
A higher-order unification implementation for automated theorem proving

by

Christopher Martin Loura

B.S., Kansas State University, 2023

A REPORT

submitted in partial fulfillment of the
requirements for the degree

MASTER OF SCIENCE

Department of Computer Science
Carl R. Ice College of Engineering

KANSAS STATE UNIVERSITY
Manhattan, Kansas

2025

Approved by:

Major Professor
Dr. Torben Amtoft

Copyright

© Christopher Martin Loura 2025.

Abstract

Higher-Order Unification is the process for algorithmically establishing equality between

typed lambda expressions. This methodology serves as a foundation for numerous automated

theorem provers such as Isabelle, λProlog and Carnap. However, Higher-Order Unification

is inherently undecidable, with the most state-of-the-art solution being Gérard Huet’s semi-

decidable higher-order unification algorithm from 1975.

This report is an implementation of Huet’s Algorithm for higher-order unification. The

methodology involves parsing lambda expressions and converting them into De Bruijn index

notation to eliminate the need for α-conversion. A β-reduction algorithm then reduces the

lambda terms to beta-normal form. A matching tree for the two expressions is created to

attempt to unify them through pattern matching and simplification. This implementation,

written in the Zig programming language, uses its fast performance and memory optimization

to create a performant abstract machine and to leverage the capability of Zig to compile into

Webassembly.

Table of Contents

List of Figures . vi

Acknowledgements . vii

1 Introduction . 1

1.1 Zig . 3

2 Background and Related Work . 5

2.1 The Lambda Calculus . 5

2.1.1 Normal Forms . 6

2.1.2 De Bruijn Indices . 7

2.2 A Description of Huet’s Algorithm . 8

2.2.1 Other Implementations of Huet’s Algorithm 9

3 Implementation . 10

3.1 Language and Parsing . 10

3.1.1 Handling Grammar Ambiguity . 11

3.2 De Bruijn Indexing Algorithm . 13

3.3 β-Reduction Methods . 15

3.3.1 β-Reduction with Shifting . 15

3.3.2 Krivine’s Abstract Machine . 18

4 Higher-Order Unification with Huet’s Algorithm 22

4.1 Simplify . 23

4.2 Match . 25

iv

5 Testing and Conclusions . 28

5.1 Limitations . 28

5.1.1 Implementation Limitations . 28

5.1.2 Testing Limitations . 28

5.2 Testing Results . 29

5.3 Future Work . 30

Bibliography . 32

v

List of Figures

3.1 AST Example . 14

3.2 AST Example . 16

vi

Acknowledgments

Firstly, I would like to thank all of my committee members, Dr. Torben Amtoft for

advising this project, Dr. Graham Leach-Krouse for presenting the concepts of this report

and for being an inspiring professor during his tenure at Kansas State University, and Dr.

John Hatcliff for providing really helpful feedback in the places where this project was lacking.

Also, a big thank you to Jacob Legg for his helpful insights and with wrangling Zig, and

to all my friends of the 1118 lounge. You guys are the best and most supportive group of

people I’ve had the pleasure of knowing.

And finally, the biggest thank you to my father, Paulo.

vii

Chapter 1

Introduction

Unification is the process of finding a suitable substitution that makes both sides of an

equality equal. It is similar in nature to middle school algebra and solving equations for a

value of an unknown variable. For example, take the unification problem g(x, 6) = g(20, y).

Trivially, applying the substitutions

x 7→ 20 y 7→ 6

unifies the expression since after applying these substitutions, we get:

g(20, 6) = g(20, 6)

which correctly unifies. Mathematically, a unification problem is a finite set of equations to

solve E = {l1 =? r1, . . . , ln =? rn} where li, ri are terms or expressions.1 Unification becomes

a more complicated topic when trying to unify higher-order variables, or variables that can

be functions.

This problem of Higher-order Unification is what lies at the heart of automated theorem

provers. It is concerned with finding substitutions that make typed lambda expressions equal.

At its core, higher-order unification operates within the framework of the pure simply typed

lambda calculus, a formal system developed by Alonzo Church. Unlike first-order unification,

1

whose unification algorithm was developed by Robinson2 3 in 1965 and is both decidable

and widely used in logic programming languages like Prolog, higher-order unification is

undecidable. Despite its undecidability, higher-order unification is essential for automated

theorem proving, type inference, and logical frameworks. Automated Theorem provers such

as Isabelle use higher-order unification to perform resolution. Similarly, Carnap, a web-based

formal logic framework, depends on higher-order unification by means of Huet’s Algorithm.

In Leach-Krouse’s paper on Carnap4, he defines the way that Carnap performs unifica-

tion. Consider the Carnap rule for existential generalization:

ϕ(c)

∃xϕ(x) (EG)

The inference from P (f(k)) ∧ Q(f(k)) to ∃x(P (x) ∧ Q(x)) is an instance of existential

generalization if the unification problem

P (f(k)) ∧Q(f(k)) = ϕ(c)

∃x(P (x) ∧Q(x)) = ∃x.ϕ(x)

has a solution, when ϕ, c are ”metavariables” (called schematic variables in the paper), and

∃, P,Q, f, k are constants. There is a solution:

ϕ 7→ λy.(P (y) ∧Q(y)) c 7→ f(k)

This can be seen by applying these substitutions to the previously defined unification prob-

lem:

ϕ(c) = (λy.(P (y) ∧Q(y)))(f(k)) = P (f(k)) ∧Q(f(k))

and

∃x.ϕ(x) = ∃x.(λy.(P (y) ∧Q(y)))(x) = ∃x.(P (x) ∧Q(x))

which successfully unifies the terms. Any rule justification used in Carnap utilizes a form

of unification to determine if that was a proper application of the rule. Specifically, Carnap

uses Huet’s algorithm to check whether certain simple higher-order unification problems have

solutions.4

2

Gérard Huet’s 1975 semi-decidable algorithm5 remains one of the most influential ap-

proaches to higher-order unification. Due to the semi-decidable nature of the algorithm,

however, Huet’s method can sometimes not terminate with certain inputs. In other cases

with functions containing many variables, the algorithm can be inefficient. As such, potential

alternatives to Huet’s method become necessary given these limitations.

This report proposes an approach to higher-order unification that, rather than attempting

to solve the general undecidable problem, instead focuses on optimizing performance and

maintaining clarity and modularity in the implementation. This alternative involves four

major steps. Firstly, a lambda expression parser is required to convert a lambda expression

into its corresponding abstract syntax tree (AST) and then into the expression’s De Bruijn

index form. Secondly, an implementation of Krivine’s Abstract Machine that will perform

β-reduction on the AST until the expression is in weak head normal form. However, since we

want full reduction of lambda terms, weak head normal form will not be good enough. As

such, for the third step, a β-reduction algorithm that will fully reduce lambda expressions

in De Bruijn notation into its beta-normal form. Section 2.1.1 details a more thorough

explanation of lambda normal forms. Finally, once the lambda expressions are able to be

fully reduced, the final step is to use Huet’s higher-order unification algorithm to find a

unifier for the lambda expressions.

1.1 Zig

This implementation leverages the Zig programming language, a modern systems program-

ming language designed for its robustness and optimality. The choice of Zig for this imple-

mentation is deliberate and offers several advantages. Zig provides low-level control similar

to C but with better memory management and debugging due to lack of hidden control flow.

Zig allows user control over allocation patterns which are important for the performance of

the algorithms. The Zig syntax is also very user-friendly and easy to learn. Finally, since

this implementation could be used as a potential baseline for the Carnap theorem prover,

a programming language that could compile into Webassembly is necessary to be able to

3

interface with Carnap’s front end.

4

Chapter 2

Background and Related Work

2.1 The Lambda Calculus

To perform any higher-order unification, we need a language to work in, and that language

is the lambda calculus. The Lambda Calculus is a Turing-complete formal system developed

by Alonzo Church that utilizes function abstractions and function applications for its com-

putations. We can define the language of the lambda calculus with the following context-free

grammar:

⟨E ⟩ ::= λx. ⟨E ⟩

| x

| ⟨E ⟩ ⟨E ⟩

Where x is any user-defined lambda variable.

Lambda expressions can be reduced by a process known as β-reduction by which a lambda

expression appears on the left side of a function application. This is called a β-redex,

and when encountered, the variable bound by the lambda abstraction is substituted with

the argument expression. Formally, the reduction (λx.M)N → M [x := N] substitutes all

occurrences of x in M with N .

5

A variable, x, is considered free in any lambda expression E if and only if at least one of

the following is true:

1. E is a variable and E is identical to x

2. E is of the form (E1 E2) and x occurs free in either E1 or E2 or both

3. E is of the form λy.E ′ where y ̸= x and x is free in E ′ 6

A variable x is a bound variable in a lambda expression E if and only if at least one of

the following is true:

1. E is of the form λx.E ′ and any occurrence of x in E ′ is bound by this abstraction.

2. E is of the form (E1E2) and x is bound in either E1 or E2 or both

3. E is of the form λy.E ′ where y ̸= x but x is bound in E ′

α-conversion allows for the names of bound variables to be changed. For instance, the lambda

expression λx.x is equivalent to the expression λy.y via α-conversion.

The language used for my implementation of the lambda calculus is deliberate and is as

follows:

1. Unbound variables are denoted by lowercase letters. (i.e. λx.y)

2. Metavariables, or flexible, arbitrary expressions, are denoted by capital letters. (i.e.

λ.M)

2.1.1 Normal Forms

Lambda expressions can be reduced to different normal forms. For the purposes of this

paper, two main normal forms are important: β-normal form and Weak Head Normal Form.

A lambda expression is in β-normal form if there are no β-redexes located anywhere

within the expression. An expression like λx.(λy.y)(m) is not in β-normal form because

6

it contains a β-redex: (λy.y)(m). An expression in β-normal form is fully reduced, as no

further β-reduction is possible.

A lambda expression is in Weak Head Normal Form (WHNF) if the outermost structure,

or ”head,” of the expression is not a β-redex. The head of an expression is either a vari-

able, a lambda abstraction, or the leftmost operator in an application chain. For example,

λx.(λy.y)(m) is in Weak Head Normal Form since its head is a lambda abstraction (λx.),

even though the body contains a β-redex. Similarly, a variable applied to any number of

arguments (possibly containing redexes) is also in WHNF. However, an expression of the

form (λx.M)(N) is not in WHNF because its outermost structure is a redex.

2.1.2 De Bruijn Indices

As mentioned previously, the creation of a lambda expression often involves the explicit

definition of a bound variable within the instantiation. As an example, take the lambda

identity function: λx.x. This function takes in some input and returns it. In this case,

the variable x is the bound variable. According to α-conversion, we can replace the bound

variable x for whatever user-defined variable is desired, therefore as above, we can say that

λx.x ≡ λy.y

under α-conversion.

However, keeping user-defined variables inside of these lambda expressions makes it quite

difficult for a computer to discern the equality between lambda expressions. How can we tell

a computer that x ≡ y in this case? Is there a way that we can standardize the structure

of lambda expressions to make it easier to discern equality that does not involve using α-

conversion repeatedly until all variables are standardized?

The best way to normalize the lambda expressions would be to use De Bruijn indices.

Crégut7 defines the idea in the following manner:

• There is a unique path from the root of a term to a given variable.

7

• The declaration is located somewhere along the path and can be identified by the

number of declarations between it and the occurrence. That number is then called the

De Bruijn index of the occurrence.

As a practical example, consider the following lambda expression:

(λy.y(λz.zy))(λx.x)

The result of applying 1-based De Bruijn indexing to the expression yields:

(λ.1(λ.1 2))(λ.1)

By using De Bruijn indexing, we remove the need to use α-conversion and greatly avoid

the possibility of variable capture. Using the previous example, both λx.x and λy.y have

the same form of λ.1. This thus makes it much easier for a computer to determine lambda

equivalence.

2.2 A Description of Huet’s Algorithm

Overall, Huet’s Algorithm involves the decomposition of a given pair of expressions to be

unified into simpler pairs and finding substitutions for a certain type of those pairs. This

decomposition occurs in the Simplify method, and the substitution finding occurs in the

Match method. Simplify concerns itself with taking the pair to be unified, and reducing

the pair to quivalent unification problems. If any pairs are rigid/rigid (or the head of both

expressions are not a metavariable), it will try to turn the pair into one of two forms:

flex/rigid (where flex is a word describing an expression with a metavariable as its head), or

flex/flex. The match function will then take any flex/rigid pairs and attempt to find possible

substitutions that would make both terms equal. The program will then stop when one is

found.

8

2.2.1 Other Implementations of Huet’s Algorithm

As Huet’s algorithm is the most well-known algorithm for performing higher-order unifica-

tion, there are a number of preexisting implementations that can be found. One of the most

popular results is Daniel Gratzer’s Haskell implementation, which is also the basis for my

Zig implementation8. Gratzer’s unification method uses two main functions, simplify and

tryFlexRigid. Simplify continuously reduces the given lambda terms of a context until

there are no more rigid/rigid simplifications to be done. tryFlexRigid takes a rigid term

and a flexible term and generates an infinite list of substitutions that potentially solve the

unification problem. Finally, as Gratzer himself describes, his algorithm:

1. Applies the given substitution to all our constraints.

2. Simplifies the set of constraints to remove any obvious ones.

3. Separates flex-flex equations from flex-rigid ones.

4. Picks a flex-rigid equation at random, if there are none, it terminates.

5. Uses tryFlexRigid to get a list of possible solutions.

6. Tries each solution and attempts to unify the remaining constraints, backtracking if it

gets stuck.8

Another Haskell implementation of Huet’s Algorithm comes from Daniel Louwrink. Louwrink’s

solution claims to be more faithful to Huet’s original concept due to the use of ”type infor-

mation to guide the search.”9 His implementation decomposes rigid-rigid pairs into smaller

subproblems, like in the simplify algorithm mentioned above. For the pairs that are consid-

ered flex-rigid, the algorithm attempts to generate a substitution using thematch algorithm.

The substitution is then applied to all of the remaining equation pairs, and continues to do

this until no flex-rigid pairs remain.

9

Chapter 3

Implementation

3.1 Language and Parsing

For the first step of the Zig implementation, a grammar for the language needed to be

defined. While the grammar for the general pure lambda calculus was previously defined in

Chapter 2.1, it has the glaring issue of being left-recursive. Left recursion in a grammar can

sometimes lead to non-termination in the form of infinite recursion. With certain types of

parsers, like LL(1) parsers, left-recursive grammars cannot be parsed at all.

To address this issue, the grammar was modified to eliminate left recursion and adapted

to use symbols that can be typed on a standard American keyboard. The resulting grammar

is::

⟨E ⟩ ::= lam x. ⟨E ⟩

| x

| (⟨E ⟩)

| lam x. ⟨E ⟩ ⟨E ⟩

| x ⟨E ⟩

| (⟨E ⟩) ⟨E ⟩

Where x is any user-defined lambda variable.

10

While the modified grammar successfully addresses left recursion, it introduces a new

challenge: ambiguity. This ambiguity manifests when expressions could be derived in mul-

tiple ways using different production rules. Consider the expression λx.x y, which can be

derived through two distinct paths:

E → λx.E → λx.x E → λx.x y

and

E → λx.E E → λx.x E → λx.x y

3.1.1 Handling Grammar Ambiguity

To resolve this ambiguity, our recursive-descent parser implements a deterministic strategy

with the following key principles:

1. Prioritized Pattern Recognition: The parser first identifies the primary construct

(lambda abstraction, variable, or parenthesized expression) and then looks ahead to

determine if it should be treated as part of an application.

2. Left Associativity for Applications: When encountering sequential terms that

could form applications, the parser constructs application nodes in a left-associative

manner, following the standard lambda calculus convention.

3. Greedy Consumption: After parsing a complete term, the parser greedily consumes

any subsequent terms and combines them into application expressions until reaching

a syntactic boundary (end of input or a right parenthesis).

The parsing algorithm therefore follows the following steps:

1. When a lambda token is encountered, the parser:

• Consumes the lambda token and the binding variable

• Recursively parses the body expression after the period

11

• Creates a Lambda abstraction node

2. When an identifier token is encountered, the parser:

• Creates a Variable node

• Checks for additional tokens

• If another term follows, it builds an Application node with the Variable as the

function and the following term as the argument

3. For application expressions, the parser:

• Processes the left-hand term first

• Continues consuming right-hand terms, building a chain of Application nodes

• Ensures left associativity by making each new application the function of the next

application

For the expression λx. x y:

1. The parser recognizes λx. and prepares to parse a lambda abstraction.

2. It recursively parses the body, starting with x.

3. After creating a Variable node for x, it detects that y follows.

4. Rather than ending the lambda body at x, it continues parsing and recognizes that

x y forms an application.

5. It constructs an Application node with x as the function and y as the argument.

6. This entire Application node becomes the body of the lambda abstraction.

7. The final AST represents λx.(x y), enforcing the expected precedence and associativity.

By applying these rules consistently, the parser produces a unique abstract syntax tree

for each input, despite the grammar’s ambiguity. This approach effectively encodes the

12

established conventions of lambda calculus directly into the parsing algorithm rather than

relying solely on the grammar specification.

The implementation in Zig leverages the language’s strong type system to create a clean

parser design. An enumeration type defines tokens for lambdas (represented as ”lam”), peri-

ods, parentheses, and identifiers. A struct type associates each token with its corresponding

string representation. This strong typing helps catch potential parsing errors at compile

time. The recursive-descent parser implementation takes advantage of Zig’s control flow and

error handling abilities to manage the potentially complex parsing logic required for lambda

expressions. By enforcing left associativity and proper binding of variables, the parser en-

sures that expressions are interpreted according to standard lambda calculus conventions,

despite the ambiguities present in the grammar itself.

3.2 De Bruijn Indexing Algorithm

Once the parsing is complete, we now have a reference to the AST of the lambda expression.

To be able to β-reduce, the expression needs to be turned into its corresponding De Bruijn

form. The algorithm will perform a preorder traversal of the AST and will take in a dictionary

with a key of the lambda argument and a value of 1+ the number of subsequent lambda

occurrences within scope, to keep track of any lambda functions we come across. However,

if a lambda function is defined on the left side of an application expression, the right side

of the application must be outside the scope of that lambda expression. If a new lambda

expression is seen, we increment all dictionary values by 1, remove the lambda’s argument

value, and add the new lambda variable with a value of 1 to the dictionary. If we come

across a bound variable expression, the De Bruijn index of that variable is set to the value

in the dictionary.

If an unbound variable or metavariable is seen, then the algorithm simply returns the

original expression. Once the entire tree has been traversed, the rewritten AST is returned.

For the previous example, running the De Bruijn conversion algorithm on the previous AST

results in the AST depicted in Figure 3.2.

13

Figure 3.1: The AST for (λy.y(λz.zy))(λx.x)

14

3.3 β-Reduction Methods

3.3.1 β-Reduction with Shifting

Once lambda terms are expressed in De Bruijn notation, they can be properly β-reduced.

The goal of the algorithm is to identify β-redexes and substitute the argument for the bound

variable in the lambda expression. The algorithm performs a preorder traversal of the term

to locate β-redexes.

When a β-redex is found (an application of a lambda abstraction to an argument), the

algorithm first fully reduces the argument. Then, it performs substitution by searching for

all instances of the variable bound by the lambda abstraction, which is represented by the

De Bruijn index 1 (though some implementations may use 0 as the starting index).

The substitution process handles three cases for bound variables:

1. If a bound variable’s De Bruijn index equals the index being searched for, it is replaced

with a copy of the argument expression.

2. If the index is less than the one being searched for, the variable remains unchanged as

it refers to a different lambda abstraction.

3. If the index is greater than the one being searched for, its value must be decremented

by 1 because the substitution removes one lambda abstraction from the context, thus

reducing the ”distance” to the binding lambda.

When encountering a lambda expression during substitution, special care must be taken

because De Bruijn indices are relative to the nesting depth of lambda abstractions. When

substituting a term under additional lambda abstractions, we need to adjust the De Bruijn

indices in the substituted term to maintain their correct references. Bound variables, there-

fore, need to be shifted when passing through lambda abstractions. This shifting ensures

that bound variables continue to reference their proper binders after substitution. This

method avoids potential variable capture problems that arise in traditional lambda calculus

implementations.

15

Figure 3.2: The De Bruijn Converted AST for (λy.y(λz.zy))(λx.x)

16

Let us examine several examples to illustrate these cases:

(λ.λ.λ.3 2 1)((λ.1)(λ.1))

First, we evaluate the argument (λ.1)(λ.1) = λ.1

We need to substitute λ.1 into (λ.λ.λ.3 2 1). Since there are two nested lambdas within

the body’s expression, the number the algorithm looks for is 3 to substitute into. When

the 3 is encountered, we substitute the λ.1 in for the 3. However, since this insertion is

on the left side of a function application, the 2 and 1 are not affected. This then

reduces to: λ.λ.(λ.1) 2 1

Finally, we can substitute 2 into λ.1. This does not change anything since the outer

binding lambdas are not being affected and 2 is being substituted into only the identity

function:

λ.λ. 2 1

λ.(λ.1(λ.2))((λ.1)1)

Step 1: Identify the beta redex at the top level, which is

(λ.1)1.

Step 2: Evaluate the argument (λ.1)1

(λ.1)1 = 1

Step 3: Apply the substitution to the outer beta redex

We need to substitute the result 1 for the bound variable in λ.1(λ.2)

Note that the body of the abstraction λ.1(λ.2) does not contain any occurrences of the

variable bound by the outermost lambda. The indices 1 and 2 are the same variable

bound by the first lambda in λ.1(λ.2). The argument that we are substituting,

indicated by a 1, is a variable bound by the outermost lambda. in λ.(λ.1(λ.2))(1)

17

Step 4: Apply the substitution with index adjustment

When we substitute the value 1 into the body, we need to adjust its De Bruijn index as

it moves under a new lambda binder in λ.2. As such, the index must be incremented.

This results in the final expression: λ.1 (λ.2)

3.3.2 Krivine’s Abstract Machine

A Krivine Machine is an abstract machine that uses call-by-name reduction on pure lambda

terms to reduce them into head normal form, or in other words, the head of the machine

evaluates the state that the lambda term is in and uses both an environment and a stack

to continuously push and pop closures, a structure similar to a linked list that references

previous environments and stores lambda expressions for potential further evaluation.

The operational semantics of the machine are best defined by Douence and Crégut10 7.

The state of the machine is a triple: (C,E, S) where C is the code to be evaluated, E is the

environment in which the code is being evaluated and S is the stack.

1). (C1 C2, S, E) → (C1, (C2, E) :: S,E)

2). (λ(C), E, (Cs, Es) :: S1) → (C, (Cs, Es) :: E, S1)

3). (1, (Ce, Ee) :: E1, S) → (Ce, Ee, S)

4). (m+ 1, (Ce, Ee) :: E1, S) → (m,E1, S)

The starting state of the code is (C, [], []) for some starting input C and the machine

halts when there is no rule that can be applied.

This Krivine Machine, also called the Simple Krivine Machine, is a good first step to

reducing lambda terms, but by itself does not fully reduce them. Suppose, for instance, that

we have a lambda expression in the head position as the starting input. The starting state

18

would be (λ(C), [], []). However, as there is no rule that can be applied to this state since

there are no closures on the stack, the machine halts and returns the starting expression.

As Krivine states in his paper formulating the machine, ”computation stops if there is no

redex at the head of the λ-term.”11 As a result of this, we need a way to continue to reduce

to ensure that the expression reduces to β-normal form.

For the final implementation, it was decided to not move forward with using a Krivine

Machine as the de facto β-reduction method. This is due in part to the finalizing of the

shifting β-reduction algorithm, which reduces terms to β-normal form as its final result. In

Chapter 5.3, there is mention of future work regarding the implementation of benchmarking

tests on the speed of using only the reduction algorithm as opposed to a hybrid reduction

algorithm using the simple Krivine Machine and the β-reduction algorithm. Although it did

not make it to the final result of the project, its implementation is worth describing.

For the implementation of the Krivine Machine, three basic structures needed to be

defined: a stack type, a closure type, and an environment type. The stack type was imple-

mented based on Huy’s generic stack implementation in Zig12. A closure was defined as a

structure that takes in an expression and an environment, and finally an environment type

with a head of a closure and a reference to the next environment in the list. The environment

also was given the ability to look up closures located within the environment based on some

index.

The implementation of the Krivine Machine follows the following procedure:

Switch over the code of the state and perform the following based on the code’s expression:

1. If a bound variable is seen and if the De Bruijn index is 1, then reassign the code

and environment to the result of popping from the current environment. Otherwise,

evaluate the bound variable of the current De Bruijn index - 1 in the environment

obtained from the popped closure.

2. If a lambda expression is seen, pop a closure from the stack and create an environment

whose head is the popped closure and whose next environment is the current environ-

ment. Assign the code to the body of the lambda expression. If there is nothing on

19

the stack, we are done.

3. If an application expression is seen, push a closure of the argument and the current

environment onto the stack. Assign the code to the function.

Let us examine a couple of examples to illustrate the machine:

Suppose we want to reduce the following lambda expression with a simple Krivine

Machine:

(λ.λ.λ. 3 2 1)((λ.1)(λ.1))

We start by creating a starting state consisting of the expression, an empty

environment and an empty stack:

((λ.λ.λ. 3 2 1)((λ.1)(λ.1)), ∅, ∅)

(λ.λ.λ. 3 2 1, ∅, < ((λ.1)(λ.1), ∅) >) → push arg and environment on stack

(λ.λ. 3 2 1, < ((λ.1)(λ.1), ∅) >, ∅) → evaluate lambda body and move from stack to env

Stop processing with weak-head normal form reduction result of λ.λ.λ.3 2 1 in

environment < ((λ.1)(λ.1), ∅) >

Suppose that we want to reduce the following lambda expression with a simple Krivine

Machine:

(λ.1 1)(λ.1)

20

We start by creating a starting state consisting of the expression, an empty

environment and an empty stack:

((λ.1 1)(λ.1), ∅, ∅)

((λ.1 1), ∅, < (λ.1), ∅ >) → push arg and environment onto stack

(1 1, < (λ.1), ∅ >, ∅) → evaluate lambda body and move from stack to env

(1, < (λ.1), ∅ >,< 1, < (λ.1), ∅ >>) → push arg and env onto stack

(λ.1, ∅, < 1, < (λ.1), ∅ >>) → 1 was seen, update code and env from env

(1, < 1, < (λ.1), ∅ >>, ∅) → evaluate lambda body and move from stack to env

(1, < (λ.1), ∅ >, ∅) → 1 was seen, update code and env from env

(λ.1, ∅, ∅) → 1 was seen, update code and env from env

Stop processing with a correct reduction result of λ.1

21

Chapter 4

Higher-Order Unification with Huet’s

Algorithm

With all of the preliminary information out of the way, we can begin explaining the necessary

components to begin Huet’s Algorithm to perform higher-order unification.

At the most basic level, Huet’s Algorithm searches for metavariables and generates poten-

tial solutions to the unification problem by substituting the solution in for the metavariable.

If that solution makes the two terms equal, we can stop. Otherwise, another solution is

generated and the process continues. Due to the undecidability of the algorithm, however,

it may or may not terminate based on the input.

Formally, substitutions are best defined by Fabian Huch13:

A substitution, σ, is a mapping from metavariables to terms

σ = {M1 7→ t1, . . . ,Mn 7→ tn} Mi ̸= Mj for i ̸= j

A unifier of a unification problem t =? u is a substitution, σ such that for every pair

< t, u > of the problem, the terms σt and σu have the same normal form.14

The core of Huet’s Algorithm occurs in two main functions - simplify and match.

22

4.1 Simplify

The simplify procedure takes in a set of two terms, or a constraint, to unify, with the goal of

producing more constraints equivalent to the starting one. The function will begin breaking

down the constraint into simpler problems to solve, and the constraints will simplify to be

flex/rigid or flex/flex. As a motivating example, suppose that the following constraint was

passed into the simplify function:

< y M, y N > for some unbound variable y

By observation, it would be much easier to solve the flex/flex constraint < M,N >. As

such, the simplify algorithm performs a sequence of checks on a given constraint and does

simplification in the following manner:

1. If two terms are exactly equal and aren’t both metavariables, then there is no more

simplification to be done. This is a trivial case.

2. Attempt to β-reduce each term. If the term is β-reducible, create a new constraint

consisting of the simplified and the other initial term. Return the result of simplifying

this new constraint.

3. Check each term’s head for rigidity. If they are both unbound variables, check to

ensure that their string values are equal. If they are not equal, then there is no valid

simplification. Similarly, for each term, take all the terms that are applied after the

head and create a list of them. if the lengths of the lists are not equal, there is nothing

more to simplify. If they are equal, simplify each of the matching terms. As an example:

Let < y M(λ.N), y z (λ.1) >

Since y ≡ y (they are both unbound variables), create 2 lists: l1 = [M,λ.N] and l2 = [z, λ.1]

Because len(l1) = len(l2), create new constraints < M, z > and < λ.N, λ.1 >

23

for potential further simplification.

4. If both terms are lambda expressions, generate a fresh unbound variable and substitute

the variable into the body of the lambda expression. Return both bodies as a new

constraint. As an example:

< λ.M, λ.1 > ≡ < M, a > with a being a fresh variable

5. If any of the terms still have a metavariable as its head, then return the original

constraint for later flex-flex processing.

6. If none of the above are true, then return an empty result.15 16

In order to completely simplify a given constraint, we will repeatedly call the simplify

function until there are no additional simplification results possible. As a practical example,

suppose that we are trying to simplify the following constraint:

simplify(< M(λ.λ.1 N), z (λ.λ.1(λ.h)) >) = [< M(λ.λ.1 N), z (λ.λ.1(λ.h)) >]

This result is due to the head of the left expression being a metavariable and the head of the

right expression being an unbound variable. This is as simplified as the function can take

this constraint, and will try to find a solution for it in the match function.

simplify(< y M (λ.N), y z (λ.1) >) = [< M, z >,< N, a >]

This result is due to the heads of both terms being the same unbound variable. The lengths

of applications of each are also equivalent. This means that we can map each element

with the same index of each list to each other and simplify the results. < M, z > doesn’t

reduce further but < λ.N, λ.1 > does. Since both are lambda abstractions, we can remove

the lambda and replace any bound variables with a fresh unbound one. This results in

< N, a >. Therefore, there are two constraints once the simplify method is complete.

24

4.2 Match

The goal of the match function is to try to take flex/rigid constraints and generate good

potential substitutions for the metavariables and to continue generating valid solutions until

one is found. If we are inside the match function, our constraints will be of the form:

< M t1 t2 . . . tn, i k1 k2 . . . km >

where M is a metavariable and i is some rigid term that is likely to be a free variable.8

The first thing done by the function is determine which side of the constraint is flexible

and which is rigid. The heads of each expression are saved and similar to the simplify

method, creates a list of expressions being applied (i.e. if M t1 t2 . . . tn was the one of the

sides of the constraint, we would get a list [t1, t2, . . . , tn] of applications and a variable

assigned to the value of M).

The first case is trivial - if the lengths of both lists are 0, then we create a substitution

mapping from the metavariable to the rigid term and return the substitution. If the lengths

of the lists are not zero, then more work needs to be done. M must be in one of the following

forms:

1. M = λx1.λx2. . . . λxn. xi(M1 x1 x2 . . . xn) . . . (Mr x1 x2 . . . xn)

2. M = λx1.λx2. . . . λxn. i(M1 x1 x2 . . . xn) . . . (Mr x1 x2 . . . xn)

Where r is the arity of xi and Mj is a fresh metavariable for j ∈ [r]. Since these replacements

are completely generalized and cover every possible case, then if a constraint is unifiable,

then it must be unifiable under one of the substitutions8 13. This should generate an infinite

number of solutions that the code should lazily evaluate. Programming languages like Haskell

with lazy evaluation built into the language are great programming languages to be able to

do this, but Zig is somewhat limited. Due to time constraints, I was unable to get the

matching algorithm’s search space to that infinite level. However, there are lazy evaluation

libraries out there that could be integrated into the project at a later date.

25

The reader may ask what happens when there are flex-flex constraints that need to be

simplified? How do we simplify a constraint of the form < M,N >? Nicely enough, Huet

provides an answer - we do not need to solve flex-flex constraints because they always have

solutions. This is called Huet’s Lemma14. Flex-flex constraints in the implementation are

therefore not processed. Some additional work needs to be done with the displaying proper

output when trying to solve these equations.

For some motivating examples of the match procedure, let us suppose that we wanted

to unify the above example of:

< y M (λ.N), y z (λ.1) >

We know that the results from simplifying result in

[< M, z >,< N, a >]

As such, there are two flex-rigid constraints that need to be taken care of. The first constraint

returns the substitution ?M 7→ z because the length of the arrays after obtaining the heads

of each side of the constraint are both 0.

Similarly, the second constraint < N, a > will return the substitution ?N 7→ z for a

similar reason.

As a more complicated example, suppose that we wanted to unify:

< λ.M(j (M 1)), λ.j 0 >

After simplifying, we have the constraint: < M(j(M a)), j a > The code would produce the

following possible substitutions:

M 7→ λ.1, M 7→ λ.1(A 1), M 7→ λ.j(A 1), M 7→ λ.1(A 1)(B 1) . . .

Once these substitutions are generated, the code will begin to apply these generated substi-

26

tutions to the constraint that needs to be solve. As such, for the first substitution M 7→ λ.1,

we apply the substitution to the constraint, < (λ.1)(j((λ.1)a), j a > and ensure that these

are equivalent modulo β-reduction: < j a, j a >. Since both expressions are now equal, we

return the substitution M 7→ λ.1.

27

Chapter 5

Testing and Conclusions

5.1 Limitations

5.1.1 Implementation Limitations

There are a few limitations that are worth mentioning. Firstly, this is a simple implemen-

tation of Huet’s algorithm. With the way that it is set up, it will try to find a unifier for

only one metavariable. I was also unable to implement lazy matching tree generation in Zig

with the amount of time given for the project (whereas implementations in Haskell can very

easily do this). There was also not enough time to thoroughly test the code and develop a

trustworthy testing suite.

5.1.2 Testing Limitations

For testing, I wanted to run both Gratzer’s and Louwrink’s unification implementations to

see how it performs against mine. However, due to how deprecated Gratzer and Louwrink’s

Haskell code is, I was unable to get either of them to work.

The biggest roadblock that was encountered when trying to test the code is the nonex-

istence of a standard baseline testing framework for higher-order unification. Since making

a testing framework myself could lead to reliability issues and developing a set of unifica-

28

tion tests that covers both breadth and depth of unification problems takes time, there was

simply not enough to work with. As such, I chose a handful of test examples that would

demonstrate a breadth of unification problems along with how long it took for the program

to unify them.

5.2 Testing Results

The tests chosen were deliberate and enough to show at least a level of basic and also deeper

workings of the algorithm, while also not being too many examples to clog up an academic

paper. In particular, I wanted to exhibit tests that:

1. Demonstrated absolute baseline unification examples

2. Demonstrated that the unification result makes expressions equivalent modulo β-

reduction

3. Used the simplify algorithm to break down bodies of lambda abstractions

4. Generated a breadth of matches from the match algorithm.

5. Demonstrated that some unification problems have no solutions.

For testing the speed of the unification process, I used Zig’s timer from the standard

library. I tested the code on 6 examples:

1. A trivial example: < M, k >

2. Another trivial example involving lambda removal: < λ.λ.j, λ.M >

3. A more involved example involving β-reduction: < F, (λ.1 y)(λ.1) >

4. The example from above that involves creating a matching tree and ensures that the

expressions are equal modulo β-reduction: < λ.M(j (M 1)), λ.j 1 >

5. An even more complicated example of a deeper matching tree being generated: <

(λ.λ.s) y b, (λ.λ.2 1 b) M y >

29

6. An example of unification failing due to the constraint failing to simplify into a valid

flex/rigid problem: < (λ.1) y M, z k >

The results of the tests are as follows:

• < M, k > → 13.931 ms with substitution ?M 7→ k

• < λ.λ.j, λ.M > → 31.088 ms with substitution ?M 7→ λ.j

• < F, (λ.1 y)(λ.1) > → 24.213 ms with substitution ?F 7→ y

• < λ.M(j (M 1)), λ.j 1 > → 57.325 ms with substitution ?M 7→ λ.1

• < (λ.λ.s) y b, (λ.λ.2 1 b) M y >→ 219.500ms with substitution ?M 7→ λ.λ.s

• < (λ.1) y M, z k >→ 5.947ms with no unification result possible.

The tests17 for this code can be run from the terminal with the command zig test

paper tests.zig. Make sure that Zig is installed onto your computer and that the terminal

is pointing to the directory in which the files are located.

5.3 Future Work

Several enhancements could further develop this masters project. Adding the capability

to support unification for more than one metavariable is the number one plan due to how

simple it would be to implement. A key area for additional work is to implement lazy

evaluation in Zig to construct an infinite matching tree to generate as many possible solutions

to the unification problem. I would also be interested in changing β-reduction to use the

Krivine Machine implementation and developing the hybrid β-reduction algorithm presented

earlier in the paper. Additionally, benchmarking this Zig implementation against established

Haskell implementations like Gratzer’s or Louwrink’s would provide meaningful comparative

performance data, and testing both implementations would provide valuable insight into their

relative optimizations.

30

I would also be interested in the development of a reliable testing suite for unification

problems. This testing framework would have a significant amount of unification examples

and tests for both first-order and higher-order unification implementations. While doing

research into unification, a major roadblock was an understanding of what could and couldn’t

be unified, or what a unification problem practically looked like. This was due to the

theoretical nature of this topic, and the examples that did exist were few and far between

and were represented in a way that was too mathematical for the common person. As such,

I believe that the development of some testing framework that explicitly lays out the results

of unifying these terms would be a great tool for researchers and those who want to go into

practical applications of unification.

The user interface also presents opportunities for improvement. Enhancing the UI to

provide more meaningful feedback during the unification process would significantly improve

usability. This could include visualizing the unification steps in a clearer way, displaying

intermediate substitutions in a more intuitive format, and implementing more detailed error

messages when unification fails. A more robust UI could also offer interactive exploration

of the solution space, allowing users to better understand the algorithm’s decision-making

process.

Finally, since this implementation was created with potentially replacing Carnap’s base-

line in mind, it would be amazing to see this work integrated into Carnap’s backend to

perform unification. There are some things that would need to be added to the current im-

plementation. Firstly, the code needs to be extended to be able to handle the typed lambda

calculus instead of the pure lambda calculus. It would also need to be extended to be able

to generate the infinite matching tree. Finally, since Carnap is also not written in Zig, we

would need some code to interface between Carnap’s Haskell code and the Zig unification

code. Thankfully, there are interfacing techniques for Haskell, such as using a Foreign Func-

tion Interfaces (FFI) that can call C functions. Since Zig uses the C’s Application Binary

Interface (ABI), C can call Zig functions. This makes integrating this Zig implementation

into Carnap incredibly feasible, as long as the necessary modifications to the Zig code are

made.

31

Bibliography

[1] Unification (computer science). URL https://en.wikipedia.org/wiki/

Unification_(computer_science).

[2] J.A. Robinson. Computational logic: the unification computation. Machine Intelligence,

1971.

[3] Conal Elliot. Extensions and Applications of Higher-order. PhD thesis, Carnegie Mellon

University, 1990.

[4] Graham Leach-Krouse. Carnap: An open framework for formal reasoning in the browser.

EPTCS, pages 70–88, 2018.

[5] Gérard Huet. A unification algorithm for typed lambda-calculus. Theoretical Computer

Science, pages 27–57, 1975.

[6] OpenDSA. Programming languages chapter 3 lambda calculus. 2011. URL https:

//opendsa.cs.vt.edu/ODSA/Books/PL/html/FreeBoundVariables.html#.

[7] Pierre Crégut. An abstract machine for the normalization of -terms. ACM, 20, 1990.

URL https://dl.acm.org/doi/pdf/10.1145/91556.91681.

[8] Daniel Gratzer. higher-order-unification. Github.com. URL https://github.com/

jozefg/higher-order-unification. A small implementation of higher-order unifica-

tion.

[9] Daniël Louwrink. huet-unify. Github. URL https://github.com/ocecaco/

huet-unify/tree/master. Huet’s pre-unification algorithm for the simply-typed

lambda calculus, implemented in Haskell.

32

https://en.wikipedia.org/wiki/Unification_(computer_science)
https://en.wikipedia.org/wiki/Unification_(computer_science)
https://opendsa.cs.vt.edu/ODSA/Books/PL/html/FreeBoundVariables.html#
https://opendsa.cs.vt.edu/ODSA/Books/PL/html/FreeBoundVariables.html#
https://dl.acm.org/doi/pdf/10.1145/91556.91681
https://github.com/jozefg/higher-order-unification
https://github.com/jozefg/higher-order-unification
https://github.com/ocecaco/huet-unify/tree/master
https://github.com/ocecaco/huet-unify/tree/master

[10] Rémi Douence and Pascal Fradet. The next 700 krivine machines. Higher Order

and Symbolic Logic, 2007. URL https://www.cs.tufts.edu/~nr/cs257/archive/

remi-douence/krivine.pdf.

[11] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher Order Symbolic

Computation, pages 199–207, 2007.

[12] Huy. Zig / case study: Implementing a generic stack. URL https://www.huy.rocks/

toylisp/01-08-2022-zig-case-study-implementing-a-generic-stack.

[13] Fabian Huch. Higher order unification. 2020. URL https://www21.in.tum.de/

teaching/sar/SS20/5.pdf.

[14] Gilles Dowek. Higher-order unification and matching. Handbook of Automated Reason-

ing, pages 1009–1062, 2001.

[15] Tobias Nipkow. Functional unification of higher-order patterns. Proceedings Eighth

Annual IEEE Symposium on Logic in Computer Science, 1993.

[16] Daniel Proksch. Higher-order unification. Technical report, Leopold-Franzens-

Universität Innsbruck, 2018.

[17] Christopher Loura. Huets-algorithm-zig. GitHub. URL https://github.com/

cmloura/Huets-Algorithm-Zig/tree/main.

33

https://www.cs.tufts.edu/~nr/cs257/archive/remi-douence/krivine.pdf
https://www.cs.tufts.edu/~nr/cs257/archive/remi-douence/krivine.pdf
https://www.huy.rocks/toylisp/01-08-2022-zig-case-study-implementing-a-generic-stack
https://www.huy.rocks/toylisp/01-08-2022-zig-case-study-implementing-a-generic-stack
https://www21.in.tum.de/teaching/sar/SS20/5.pdf
https://www21.in.tum.de/teaching/sar/SS20/5.pdf
https://github.com/cmloura/Huets-Algorithm-Zig/tree/main
https://github.com/cmloura/Huets-Algorithm-Zig/tree/main

	Table of Contents
	List of Figures
	Acknowledgements
	Introduction
	Zig

	Background and Related Work
	The Lambda Calculus
	Normal Forms
	De Bruijn Indices

	A Description of Huet's Algorithm
	Other Implementations of Huet's Algorithm

	Implementation
	Language and Parsing
	Handling Grammar Ambiguity

	De Bruijn Indexing Algorithm
	-Reduction Methods
	-Reduction with Shifting
	Krivine's Abstract Machine

	Higher-Order Unification with Huet's Algorithm
	Simplify
	Match

	Testing and Conclusions
	Limitations
	Implementation Limitations
	Testing Limitations

	Testing Results
	Future Work

	Bibliography

