x105 pm3. 

The calculated density for produced YN crystals was 5.87g/cm3 at 25 °C. YN structure 

information from literatures was listed in Table 2 and their calculated lattice constants 

bracketed our refined value. Since these YN crystals were produced at different 

conditions, it is possible that variations in the stoichiometry and residucal impurity 

concentrations may have caused the small fluctuation lattice constant values. 

Figure 7.8 shows the Raman spectrum of YN crystals grown for 48 hours at 

2000°C and 760 torr. First order Raman scattering is symmetry forbidden for the rock salt 

crystal structure. The apparent features in the Raman spectrum are disorder-induced first-

order Raman scattering and corresponds to the density of phonon states. Three crystals 

were selected for analysis (inset) and they all have similar spectra. Note 

photoluminescence was superimposed on the Raman spectra in the spectral range of the 
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Raman spectra, i.e., as using 488nm laser excitation, around this wavelength. There is no 

literature data on Raman spectra of YN, thus, we compared our results with that of other 

transition metal nitrides, e.g. ZrN (same rock salt structure without greatly changing the 

mass of the metallic ion; due to different electronic structure an effect of the free carriers 

on the phonon modes however may be expected)177 and ScN (same rock salt structure, 

close electronic structure, but the atomic mass ratio is MSc/MY �  0.5, implying that the 

Raman peaks are shifted in first approximation as � YN/� ScN �  (MSc/MY)1/2=0.711)178. 

Hence, the broad Raman peaks at ~318 cm-1 and 360-400 cm-1 could be attributed to 

acoustic phonons in cubic YN. The broad peak with lower intensity at ~500 cm-1 most 

probably originated from optical phonons.  

 
Figure 7.7 X-ray diffraction for YN crystals grown 48 hours at 2000°C, 740torr  
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Peak No. (h k l) 2-Theta d-spacing(Å) Intensity[%] 

1 (1 1 1) 31.7285 2.81790 100.00 

2 (2 0 0) 36.7998 2.44038 89.54 

3 (2 2 0) 53.0250 1.72561 51.05 

4 (3 1 1) 63.1269 1.47160 34.11 

5 (2 2 2) 66.2843 1.40895 15.23 

6 (4 0 0) 78.2915 1.22019  6.58 

7 (3 3 1) 86.9343 1.11972 13.24 

8 (4 2 0) 89.7900 1.09137 18.49 

Table 7.1 X-ray powder diffraction data for YN 
 
 

Reference Code Lattice Constant  Sample Preparation 

This study 4.88075 Å Gray green color, prepared by 
sublimation at 2000 °C, 960 torr 

162 4.877 Å 
obtained by converting yttrium metal to 
YH2 then to YN (powder diffraction) 

163 4.8699 Å 
Blue violet color, prepared by reaction of 

metal at 1673 K (powder diffraction) 

164 4.8920 Å 
Arc-melted under 0.3 MPa nitrogen 

(powder diffraction) 

165 4.8935 Å 
Annealed at 1673K under argon or 

nitrogen (powder diffraction) 

171 0.491(3)nm Reactive magnetron sputtering 

Table 7.2 Literature information for previous synthesis studies of YN 
Structure reference from [12] to [15]; calculated from LPF using POWD-12++   
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Figure 7.8 Raman spectrum of YN crystals grown for 48 hours at 2000°C, 760 torr.  

Photoluminescence background is subtracted. Inset shows Raman spectrum (background not subtracted) from three different crystals, showing 
consistent Raman spectra over different crystals measured. 
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7.3.4 Oxidation 

 
Figure 7.9 Optical micrographs of YN crystals upon exposure time to air 

The apparent color of YN crystals changed with time upon exposure time to ambient air. The time 
interval between each image is 5 minutes 

The yttrium nitride crystals readily oxidized in air at room temperature. After 

exposure to air for twenty minutes, the gray green color turned into blue violet, and two 

hours later it changed to black. The colors observed under microscope with strong 

reflection light (Figure 7.9) included red, orange, yellow, green, blue, indigo, violet and 

mauve. Photos were taken every 20 minutes. Sample crystals showed a yellow color 5 
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minutes after initial air exposure (Fig. 5.19a), and turned to orange 20 minutes later (Fig. 

5.19b). The sample then looked blue-violet 40 minutes after the first photo was taken 

(Fig. 11c) and changed to green-yellow 20 minutes later (Fig. 5.19d). These colors were 

repeated as the thickness of the oxidation layer increases, and the surface roughness 

increased.  

 
 

Figure 7.10 Raman spectra for YN after exposed to air for different duration of time 

Even for YN samples sealed under a high vacuum in a glass tube and ground to 

powder in a air-free glove box before x-ray diffraction, oxidation products were still 

observed.  The tiny peak (3.86% intensity) appearing at 29.1665 (2-Theta) in Figure 9 did 

not originate from YN. Rietveld refinement for the XRD pattern of YN in an air sensitive 

sample holder indicated that roughly 96 wt% of the examined sample was yttrium nitride; 

the remaining 4 wt% was crystalline yttrium oxide. The space group of this yttrium oxide 

is Ia-3, the calculated O and Y ratio in its unit cell is 3:2, and the lattice parameters are 
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10.598Å (a=b=c) and 90o (� =� = ), which suggested the formation of c-type yttrium oxide 

after limited air exposure. 

Figure 12 is the Raman spectra from an YN crystal sample after exposed to air for 

different time durations. A sharp peak at ~587cm-1 was observed after the sample was 

exposed to air for 1 hour; it becames more pronounced with time. This peak position is 

close to that reported for yttrium oxide 177 but not the cubic (c-type) structure. This result 

implies the formation of non-cubic yttrium oxide, monoclinic (� -type) and rhombohedral 

(� -type) after exposure to air for more than one hour. 

7.4 Conclusions 

With fully nitridized yttrium as the source, the sublimation-recondensation 

technique proved viable for producing YN bulk crystals on tungsten substrates. The 

growth temperature and pressure are the major factors that impact the morphology and 

growth rate of YN crystals. Experiments proved that the growth rate increases 

exponentially with temperature, inversely with the total pressure, and this trend is the 

same with ScN and TiN crystal growth under sublimation recondensation technique. The 

highest growth rate was 9.64 x 10-5 mol/hr after 24 hours of growth at 2100 °C and 125 

torr. Combining the Arrhenius equation with growth kinetics, the deducted activation 

energy was 467.1±21.7kJ/mol. Crystal structure of YN was confirmed as rocksalt (NaCl) 

with 4 YN in the unit cell by x-ray diffraction. The calculated lattice constant was 4.88Å, 

which is bracketed by values reported in the literature. YN has a poor stability in the air. 

XRD patterns indicated present of cubic yttrium oxide in YN sample after exposure to air 

for limited time, while the Raman spectra implied the present possibility of none-cubic 

yttrium oxide in samples that exposure to air for more than one hour.   
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CHAPTER 8 - Conclusions 

8.1 Main results  

This research aimed to explore the growth of potential substrates suitable for 

AlGaInN technology. Homoepitaxy growth of AlGaInN epilayers are in great demand 

because the disadvantages of the conventional substrates, sapphire and SiC are restricting 

the AlGaInN devices technology development. High impurities concentrations, high cost, 

and limited usable area limits the application of current commercialized AlN substrate.   

Prior to the experiment research, the species responsible for impurities 

incorporation in different systems were identified from thermodynamic analysis. High 

temperature sintering (>1900 °C) was proved to be important in reducing oxygen. Low 

temperature growth can possible limit SiC degradation Carbothermal reduction at a low 

temperature can reach the minimum AlN mass loss possible. Then a two step process was 

shown to be effective both theoretically and experimentally in reducing impurities in AlN 

source. More than 98% of the oxygen, 99.9% of hydrogen, and 90% of carbon originally 

in the source was removed. 

In the self-seeded growth of AlN study, polycrystalline AlN boules with 

preferential (0001) orientation were obtained. AlN crystals with large grain size were 

achieved in the self-seeded growth. In seeded growth, SiC substrates are thermally etched 

at temperature higher than 1520 °C, and the AlN grown at this temperature or above tend 

to crystallize from the etch pits. At growth temperature of about 1432 ~1460°C, almost 

no etch pits were formed for samples originated from polycrystalline source and the 
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obtained AlN crystals were uniformly distribution over the polished substrate. The use of 

O-rich AlN powder source in the growth increases the SiC decomposition and promotes 

Al transport. The substrates were heavily etched even at conditions in which no thermal 

etching was found in the growth with very low oxygen-containing source. But if the 

substrate surface was scratched, crystals tend to nucleate from these scratches. Thus, low 

temperature growth with low oxygen concentration source is more effective in protecting 

the SiC substrate from thermal etching. The AlN crystals can be deposited on both Si-

face and C-face of c-plane SiC, as well as m-plan SiC substrates. The growth surface of 

grains is always parallel to the c-plane. The grains tend to have same tilt with the 

substrate. However, the growth conditions for m-plan SiC is very critical. Continuous 

AlN crystals growth on m-plane SiC was achieved at 1428 ~1460 C and 600 torr. Very 

few irregular crystals but etch pits was found at same pressure but temperature higher 

than 1520 C; therefore, low temperature growth is more effective for m-plan SiC. 

Physical vapor transport was shown to be a viable method to produce TiN and YN 

crystals on tungsten substrates. The stoichiometry of the TiN crystals (N/Ti ratio) is 0.99. 

Lateral growth predominates initially and vertical growth becomes more important after 

TiN crystals merge together. The crystal growth rate increases exponentially with 

temperature, inversely with the total pressure to the 1.5 power, and the calculated 

activation energy was 775.8±29.8kJ/mol. The XRD and EBSD analysis revealed that the 

TiN crystals and underlying tungsten substrate grains have an orientation relationship of 

TiN (001) || W (001) with TiN [100] || W [110], which leads a 45° angle between the TiN 

and W lattice. For tungsten substrate grains with W (001) planes offset from the surface, 

the TiN (001) planes are still parallel to W (001) planes to minimize the lattice mismatch.  
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With fully nitridized yttrium as the source, the sublimation-recondensation 

technique proved viable for producing YN bulk crystals on tungsten substrates. The 

growth temperature and pressure are the major factors that impact the morphology and 

growth rate of YN crystals. Experiments proved that the growth rate increases 

exponentially with temperature, inversely with the total pressure, and this trend is the 

same with ScN and TiN crystal growth under sublimation recondensation technique. The 

highest growth rate was 9.64 x 10-5 mol/hr after 24 hours of growth at 2100 °C and 125 

torr. Combining the Arrhenius equation with growth kinetics, the deducted activation 

energy was 467.1±21.7kJ/mol. The crystal structure of YN was confirmed as rocksalt 

(NaCl) with 4 YN in the unit cell by x-ray diffraction. The calculated lattice constant was 

4.88Å, which is bracketed by values reported in the literature. YN has a poor stability in 

the air. XRD patterns indicated present of cubic yttrium oxide in YN sample after 

exposure to air for limited time, while the Raman spectra implied the present possibility 

of none-cubic yttrium oxide in samples that exposure to air for more than one hour.   
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8.2 Future work  

The oxygen concentration in well grown AlN bulk crystals is still high currently. 

How to remove oxygen in the obtained bulk crystal AlN remain challenging. Detailed 

impurities analysis is needed to minimize their concentration maximum possible. 

 Detailed thermodynamic, kinetics study and reactor design are needed to further 

enlarge of the single AlN crystal size for physical vapor transport method or other 

proposed concepts. 

Testing TiN as a substrate for AlGaInN epitaxy or combined layer has not been 

done yet. Although the nitridation of Zr metal was studied in general in my work (not 

included in this thesis), the bulk crystal growth and characterization of ZrN haven’t been 

researched in detail yet.  

The semiconducting, magnetic, and optical properties of transition metal nitrides 

remained to be explored. There are also interesting properties from alloys or layered 

structures of transition metal nitrides combined with group III nitrides need more 

investigation.  


