A COMPARATIVE STUDY OF HIGH LEVEL
MICROPROGRAMMING LANGUAGES

by PO

€% A
SR

Eugene Schreiner Eiiﬁ SRR

B. S., Fort Hays Kansas State College, 1967

A MASTER'S REPORT

submitted in partial fulfillment of the

requirements for the degree

MASTER OF SCIENCE

Department of Computer Science

KANSAS STATE UNIVERSITY
Manhattan, Kansas

1973

Approved by

Professor



f TABLE OF CONTENTS

1.0 INTRODUCTION

1.1 Basic Concepts of Microprogramming.........
1.2 The Need for a High Level Microprogramming
) P2 o = I =
1.3 Purpose of this Report.........cciiiiin.

2.0 REQUIREMENTS FOR A HIGH LEVEL MICROPROGRAMMING
TEANGUAGE ; on wis o booen i im o m s Bt A m S Bkl b xS R ET a9 ¥

Natural Programming Style.......cieieeunann
Deseriptives . .sivisssnspspsmssnaseasminssass
Procedural........i it iiinneeennensacanns
Timing and Concurrent Operations...........
Hierarchical DescriphlonS.:cisissnssnemnemnss
Machine Independence......... oo emvnveensns
Simulator Available........ ittt venerans
Translator Available......ciiver e rtonennns

DNONDNNNNDN
O~k Wh

3.0 COMPARISON OF THE HIGH LEVEL MICROPROGRAMMING
LANGUAGES. - i minedi@icidad@idinins e Bimai®s

4.0 CONCLUBSTON . oo w0 60w m o w sm s s o w e s e u e 6w 80w 8
APPENDICES
Appendix A - A Hypothetical Microprogrammed
COMPUTRT o & i wvs wve 59 5 %3 & 6 % @ wg S w0 g @ 5 0 6 o @ w g w8 % a5 0 705 8 w5 o
Appendix B - General Description of the High
Level Microprogramming LanguagesS.......ceuuus
Appendix C - Language Features.........ocveea. %

BIBLIOGRAPHY ¢ s on wmin srg s o 56 5 5% o /s s o i 8 i 5 5 5w vk w0 o 20 8 50 8 % % b 0

Page

21

23

31
62

s K



iii

LIST OF FIGURES

Figure Page
1 A Simple Microprogrammed Computer.......... 24
2 Microinstruction Format.................... 27
_3 THE M1 CropTrOCTaAmM: ws vsimw s s s b o w o s ie 54 s 58w 505 30
4 Organization of the Tramnslator............. 41
5 Outline of APl .sscissmaissnidssmenimamams 57
6 AHPL Timing Operators.......c ittt enrennsns 59

LIST OF TABLES
Table
I Basic Operations in Computer Design

LBNEUARS . o s s s 506 o siw 5 16 % & s & 6 6 5 % & 0 608 @m0 4w s 32

II Some Basic APL Operators........cieeeeneans 53



iv

ACKNOWLEDGEMENTS

I wish to acknowledge the assistance given me by
Dr. Myron Calhoun, my major professor, Dr. Paul Fisher, and
Dr. Virgil Wallentine in the preparation of this report.
I especially want to thank Dr. Wallentine for suggesting
the topic and the basic format and Dr. Calhoun for proof-
reading the report.

Also, I wish to thank Sharon, my wife, for typing
my report and many other student's papers so that I could

attend graduate school.



1.0 INTRODUCTION

1.1 Basic Concepts of Microprogramming
The concept of microprogramming is normally attributed
to"Wilkes (25). He envisioned the control portion of a

computer as a number of register transfers (micro-operations)

which, when performed in the correct sequence, resulted
in the execution of a machine instruction. A collection
of these micro-operations which requires one basic time

unit to execute is called a microinstruction. A sequence

of microinstructions is called a microprogram. In recent

years, microprograms, stored in high-speed, nondestructive
read-only storage (ROS), have been used to control the
sequences of the machine instructions of a number of digital
computers.

The reader who may be unfamiliar with micropro-
gramming may refer to Appendix A which contains the descrip-
tion of a simple hypothetical microprogrammed computer

(microprocessor) or to one of the following references

(9, 17, 20; 25).

To date, the main reason for the use of micropro-
gram control has been in order to make a complete line of
computers with different internal structures and performance
ranges accept the same instruction set. An example of this

is the IBM S/360 line of computers. Recently several



microprograﬁmable computers with writable control storage
have been implemented--MPL-900 (formally IC-9000), Microdata
3200, Hewlett-Packard 2100S, and B1700. A microprogrammable
computer differs from a microprogrammed computer by the
support of a facility which allows the user to change the
migroprogram. These microprogrammable machines have the
advantage of allowing the user to tailor the microprogram
to match his specific application. The advantages and
disadvantages have been discussed in a number of papers
(9,pp.29-30; 17, pp. 117-125; 23, pp. 12-21).

As more microprogrammable computers become avail-
able, as the trend appears to be, it will become the user's

responsibility to take full advantage of this new tool.

1.2 The Need for a High Level Microprogramming Language
Today if a microprogrammer wishes to alter the
control storage of a microprogrammable computer, he has
to write the new microprogram in an assembly-like language.
A similar situation once prevailed in the programming of
computers. The programmer had to write all programs in
detailed assembly language. When higher level programming
languages were developed, the programmer's job was simplified
considerably. The many advantages of higher level program-
ming languages should also be available to the micropro-
grammer. Therefore, the development of a high level
microprogramming language seems to be an admirable goal.

A high level language would also reduce the burden



manufacturers have in producing the microprograms for their
computers. Microprograms for manufacturer's computers are
often more difficult to write than the ones a user would
write for a microprogrammable computer. This increased
difficulty arises from the use of long, complicated, special
purpose microinstruction formats. At the present time,
a flow-chart-like language is often useﬁ which is automatically
assembled into microcode (24, p.236).

The argument against the development of a high
level language for microprogramming usually stresses the
point that microprogramming is not like programming, in that
in microprogramming efficient microcode is more important
than ease of programming. This is true; microcode that is
used over and over cannot be inefficient code. But I feel
the microprogrammer should have a high level language to
use if he wishes. A situation where such a language would
be useful to a microprogrammer is when he is writing micro-
sequences that will not be used a high percent of the time,
but will be swapped in and out of control storage as needed.
The need for a standard notation to describe microprogramming
would be satisfied by a high level microprogramming language.

The speed of computers has increased tremendously
in the past few years and will probably continue to increase.
It is costing more to write and debug programs than to
execute them. Ease of programming has at times become a

more important issue than the speed at which the program is



executed. This has caused a great increase in both special
purpose and general purpose high level programming languages.
This increased computer speed makes a high level micro-
programming language attractive. If optimization techniques
are used at compile time, the sometimes less efficient
miecrocode produced for these routines may be outweighed
by the savings in the time to write the microcode.

There have been a number of attempts to develop
a high level microprogramming language. These have had
varying degrees of sucecess. This report will discuss various
proposed languages and the attempts to implement them as

microprogramming languages.

1.3 Purpose of this Report
The purposes of this report are as follows:

1. To indicate the characteristics that are required
for a suitable high level microprogramming
language.

2. To present a survey of the current literature
in the area of defining and implementing such
a microprogramming language.

3. To judge each of these languages on how well
they satisfy these characteristics.

4., To determine if there is a suitable high level
microprogramming language currently available.



2.0 REQUIREMENTS FOR A HIGH LEVEL MICROPROGRAMMING LANGUAGE

The following (2.1-2.8) is a list of the basic
requirements fof a high level language for microprogramming.
The 1list is a composite of the characteristics and require-
ments given by a number of authors: Husson (17), Chu (3),
Hill and Peterson (16), Eckhouse (10), Crockett (7), and
Tsuchiya (23). The languages that are compared in this
report were selected with these requirements in mind. Only
languages which are designed to simulate microprogrammed
computers and/or produce microcode are discussed. Therefore,
this report does not include a number of currently implemented
high level hardware design languages. Although these hard-
ware design languages do satisfy many of the requirements
listed below, they do not, in my opinion, appear to be
adaptable to microprogramming.

The languages compared in this report are:

CDL--Computer Design Language,

CASD--Computer-Aided System Design,

MPL--Microprogramming Language,

SIMPL--A Single Identity Microprogramming Language,

APL--A Programming Language, and

AHPL--A Hardware Programming Language.

A general description and example programs written
in each language is given in Appendix B. A chart comparing

the features of these six languages is given in Appendix C.

[+



2.1 Natural Programming Style

A microprogramming language will satisfy this
requirement if it has syntax like a common high level pro-
gramming language. In many cases the syntax can be simpler
than the syntax of languages like PL/1, FORTRAN, and ALGOL,
because it need only be designed for the special purpose
of microprogramming. If the language is easily understood
the microprogrammer will only need the source listing to
communicate the details of his microprogram to others. The
more natural the language, the easier users from various
disciplines will master 1it.

In my opinion the PL/1 and ALGOL-1like languages
of CDL, CASD, and MPL satisfy this requirement, while APL
and AHPL do not. A glance at the example programs in Appendix
B should verify this opinion. Two reasons I feel APL doesn't
satisfy this requirement are: (1) APL's vocabulary is
gquite large and descriptions are difficult to read initially;
and (2) the notation contains Greek letters and other
unfamiliar symbols which make the language difficult and
cumbersome for the average programmer. AHPL solves these
problems, to some extent, by eliminating many APL operators
that are not pertinent to computer descriptions.

SIMPL's notation is not as easy to read as CDL,
CASD, or MPL because unique variable names must be used to
describe changes in the data in a hardware component. I

would say the ease of comprehension of SIMPL's notation



lies somewhere between that of the PL/1 and ALGOL-1like

languages and APL.

2.2 Descriptive

The language must be descriptive so both structural
properties and micrpprogram control of the systems can be
described. The microprogrammer must be able to declare every
computer component from the main memory to lights on the
control panel. He must be able to describe the timing points
which will effect the execution of the microprogram. He
must have means to easily describe the action implied by
every micro-operation. Both the declaration and execution
statements must be free of all ambiguous notation. Unspecified
notation may cause a compiler to take a default action which
could lead to a catastrophe, such as generating a temporary
register that does not exist in this cbmputer's hardware.
The language must have sufficient detail so gating of bit,
word, and bit-array level operations can be specified. At
the same time the description of irrelevant components and
operations should not be required. Lastly, the language
must have means available to allow the description of the
microinstruction format and control fields.

In summary, the language must describe the computers
internal structure, microinstructions, and micro-operations
in an unambiguous and precise way.

Using CDL a microprogrammer can describe the internal



structure of a computer using register, subregister, cas-

register, memory, clock, switch, light, and terminal declara-

tion statements. The micro-operations are unambiguously
described using labeled execution statements, where the
label allows the programmer to explicitly indicate the clock
phaserand other conditions which must be present to evoke
the execution of a micro-operation. The description of the
microinstruction control fields is accomplished using

decoder, terminal, and labeled execution statements.

CASD and MPL describe a computer using PL/1-1like
statements. Declaration statements are used to describe
the internal structures of the computer. Micro-operations
are described using PL/1-like execution statements. To my
knowledge, CASD and MPL lack the facilities to describe
the microinstruction control fields.

A microprogrammer using SIMPL would describe the
internal structure of the computer and its microinstruction
in a separate MODEL program. The MODEL program is written
once and is then used as part of the input to the SIMPL
compiler for each microprogram written for this computer.

An ALGOL-1like execution statement is used to indicate micro-
operations. (See Appendix B for example programs)

Using APL a microprogrammer can describe micro-
operations in a concise, precise, and unambiguous manner.
APL does not have adequate means to declare internal computer

structure and microinstruction control fields. APL has



been critized by Eckhouse (10, p. 8), Darringer (8, p. 9),
and Gentry (13, p. 4) as lacking the facility to declare
and thereby accurately describe the properties of computer
components.

AHPL has register, bus logic, and bus load declaration
statements. It does not have the means to declare other in-
ternal components. Micro-operations are described using
a subset of APL notation. There are only four APL logic
and arithmetic functions allowed in AHPL. These are '"and,"
"or,""not," and "exclusive-or." Since AHPL was not designed
for microprogramming, it lacks the means to describe micro-

instruction formats.

2.3 Procedural

The microprogrammer must be able to specify the
sequence in which a set of operations is to be performed.
Unlike high level programming languages that may have com-
plex control structures such as recursion, a microprogramming
language requires only simple structures. Some method to
write subroutines and perform single or multiple branches
is all that is required.

Facilities to satisfy this requirement are provided
by: procedure and computed go to statements in CASD, MPL,
and SIMPL; special operator and labeled execution statement
in CDL; combination logic subroutines and branch statements

in AHPL. APL's function satisfies the requirement for sub-



10

routines and the programmer can write his own multiple branch
statements, see (1, p. 107) or Example APL Program line 7

of FETCH in Appendix B.

2.4 Timing and Concurrent Operations

Some means to indicate timing signals must be
available to allow the micro-operations to be executed at
a particular time. The language will need some kind of
timing signals so the programmer can have micro-operations
performed in parallel or sequentially. One of the advantages
of horizontal microinstruction formats is to allow parallel
data transfer. The language must have a way of indicating
these parallel data transfers if efficient microcode is to
be generated by the compiler, Facilities to indicate
synchronous and asynchronous micro-operation execution
are also required.

The CDL's labeled execution statements can be used
to indicate concurrent operations that are synchronous or
asynchronously performed. CDL has a clock declaration state-
ment that can be used to describe multiple phase clock cycles.

SIMPL has no explicit timing control statements.
Implicit timing is accomplished through the use of the
"single identity" type program. The compiler recognizes
concurrent operations and parallel data paths. Asynchronous
operations are programmed using status indicators that are

checked by the "if STATUS then . . ." statement.



11

CASD and MPL also use implicit timing. The compiler
recognizes mutually exclusive operations that may be executed
concurrently. Each labeled statement begins a block of
possible concurrent micro-operations. CASD has the additional
features of "DO CONCURRENTLY" and "WAIT" statements that
can be used to indicate asynchronous operations.

AHPL uses the letters '"S" and "A" at the beginning
of a statement to indicate synchronous and asynchronous opera-
tions, respectively. Also, in synchronous operations, if
more than one statement is written on a line, the statements
are executed concurrently. Through the use of English-word
operators like "WAIT," "DELAY," "DIVERGE,'" and "CONVERGE,"
complicated parallel synchronous operations within asynchronous
operations can be specified.

APL has no explicit means for a programmer to
indicate timing. Bingham (2) said "(when they used APL to
generate microcode) the machine had two overlapping phases
so timing was not difficult." A programmer would have to
write his own timing functions if he wished to use APL for

microcode generation.

2.5 Hierarchical Descriptions

The microprogrammer must be able to describe the
microsequence exactly or conceptually. Components defined
in terms of primitive operations (OR, AND, NOT) should be
named and referred to symbolically in higher levels of the

hierarchy. For example this would mean that every time



12

addition is gequired the microprogrammer does not have to
describe the add sequence in terms of AND-OR logic. What he
does is write an addition routine and then uses it each time
addition is performed.

CDL allows the programmer exact or conceptual
microprogram descriptions through the use of operator and
terminal statements. The example CDL program in Appendix B
demonstrates the use of these statements to describe the
AND-OR logic of the ADD function.

CASD, MPL, and SIMPL use PROCEDURE blocks, which
may be contained in other PROCEDURE blocks, to build the
complete program. The example programs in Appendix B use a
PROCEDURE block to describe the addition of the contents
of two registers.

APL uses FUNCTIONS to describe the microprogram at
different hierarchical levels. The addition of two binary
numbers is described by the functions ADDI and ADD1 in the
example APL program in Appendix B.

AHPL uses the combined logic subroutine to achieve
hierarchical descriptions of microprograms. An example
combined logic subroutine that adds two numbers is given

in the AHPL program in Appendix B.

2.6 Machine Independence
Machine independence actually means two things when
applied to a high level microprogramming language. First,

the language must be independent of the particular machines



13

on which it is implemented. Second, the language must be
independent of the particular microprocessor it is used
to microprogram.

2.6.1. To be independent of the machines on which
it is implemented the language must produce identical
”object” microcode for a program when the program is executed
on the different machines. Assume translators for some
high level microprogramming language were available for the
IBM S/360 and Honeywell H4200 computers. A program run on
each of these machines would produce identical outputs if
the language was machine independent.

All the languages discussed in this paper are
claimed to be machine independent. APL and CDL are since
they have been implemented for a number of different computer
systems. Although AHPL has only been implemented on the CDC
6400 there is no evidence that it is machine dependent.

Since MPL, CASD, and SIMPL are proposed as high level
languages, this implies they are machine independent.

2.6.2. To be machine independent in this second
sense, the language must provide facilities to define a
machine in which the microprograms are to be implemented.

On a particular day a programmer may use the language to

write a program for the Interdata 85 and the next day

use the same language to write a program for the B1700.
Briefly this means the language must be descriptive.

The language must allow the programmer to give a complete



14

description'of any microprogram-controlled computer., This
requirement was discussed in section 2.2, As mentioned in
that section, APL is the only language which lacks means to
completely describe a computer's internal structure.

In section 2.2 it was mentioned that the micro-
instrpction format must be described. There are many dif-
ferent microinstruction formats, and there is no way for
a translator to produce microcode for a particular one
unless a complete description of it is given. This is
discussed more in the following paragraphs.

There are two basic types of microinstruction

formats. One, called the horizontal microinstruction format,

consists of a number of subfields. A subfield may be from
one to several bits long. Different combinations of bits
in a subfield cause different control signals to be issued
which in turn controls the flow of data.

The second type of microinstruction format is called

a vertical microinstruction format. This format is similar

to a machine instruction format. It usually has an op-code
and some operands, which often means it is much shorter and
less complicated than horizontal microinstructions. The
vertical microinstruction is generally considered easier to
program, but often programs written using it require more
time to execute than programs written using the horizontal
microinstruction (23, pp. 112-116).

The only languages that have a means to describe



15

these formafs are CDL and SIMPL, In my opinion it would be
impossible to have a machine independent microprogramming
language that did not have a facility to allow descriptions
of different microinstruction formats. Eckhouse (10) omitted
a means to describe alternate microinstruction format in MPL.
This is MPL's main deficiency. Eckhouse presents MPL pro-
grams that are supposed to produce microcode for the Inter-
data 3 and the IBM 2050 processor with little mention of how
MPL adjusts for the completely different microinstruction
formats. I assume he wrote a different translator for each
microprocessor. This means MPL requires a different trans-
lator for each microprocessor it will be used to program.

Tsuchiya (23) admits that SIMPL is not completely
independent of the computer for which the microcode is to
be produced. The sequence of micro-operations that is specified
by a particular SIMPL statement may be redefined as necessary.
A microprogrammer may modify or redefine the semantics of
microinstruction routines in different compilers. This
flexibility may be a big advantage as more complicated and
different microprogrammable computers become available.

In summary, no language discussed in this report
can produce microcode for different microprocessors without
some modification of its translator. Since SIMPL has a
facility to describe the microinstruction less modification

is required.



16

2.7 Simulafor Available

The language should have a simulator available to
provide the microprogrammer the facility to test and debug
his microprogram before the source code is translated into
microcode. A simulator will make it feasible for the micro-
programmer to try alternate routines, microinstruction
formats, and test microprogram efficiency. The simulator
will increase the probability of the microprogram producing
optimum microcode.

CDL has a number of simulators available. There
are CDL simulators for IBM's 7094 and S/360; Univac 1108;
and CDC 6600 (5, p. XIX).

Microprograms written in APL can be simulated on
any of a number of APL time sharing systems., Raynaud, et al,
(19) describes the simulation of microsequences for a computer
system. The APL example program in Appendix B was simulated
using APL/360.

A partial prototype simulator for MPL was developed
as part of Eckhouse's research (10). The other high level

microprogramming languages have not had a simulator implemented.

2.8 Translator Available

The languapge must have a translator that will
produce the machine-dependent microcode, which can then
be loaded into the control storage of the microprogrammed
machine. Since efficiency is of prime importance in micro-

programs, the translation processor should include optimizing



17

techniques. -A translator is, of course, the most important
requirement of a high level microprogramming language.
Without a translator the high level language will be no more
than a microprogram notation that can be used for documenta-
tion or possibly as in the case of CDL and APL to simulate
the-microprogram.

Of the six languages discussed in this paper only
MPL and APL have been used to produce microcode. MPL was
used to produce a microprogram for the INTERDATA 3 as a
test case (10). The final output of the translator was a
notation very similar to the INTERDATA 3 micro-assembly
language that is used for microprogramming. This MPL
translator used optimizing techniques. Eckhouse states
that a complete compiler (translator for MPL) has not been
implemented.

APL has been used to prepare, translate, and check-
out microcode (1). Bingham (2) said their APL programs
produced 200 lines of microcode while rejecting 800 lines.
The APL programs for this application required three man-
weeks to prepare. This translator was for a particular
machine and could not be used for general microprogramming;
in addition Bingham's APL translator did not optimize the

microcode.



3.0 COMPARISON OF THE HIGH LEVEL MICROPROGRAMMING LANGUAGES

The six languages surveyed in this report satisfy
the requirements for a suitable high level microprogramming
language in varying degrees. We can eliminate some of the
languages as possible high level microprogramming languages.

CASD is only a proposed language and there are no
plans to implement it. AHPL was not designed as a micro-
programming language and lacks means to describe the micro-
instruction. CDL is an adequate language for simulating
microprograms but requires the programmer to explicitly
indicate the control bits. He actually has to write the
microcode before he can simulate it. For this reason it
does not appear feasible to take a language such as CDL
and build a translator for it.

MPL satisfies most of the requirements for a high
level microprogramming language. It does not have a
completely implemented simulator or translator. A simulator
is not as critical a requirement as a translator. If
and when a complete translator for MPL is implemented the
language will still lack the requirement of being machine
independent, meaning a different translator will have to
be written for each microprocessor.

SIMPL appears to be the most realistic and usable
high level microprogramming language. The proposed SIMPL

and MODEL languages possess all the facilities needed to

18



19

write microérograms for both horizontal and vertical micro-
programmed computers. The property of allowing the micro-
programmer to modify the semantics of a microsegquence of
the translator appear to make the SIMPL language the best
high level microprogramming language. Unfortunately, as
mentioned before, SIMPL is only a proposed language and

no attempt has been made to develop a franslator for it.

APL is the only language that has been used to produce
usable microcode. The microprogrammer wishing to use APL must
write his own APL routines to translate the APL description
into microcode. Computer écientists have critized APL as being
hard to read and understand by the novice programmer. This isr
no real problem because a microprogrammer is not a novice pro-
grammer. '"'(He) must be thoroughly familiar with the design
philosophy, the architectural characteristics, and the tech-
nological capability that govern the design of (a microprogram-
mable computer)" (17, p. 16). I feel a specially designed
microprogramming language with notations similar to AHPL
would be a much better microprogramming language than any of
the currently implemented versions of APL.

If I had to pick a currently available language
for writing microprograms, it would have to be APL even
though it lacks the aforementioned facilities.

What is needed is the implementation of a language
like MPL which could be used to microprogram a few computers.
If this language proved acceptable, then the implementation

of a much more versatile language like SIMPL could be undertaken.



20

If SIMPL produces efficient microcode as its author claims
it can, the use of high level microprogramming languages
would become as popular with microprogrammers as high level

programming languages are with programmers,



4.0 CONCLUSION

This report has covered the basic characteristics
a suitable high level microprogramming language must possess,
The language should be natural, descriptive, procedural,
and machine independent. It should also have hierarchical
structures, timing and concurrent operations, a simulator
for the microsequences, and a translator.

Of the six languages compared APL is the only
implemented language that has been used to produce microcode (1).
The implementation of a translator for MPL would provide
the microprogrammer with a language, but he would be limited
to microprogramming for a particular machine. The implementa-
tion of a language like SIMPL would be a much more difficult
task. If it can be shown that a language similar to SIMPL
can produce microcode as efficient as is produced by con-
ventional microprogramming methods, there would be more
support and interest in implementing such a language.

In my opinion the need for a high level micropro-
gramming language has not been great enough for manufacturers
to support the development of such a language. As more
microprogrammable computers become available the need may
increase to a point where a manufacturer will develop a high
level microprogramming language to support their computer.

At the present the development of such a language appears
to be a good research topic for students in computer science,

but not a money-making proposition for manufacturers,

21



APPENDICES



