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CHAPTER 1
INTRODUCT ION

Since the development of the fast fourier transform (FFT) by Cooley and
Tukey [5], considerable attention has been devoted to its modification to
secure increased speed for computational purposes., Basically there are four
modifications to increase the computational efficiency. These are: (1)
innerloop nesting, (2) change in radix, (3) data shuffling and unscrambling
when the input data is real, and (4) eliminating operations on zeros when the
number of nonzero input data points is considerably smaller than the desired
number of output points; or the desired number of transform points is con-
siderably smaller than the number of input points.

The first modification is used in decimation in frequency and decimation
in time algorithms, some aspects of which are discussed in Chapter II. The
second and third modifications are discussed in {3}, [8] and [16] respectively.

This report is primarily concerned with the fourth modification which is
referred to as FFT pruning. FFT pruning eliminates operations that do not
contribute to the final output. It can be applied to both discrete time and
frequency domains, and saves considerable time. Applications of FFT pruning
include speech processing, estimation of autocorrelation functions, and
computing narrow band Fourier spectra with increased frequency resolution.

FFT pruning concepts are introduced in Chapter III, while experimental
results pertaining to some applications are considered in Chapter 1IV. Conglu-

sions and recommendations for future work are presented in Chapter V.



CHAPTER 11
DECIMATION IN TIME AND FREQUENCY

2.1 Discrete Fourier Transform
- The Fourier transform pair for continuous signals can be written in the

form

Fy(f) = I x(t) e~i27fty,

x(t) = [ Fy(£) el2nftys

for —w<f<o, —wit<w, and 1 = v=1. Fx(f) represents the frequency domain
function corresponding to the time domain function x(t). Analogous to the
Fourier transform, the discrete Fourier transform (DFT) is a transform that
is used for the Fourier analysis of data sequences. Thus, if {X(m)} denotes
a sequence X(m), m=0, 1, ...,(N-1) of N finite valued real or complex numbers,
then its DFT is defined as

-1

N
Ce) =% I X(@) W, k=0, 1, coeuus,®-1)  (2.1)
m=0

12w
where W = e % , 1= V=1,

Again, the corresponding inverse discrete Fourier transform (IDFT) is defined

as
N-1 -
X(m) = I Cx (k) W

k=0

K =0, 1, veeees (N-1)  (2.2)

Equations (2,1) and (2.2) constitute the DFT pair.



