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CHAPTER I INTRODUCTION

1.7 Problem Statement

In the design of high-rise steel building frames, the
gtructural engineer is faced with the challenge of design-
ing a structure which is safe as well as economical, When
all other factors are approximately equal, the design which
results in the lowest cost will usually be considered to be
the best design., One method of achieving economy in a steel
building frame is to reduce the total building height by
locating wiring, piping and heating and air-conditioning
ducts in the same space that is occupied by the floor beams
and girders, thus reducing the height of each story compared
with that of an alternate system where the utilities are
located below the floor beams and girders, Thus it has be-
come fairly common practice to cut openings in beams to permit
the passagé of utilities.

Cutting an opening in the web of a beam leads to a
variety of problems, The strength of the beam in the vici-
nity of the opening can be considerably reduced, depending
on the size of the member and the opening. This reduction
in strength may or may not be critical, depending on the
location of the opening on the span. It may be economical
to use straight, horizontal duct work, and this results in
openings which are not centered on the mid-depth of the

floor members if floor beams and girders of different depth



have been selected. In many cases, the beam will have to be
reinforced in the vicinity of an opening to avoid using a
heavier member., Reinforcement will probably be required if
the opening is located at a section subjected to high shear
forces, and almost certainly be required at sections where
both high moments and high shear forces are presént.

The objective of this thesis is to present and discuss
the development of an ultimate strength analysis of steel
beams with reinforced, eccentric web openings, which is the
most general problem encountered when web openings are used,
The results of the analysis are compared with the strength
of uncut beams, and presented in the form of interaction
diagrams relating shear strength and ben&ing strength. Some
numerical examples are also presented to illustrate the ana-
lysis, and to show the effects of the parameters involved in

the problem,

1.2 DLiterature Review

Ultimate strength analyses of beams with web openings
have been formulated by several investigators in recent years,
In 1968, Bower published an ultimate strength analysis of
concentric, unreinforced rectangular openings in the webs of
beams (1). His analysis was based on the assumption that
points of contraflexure are located in the tee-sections
above and below the center of the openings, and that the

stress distributions are the same at the high and low moment



edges of the openings, Since the effect of strain hardening
was neglected, experimental results showed that the ultimate
loads were somewhat conservatively predicted by the lower-
bound solution,

Redwood presented an ultimate strength analysis of the
same problem in 1968 (2), He assumed that points of contra-
flexure occur somewhere along the length of the opening, not
necessarily at the center. In the analysis, a four-hinge
mechanism was assumed in which bending, shear and direct force
resultants were considered at each hinge. OCnly one tee-
section was dealt with, and it was assumed that half of the
total shear force is carried by each tee-section because of
gsymmetry.

In 1969, Congdon presented in her M.S. thesis an ultimate
strength analysis of beams with concentric, reinforced web
openings (3). Basically, the assumptions used by Congdon
were the éame as Redwood's., An approximate method of analysis
was also developed., Correlation with previous experimental
work indicated that the theoretical results were conservative
for large shear forces because the strain-hardening effect
was neglected,

In 1971, Richard presented a M,S. thesis on the analysis
of beams with eccentric, unreinforced rectangular web openings
(4)., His assumptions were primarily the same as Redwood's
except that he assumed that points of contraflexure occur at

the centers of the tee-sections above and bhelow the opening.



From his analysis the variation of moment carrying capacity
with different opening locations and dimensions was in=-
vestigated., ©Shear forces were unequally distributed to the
web areas above and below the eccentric openings, with the
larger area carrying the larger shear force.

In 1973, Frost presented a method of predicting the
ultimate strength of I-shaped beams with web holes that are
not centered at the middepth of the beam and also not rein-
forced (5)., The analysis was based on the assumption that
the points of contraflexure occured somewhere along the
length of the opening, not necessarily at the center. Com=-
parison with experimental results showed that the ultimate
loads were conservatively predicted by the approximate
interaction formulas developed, and thus it was concluded
that the formulas are satisfactory for design purpose.

In all the papers reviewed, no theoretical analysis was
discovered which treats the subject of eccentric, reinforced

rectangular openings.

1.3 Scope of the Investigation

The investigation presented in this thesis was limited
to an analytical, ultimate strength analysis of steel W shape
beams containing reinforced, eccentric rectangular openings
in their webs. The general type of reinforcement used herein
is pairs of steel bars of rectangular cross section welded on

both sides of the web, parallel to the opening edge and with



equal area for both top and bottom reinforcement. In the
investigation the effects of wvariable opening lengths, open-

ing eccentricities and reinforcing areas were considered.
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CHAPTER II ULTIMATE STRENGTH ANALYSIS

Nomenclature

The symbols adopted in this thesis are defined where

they first appear, and are summarized for convenient re-

ference at the end of the thesis in the section " Nomen=-

clature ",

2,2 Assumptions

The following assumptions were made to facilitate the

solution of the problem :

(=1

b.

Ce.

The failure of the member will occur by the formation

of a fourthnge mechanism with hinges located at the
corners of the opening. The assumed failure mechanism
of the beam is shown in Fig. 1.

Points of contraflexure occur somewhere within the
sections above and below the opening, but not necessarily
at the center of the opening. The location of the points
of contraflexure is the same above and below the opening.
This assumption permits the calculation of secondary
bending due to shear ( the so-called " Vierendeel

action " ),

Shear stresses are assumed to be carried only by the
webs of the tee~sections and are uniformly distributed
across those webs at hinge locations when hinges are

fully formed.



d. Yielding in the flanges and reinforcing bars is in
direct tension or compression,

e, Yielding in the webs at each of the four hinge locations
under combined bending and shear must satisfy the Von-
Mises yield criterion,

T Reinforcing areas are assumed to be the same for the
top and bottom tee-sections ( see Fig. 2 ).

& To simplify the derivation of formulas, the yield stresses
of the material either in tension or compression for
flanges, webs and reinforcing bars are assumed to be
the same and equal to fy. That is, fy = fyf = fyw = fyr‘

hs For the purpose of this analysis, the opening will always
be considered to be eccentric toward the top flange
( or compression flange ) of the beam, Eccentricity in
that direction will be assumed pogitive and all deri-
vations and examples will be based on positive eccen=-
tricity., If the eccentricity is toward the other
direction { or bottom flange ), it is taken as negative,
However, the shape of the interaction curve will be

exactly the same as that for positive eccentricity.

2,% Fouilibrium Equation

Free body diagrams of the tee-sections above and below
the opening are shown in Fig. 3a, With an opening length of
2a, an opening depth of 2h and an eccentricity of e with res-

pret to the center line of the heam, the opening is located



a distance L=M/V from the near reaction., Horizontal egqui=-
l1ibrium of the top tee requires thaf Q1T=Q2T' Similarly,

for the bottom tee, Q Furthermore, horizontal equi-

15=Yop"
librium of sections one and two yields Q1T=Q1B and Q2T=Q2B,

respectively. Thus

Q - Q1T = Q1B = QZT = QEB .on:o.caocoatol"¢(1)

Referring to Fig. b, moment equilibrium at section one

( the high-moment edge of the opening ) yields
M = Q1T(Y1T+Y1B+2h) - Va oooooooo.ooaccaaooo(z)

and from Fig, 3c moment equilibrium at section two ( the low-

moment edge of the opening ) gives

M = QZT(y2T+Y2B+2h) + va oo-oaoolso.o--ooto.(B)
Moment equilibrium for the top tee-~section yields

VT = Q(Y1T"y2T)/23 90"0.‘0!."lll'l..l..i..(4)
while for the bottom tee-section,

VB = Q(Y1B*Y2B)/23 poc-occoacoolco-no.oooo.o(S)

Using Egs. 4 and 5, and eliminating Q and a to find the shear
distribution between the upper and lower tee-sections, the

following relationship for VT and VB can be obtained :

Vo Yqp¥oq

Vs Yqp Yo

OOO“B'Q(00'.0.0.0000'...‘0.'3.(6)



2.4 Yield Criterion

When the four-~hinge mechanism indicated in Fig., 1 is
fully developed at ultimate load, the entire cross section
of the top and bottom tee-sections at each of the hinge
locations yields under combined bending and shear. It is
assumed the combined stresses must satisfy the Von-Mises'

yield criterion (6),.

2

2 2
=f'b+va..l“."....ll.C.O.Q.....O"'.(7)

Ty

where fy is the yield stress under uniaxial loading, and fb

and f_ are the concurrent bending ( normal ) and shear stresses,
In this thesis, it is assumed that the flanges and rein-

forecing bars take only bending stresses and that the stems of

tee-sections take both bending and shear stresses, Thus, from

Eq. 7, the bending stresses in the webs of the top and bottom

tee-sections are

' Vv
2 2 T (2

fT—fy-a(STw) ¢....-oon-soos.-ococonoo.o(8)
2 .2 Y5 (2

f =f -3('5_‘;,') ca-u-.-o-o.ro¢oooaoicooabc(9)
B Yy B

where ST and SB are the depths of the top and bottom web-parts,
respectively, w is the thickness of the web and VT and VB are
the total shear forces acting on the webs of the top and botiom

tee-gections, respectively.

2.5 Stress Distributions

When the shear stresses are relatively low, the locations
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of the points of stress reversal at section one can be located
in the stubs ( web between reinforcing bars and opening edge ),
in the reinforcing bars or in the clear webs ( between rein-
forcing bars and flange ); therefore, there are nine possible
combinations of the locations of stress reversal for the low
shear case, The six étress distributions which are possible at
section one for the low shear case and positive eccentricities
are shown in Fig. 4. TFor low shear stress at section two, the
points of stress reversal are assumed to be always in the
flanges ( see Fig., 5 ), The different locations of the points
of stress reversal under low shear conditions at both sections
one and two are shown in Table 1, The relationship between the
low shear cases at section one is shown in Fig, 6 and will be
discussed later.

Equations for the low shear Case SS are derived in the
following section, and similar equations for other locations
of stress reversal for low shear conditions ére summarized

in Appendix A .

2.6 Low Shear Case S8

Considering the first case of low shear in Fig. 4a, the
assumed locations of stress reversal occur in the stubs at
distances k1TST and k1BSB from the opening edges for the top
and bottqm tee=-sections at the high-moment edge of the opening
( section one ), respectively, and kopt and k,pt from the
outermost flange surfaces at the low-moment edge of the opening

( section two ) for the top and bottom tee-sections, respec-



tively. The k's are coefficients between 0 and u/ST for k1T
0 and u/SB for k

and k... The

and O and 1 for both k2T oB

1B

stress resultants at the hinge locations are ;

Qp =
Qg =

1}

Qo

g

and

QY

Qp¥qp

Qop¥om

QpYon

AT

'y

Apf
Aff

Aff

+ STW(1-2k1T)fT + Arfy o--uocuoot-oucc(10)

y + SBW(1’2k1B)fB + Arfy aootoo-coa-ooc-(11)

y(1-2k2T) + STWfT + Arfy 001-01000015000(12)

y(1-2k2B) + SBWfB + Arfy go.o..ooooooooo(13)

2 2
Affy(ST+0'5t) + O'ESTWfT(1-2k1T)

. |
+Arfy(u+2) ..'..'..'.o...l....."..'...(14-)
2 2
Affy(SB+0.5t) + O.BSBwa(1-2k1B)
+Arfy(u+%) .....O.G...‘..D.'.'...'Q.....(15)
2
Affy[(sT+o.5t)-2k2T(sT+t)+tk2T]
+ 0.58%uf, + AT (u+d) (16)
[ T T r y ? 08 & &9 0 e e B OO0 e e
2
Affy[(SB+0.5t)~2kZB(SB+t)+thB]

2 q
+ O.SSBwa + Arfy(u+2) -1000000000900000(17)

where A.=b x t, the area of flange and Arzq(c-w), the area

of one pair of reinforcing bars,

Using Egs. 1 and 10 through 13, all the k wvalues can

be represented in terms of sz. Thus, Q1T=Q2T yields

11



= (18)
k = k A B I B R B BN R U T N R N A N R B N R R R B B R Y 18
iT waT 2T
Q2B=Q2T Yields )
W(S,fr=Snfm)
_ BB~y
kEB = Zﬂify + k2T .-cocnooonoooo.oooo.oo-o(19)

and Q1B=Q2T vields

k1B = % - 2gfg + gf£¥ sz ocoollooOiQOQOOCCGOI'(20)
B™B BB

By combining Egs., 1, 2 and 3 to eliminate M and h,

Q1TY1T - QZTYET + Q1By1B - QZBy2B -~ 2Va = 0 .0000(21)

Substituting Egs., 14 through 17 into Eg, 21 to eliminate

Q's and y's,

2 2 |
Apf (K, p+kop) = 2Affy[k2T(ST+t)+k2B(SB+t)]
4 2 2 2
+ W(STka1T+SBka1B) + 2Va = 0 .Il..l.li..ll....l(za)

Also, substituting all k - values from Eqs, 18 through 20

into Eq. 22 yields the following quadratic equation in sz:

2
Asssz + Bsssz + CSS = 0 nlototnncco.ooo10000000(23)

where

e 12PN
ASS = _W“X(TE+T£) + 2t ........‘.Illlt......a...'(24)

i

bf
gs = -2(d-2n) + KfT;(stB-sTfT)thEE) o vim s s LB

12
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2
55 Affs(, 4A)§.fy 7
w{Spfa=Snhf
- BABf{LT (SB+t) lo.u.oc.o.-:cln.n."‘c(26)
7y

Only one solution of the quadratic equation will satisfy
the requirement that k1T and k1B be less than u/ST and u/SB,
respectively, and kET and sz be less than 1. The solution

is discussed in the following section.

2.7 Method of Solution

A general approach for solving the problem will be des=~
cribed in this section, To assist in this description, a
flow chart of the basic steps is shown in Fig. 7. Because
of the unequal web areas above and below an eccentric opening,
an indirect trialeand-error method is required to obtain a
solution.

With the beam and opening properties known, the initial
step is to assume that V is equal to zero ( or any desired
V value ) and to assume a value of VT/VB' Then the corres-

ponding values of VT and VB éan be calculated as follows :

V ll..l...‘..C.I'..I.I‘I..I.CI......‘l.(27)

¥y

1+

o

Vi

V-VB .“.!..I..'..‘...l'.l..l.'I..i.l.""(zs)

and the corresponding values of fT and fB can be obtained

from Egs. 8 and 9. The coefficient sz can then be evaluated



from the appropriate quadratic equation for each case; for
Case S5 Egs. 23 through 26 are used, The desired root of
the quadratic is posgitive and less than or equal to 1 .
After evaluating kET' other k values can also be
calculated, and all the Q's and y's can be evaluated using
the appropriate equations corresponding to each case, for

Case SS these are Egs. 10 through 17. Then a new value of

14

VT/VB can be calculated from Eq., 6, If the calculated value

of VT/VB equals, or is close to the assumed value, the solu-

tion is correct, and, after checking if k1T’ k1B and k2B are

within the appropriate limits, the coordinates for one point

on the interaction curve, M/MP and V/VP, can be obtained.

M is the internal moment at the center of the cut section

given by Egs, 2 and 3, and MP and VP are-the plastic moment

capacity and plastic shear capacity for the uncut section,

regpectively, which are formulated as follows :

1

M

P [Af(d-t) + %(d-zt)zlfy oo-t-oooo--vconconoo-(29)

Vp

w(d-Et)fy/jf'......--................,......(30)

If the calculated value of VT/VB is not close to the

assumed value, a new assumed VT/VB is obtained by taking the

average of the calculated one and the assumed one and the
procedures described above are repeated until the correct

value of VT/VB is determined.

For the original assumed shear force, V, corresponding

values of M/MP and V/VP can be evaluated as described above.
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By repeating the whole procedure and incrementing V, more
points on the interaction curve can be obtained for each case

until V approaches V , where Vma is the maximum plastic

max X

shear capacity of the cut section and is formulated as

follows :

Vmax=W(ST+SB)fy/J3_ 00000-00‘0‘000010010(31)
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CHAPTER III COMPUTER PROGRAM

3,1 Introduction

Using the procedure described previously, the computer
programs shown in Appendix B were written to solve for the
coordinates of points on the interaction diagram, V/VP and
M/MP' Examples of the output from these programs are presented
in Appendix C,

Programs were written separately for each case instead
of one complete program involving all the cases, because the
use of separate programs facilitated debugging, permitted
monitoring the transition from one stress reversal case to
the next, and helped to isolate special problems which are

discussed later.

3,2 Initial Stress Reversal Locations

At the beginning of the program, it is necessary to
determine the locations of the points of stress reversal
when V = O, From experience, the stress reversal in the top
tee, Section 1, is always in the web stub initially, and
stress reversals occur in the flanges for both the top and
bottom tees at Section 2, In the bottom tee at Section 1,
the initial location of the point of stress reversal is the
plastic neutral axis of the cut, reinforced section., The
plastic neutral axis can occur in the web stub, in the rein-
forcing bars or in the clear web, Therefore, it can be

concluded that Case SS, SR or SW should be used to start with



17

at Section 1 and Case FF at Section 2.
The eccentricity is the determining factor in selecting

the initial case at Section 1, and the three possibilities

can be summarized as follows :

a. For e = u, the plastic neutral axis is located in the
web stub between the opening edge and reinforcing bars
in the bottom tee, This limit was derived by equating
the compression web area to the tension web area, since
flange areas and reinforcing areas are the same for the
top and bottom tee-sections, In this case, the problem
islsolved starting with Case SS, but from the viewpoint
of practical design, it is not a common case since for
such small values of e, the eccentricity could be neg=-
lected and the problem treated as a concentric opening.

b Foru =ses=s u+q+$£, the plastic neutral axis is located
within the reinforcing bars in the bottom tee. The
upper limit for this case is derived by setting the
plastic neutral axis at the lower edge of the reinforcing
bars in the bottom tee-section and equating the total
area including all the reinforcing area above the plastic
neutral axis to the total area below it., Under such
circumstances, the problem is solved starting with Case &R,

C For e> u+q+§£, the plastic neutral axis is located in
the clear web between the reinforcing bars and the flange
in the bottom fee, and the problem is solved starting

with Case SW., This is a practical case only for small
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reinforcing area, otherwise such large eccentricities
would leave no room for reinforcement in the top tee-

section.

3.3 Roots of the Quadratic

An important step in the program involves solving for

the roots of k from the quadratic equation in order to

2T
evaluate the other k-values., Since there is only one root

of the quadratic equation which will result in the other k-
values being less than the limits ( for example, for Case

ss, km‘ana kg must be less than u/S; and u/Sg, respectively,
and k,p and k,p must be less than 1 ), the problem is to choose
the right root, When the problem starts with a very small

( or zero ) value of V, one of the roots will be positive

and less than 1 and the other root will be negative but close
to zero, In this case the other k-values can not be evaluated
within their limits from the former. Therefore, the technique
adopted is to set the latter equal to zero in order to obtain

a solution, This assumption can be checked numerically by
comparing fhe M/MP value obtained from the computer solution
for V=0 with the ratio of plastic moment capacity of the cut,
reinforced section to the plastic moment capacity of the gross
cross section, Comparison of the two M/MP values has shown

in all cases that setting the small root equal to zero for
small values of V yields correct results,

An interesting result from the numerical examples presented
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in Chapter IV is that in all cases the smaller root of sz
from the quadratic equation is the root which yields the

correction solution.

3,4 Transition between Stress Reversal Cases

For each value of V it is necessary to check the limits
of the other k-values in order that the transition to the
next case can be identified. For example, if the problem
starts with Case 5SS, there will be only two possibilities :
(1), kyp hits the limit of u/ST first, and the next case will

be Case R3; and (2). k hits the limit of u/SB first, and

1B
the next case will be Case SR, By continuing to check the
k-value limits, the interaction diagram can be completed by

succesively selecting the right stress reversal cases,

3.5 Sensitivity when V Approaches Vmax

Since the program is based on assuming a value of VT/VB
to mateh the calculated VT/VB from Eq. 6, the problem will

become sensitive sometimes when V approaches-vm sy Ziven by

ax
Eq. 31. At that point the calculated VT/VB may be large

enough to make either Vn or Vi in Egs. 8 or 9 exceed Vp ..

and V are the maximum shear force

or V Bmax

Bmax? where VTmax

possible on the top and bottom tee-sections, respectively,

and are formulated as follows :

VTmaX = wsTfy /J_B— “""0¢"-'lccoocccccqao(32)
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vBmaX = WSny /Jg_ --..loaaonnnonaoqoo.o.lo-(33)

When V., or V, exceeds the above limit given by Eq. %2 or 33,

i B
fT or fB becomes imaginary., Under such circumstances, a new
suitable value of VT/VB may be obtained by a trial-and-error
method, Also in this situation the permitted tolerance
between the calculated VT/VB and the assumed VT/VB was ine-

creased arbitrarily from 0,01 to 0,025 to obtain a solution

to the problem.

3,6 Maximum Shear Force

The interaction curve is limited by a maximum value of

V/VP, given by

v
max d=2h=2%
(VP ) = d_zit 0.0...!..'.It.t.l...ll.....(34‘)

For some practical sizes of beams, opening and reinforcing
area, this limiting value may not be reached, resulting in

an imaginary solution to the quadratic in kET' In this case
the stress reversal points at section one are still in the
clear web for both top and bottom tee-sections, and at section
two they are still in the flanges, as assumed., Consideration
of other locations of stress reversal points did not give a
real answer, Upon further investigation it was found that
either the opening length must be less than a given maximum
value or the reinforcing area greater than a minimum value

Lo obtalin a real sclution to the quadratic in RZT' From
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Case WW in Appendix A, when Vmax is reached fT=O, yielding
k2T=Ar/Af II.lIll........ll..’..'lll'll.(BS)

Substituting Egs. 31 and 35 into the quadratic equation for

Case WW yields

2
A_(a-2n-2u-q)J3 INVE

W(ST+SB) = bw(ST+SB) .oo.‘ico-.oo(36)

a =

Eq. %6 is the same as Congdon's Egqg., 30 (3), and indicates
that eccentricity does not affect the maximum opening length
required to reach Vmax’

If the Ai term is neglected and u, ¢ and t are much

smaller than d and h, Eq. 36 reduces to :

Max.— a=ArE/wl...l.lll..l..l.l.l.l."'(37)

or

Min. Ar =‘ aw /’F'...........I.I...I..""0(38)

Egs 37 and 38 are the same as Congdon's Egs., 31 and 32 (3).
If either value is satisfied, the maximum shear capacity

of the section will be reached.



