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Abstract
The current expansion of the Universe has been observed to be accelerating, and the

widely accepted spatially-flat concordance model of general relativistic cosmology attributes

this phenomenon to a constant dark energy, a cosmological constant, which is measured

to comprise about 70% of the total energy budget of the current Universe. However, ob-

servational discrepancies and theoretical puzzles have raised questions about this model,

suggesting that alternative cosmological models with non-zero spatial curvature and/or dark

energy dynamics might provide better explanations.

To explore these possibilities, we have conducted a series of studies using standardized,

lower-redshift observations to constrain six different cosmological models with varying de-

grees of flatness and dark energy dynamics. Through comparing these observations with

theoretical predictions, we aim to deepen our understanding of the evolution of the Universe

and shed new light on its mysteries. Our data provide consistent cosmological constraints

across all six models, with some suggesting the possibility of mild dark energy dynamics and

slight spatial curvature. However, these joint constraints do not rule out the possibility of

dark energy being a cosmological constant and the spatial hypersurfaces being flat. Overall,

our findings contribute to the ongoing efforts to refine our understanding of the Universe

and its properties, and suggest that multiple cosmological models remain viable.

In addition, our research demonstrates that certain types of astronomical observations,

such as gamma ray bursts and reverberation-mapped quasar measurements, can be standard-

ized and utilized in cosmology. This allows us to gain valuable insights into the properties of

the Universe and its evolution by using these observations as distance indicators. By using

these new standardized observations to constrain our cosmological models, we can improve

our understanding of the nature of dark energy and other fundamental components of the

Universe.
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Chapter 1

Introduction

Physical cosmology is the branch of physics, astrophysics, and astronomy that studies the

structure, origin, evolution, and overall properties of the Universe on large scales. It seeks to

answer fundamental questions about the Universe, such as its age, size, shape, composition,

and how it has changed over time.

Physical cosmology is based on the principles of general relativity and the other laws of

physics, and it uses observations and data from various sources, including telescopes and

spacecraft, to test and re�ne models of the Universe. It also uses theoretical models and

computer simulations to understand the behavior of the Universe on a large scale.

Some of the key areas of study in physical cosmology include the Big Bang model, dark

matter and dark energy, the cosmic microwave background (CMB) radiation, the formation

and evolution of galaxies and galaxy clusters, and the large-scale structure of the Universe.

Physical cosmology is a rapidly evolving �eld, with new discoveries and insights emerging

all the time.

Theoretical aspects of physical cosmology are discussed in this chapter, with a focus on

the signi�cance of distance measures in establishing links between theory and observation.
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1.1 General relativity

1.1.1 Tensors in di�erential geometry

Di�erential geometry is a branch of mathematics that studies the geometry of curved spaces

and the properties of objects such as curves and surfaces in these spaces. It uses the tools of

calculus, linear algebra, and topology to study the properties of curves, surfaces, and other

geometric objects in a rigorous and precise way.

At the heart of di�erential geometry is the study of manifolds, which are spaces that

locally look like Euclidean space but may have global properties that are signi�cantly di�er-

ent. Di�erential geometry is concerned with the geometric properties of manifolds and their

relationships with other mathematical objects such as vector �elds, di�erential forms, and

connections.

One of the central concepts in di�erential geometry is the notion of a tangent space,

which is a vector space that is tangent to a manifold at a particular point. Tangent spaces

allow us to de�ne notions such as tangent vectors and tangent bundles, which are crucial for

describing the geometry of curves and surfaces on manifolds.

In di�erential geometry, a vector is de�ned as an element of a tangent space at a point on

a manifold. A tangent space is a vector space that is tangent to the manifold at that point.

A vector in di�erential geometry is denoted as a directed line segment with a magnitude and

a direction. However, unlike in Euclidean geometry where vectors are represented as ordered

pairs or triplets of numbers, in di�erential geometry, a vector is represented as a di�erential

operator acting on smooth functions de�ned on the manifold.

A manifold is a topological space that is locally homeomorphic to Euclidean space. This

means that every point on the manifold has a neighborhood that can be mapped onto an

open set in Euclidean space by a continuous function called a chart (coordinate system).

Manifolds can be of any dimension, and they can be either �nite or in�nite in size. For

example, a curve in the plane or a surface in three-dimensional space is a two-dimensional

manifold, while a sphere is a two-dimensional manifold that is closed (i.e., compact without
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boundary).

Given a point on a manifold, a vector at that point can be thought of as a directional

derivative of a function de�ned on the manifold. In other words, a vector at a point speci�es

the rate and direction of change of a function as one moves in that direction from the point.

In a coordinate basisf X � := @=@x� g with dimension of n, an arbitrary tangent vector v

can be expressed as

v =
nX

� =1

v� X � � v� X � = v� @
@x�

; (1.1)

wherev� is the � th component ofv in f X � g, � = 1; 2; : : : ; n, and the equivalent sign implies

the Einstein summation convention of implicitly summing over pairs of repeated upper and

lower indices that is used throughout the thesis. By choosing a new coordinate basisf X 0
� g,

X � can be expressed as

X � =
@x0�
@x�

X 0
� ; (1.2)

so that the � th component ofv in f X 0
� g

v0� = v� @x0�
@x�

: (1.3)

This transformation law allows us to compare vectors at di�erent points on a manifold and

to de�ne vector �elds, which are collections of vectors de�ned on a manifold.

A dual vector spaceV � (with a dual basis ofv1� ; v2� ; : : : ; vn� 2 V � ) to a tangent vector

spaceV (with a basis ofv1; v2; : : : ; vn 2 V) is de�ned as

v� � (v� ) = � �
� =

8
>><

>>:

1; if � = �;

0; else:
(1.4)

A tensor, T, of type (k; l ) over V is a multilinear map (Wald, 1984)

T : V � � � � � � V �
| {z }

k

� V � � � � � V| {z }
l

! R; (1.5)
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whereR is the set of real numbers. Thus, a tensor of type(0; 1) or (1; 0) is a dual (cotangent)

vector or an ordinary (tangent) vector. The contraction operation with respect toi th dual

vector and j th vector, de�ned below, is a mapC : T (k; l ) ! T (k � 1; l � 1), whereT (k; l )

is a vector space with a collection of all tensors of type(k; l ), and if T 2 T (k; l ), then

CT =
nX

�

T(: : : ;

i thz}|{
v� � ; : : : ; : : : ; v�|{z}

j th

; : : : ); (1.6)

where f v� g is a basis ofV and f v� � g is its dual basis. The outer product ofT and T0 is

denoted asS = T 
 T0. The nk+ l simple tensorsf v� 1 
 � � � 
 v� k 
 v� 1 � 
 � � � 
 v� l � g is a basis

of T (k; l ), then for T 2 T (k; l )

T = T � 1 ��� � k
� 1 ��� � l

v� 1 
 � � � 
 v� k 
 v� 1 � 
 � � � 
 v� l � ; (1.7)

where T � 1 ��� � k
� 1 ��� � l

are called the components of the tensorT with respect to the basisv� .

Consequently, the components ofCT in equation (1.6)

(CT)� 1 ��� � k � 1
� 1 ��� � l � 1

= T � 1 ��� � ��� � k � 1
� 1 ��� � ��� � l � 1

; (1.8)

and the outer productS = T 
 T0 has components

S
� 1 ��� � k + k 0

� 1 ��� � l + l 0
= T � 1 ��� � k

� 1 ��� � l
T0� k +1 ��� � k + k 0

� l +1 ��� � l + l 0
: (1.9)

The dual basis off X � g in equation (1.2) isf dx� g sincedx� (@=@x� ) = � �
� . Therefore, for

a dual vector ! with components of! � in f dx� g, the components in a new basis off dx0� 0
g

become

! 0
� 0 = ! �

@x�

@x0� 0 : (1.10)

Consequently, in general, the components of a type(k; l ) tensor T follow the tensor trans-
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formation law

T0�
0
1 ��� � 0

k
� 0

1 ��� � 0
l

= T � 1 ��� � k
� 1 ��� � l

@x0�
0
1

@x� 1
� � �

@x� l

@x0� 0
l
: (1.11)

A tensor �eld is de�ned as an assignment of a tensor overVp for every point p in the manifold

M .

Following Wald (1984), we use the following abstract index notation rules. A type(k; l )

tensor is denoted by a letter followed byk contravariant (tangent) and l covariant (cotangent)

indices. These indices are represented using lower case Latin letters, and the tensor itself is

denoted asTa1 ��� ak
b1 ��� bl

. The contraction of a tensor is indicated by repeating the letters of

the contracted slots. For instance, the type(2; 2) tensor Tabc
bef is obtained by contracting

the second contravariant slot and the �rst covariant slot ofTabc
def . The outer product of

the tensorsTabc
def and Sab

c is simply Tabc
def Sgh

i . The labels of components are indicated by

using Greek letters. For example,T ��

��� is a basis component of the tensorTabc

def .

1.1.2 Metric tensor and curvature

A metric g on a manifoldM is a type(0; 2) tensor �eld that is nondegenerate and symmetric.

Nondegeneracy means thatg(v; v2) = 0 for all v 2 Vp if and only if v2 = 0. Symmetry means

that g(v1; v2) = g(v2; v1) for any v1; v2 2 Vp. Geometrically, the metric g can be interpreted

as an �in�nitesimal squared distance� or a (not necessarily positive de�nite) inner product

on the tangent space at each point.

In a coordinate basis off dx� g, the metric tensor gab (or equivalently the line element

ds2) is

gab � ds2 = g�� dx� dx� : (1.12)

One can always �nd an orthonormal basisf v� g so that g(v� ; v� ) = � � �� . The signature

of a metric is determined by counting the number of �+ � and � � � signs that appear in

this expression. Metrics with all �+ � signs are called Euclidean (or Riemannian in the

context of general relativity, Wald, 1984), while those with signatures like the spacetime

metric (� ; + ; + ; + ) are called Lorentzian. Lorentzian metrics are commonly used in general
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relativity to describe the geometry of spacetime.

A derivative operator r (or covariant derivative) on a manifoldM is a linear map that

takes each smooth (or di�erentiable) type(k; l ) tensor �eld to a smooth type (k; l + 1) ten-

sor �eld. It satis�es the Leibniz rule, commutativity with contraction, consistency with the

notation of tangent vectors as directional derivatives on scalar �elds, and sometimes the

torsion-free condition. Geometrically, the covariant derivative provides a way of di�erenti-

ating tensor �elds on curved manifolds without reference to a speci�c coordinate system.

The commutator of two vector �elds va and ! b in terms of any derivative operatorr a is

[v; ! ]b = var a! b � ! ar avb: (1.13)

For any two derivative operators ~r and r de�ned on a smooth manifold, there exists a

tensor �eld Cc
ab (= Cc

ba) of type (1; 2) such that, for T 2 T (k; l ) the following identity holds

r aTb1 ��� bk
c1 ��� cl

= ~r aTb1 ��� bk
c1 ��� cl

+
X

i

Cbi
adTb1 ��� d��� bk

c1 ��� cl
�

X

i

Cd
acj

Tb1 ��� bk
c1 ��� d��� cl

: (1.14)

One signi�cant use of the equation mentioned above arises when the operator~r a is substi-

tuted by the conventional derivative operator@a. In this case, the tensor �eldCc
ab is denoted

as the Christo�el symbol � c
ab. For example, the equation

r avb = @avb + � b
acv

c: (1.15)

expresses the covariant derivative of the vector �eldvb in terms of its partial derivatives and

the Christo�el symbol. This equation plays a crucial role in the study of curved spacetimes,

as it allows for the generalization of the concept of di�erentiation to curved manifolds. A

Christo�el symbol � c
ab is a tensor �eld associated with the derivative operatorr a and the

coordinate system used to de�ne@a. It is important to note that a di�erent coordinate

system with a di�erent ordinary derivative operator @0
a would have a di�erent Christo�el

symbol � 0c
ab.
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Parallel transport of a vectorva along a curveC with a tangent ta can be de�ned by

tar avb = ta@avb + ta� b
acv

c = 0; (1.16)

and in terms of components in the coordinate basis and parametert along the curve, it takes

the form
dv�

dt
+ t � � �

�� v� = 0; (1.17)

where v� are the components of the vectorva in the coordinate basis. More generally, the

parallel transport of an arbitrary type (k; l ) tensor T 2 T (k; l ) can be de�ned as

tar aTb1 ��� bk
c1 ��� cl

= 0: (1.18)

Let gab be a metric on a manifold and letva and ! a be two vectors on the manifold. The

inner product of gabva! b is a scalar function on the manifold. If we parallel-transportva and

! a along any curve, the inner product remains unchanged, which means that its covariant

derivative with respect to any tangent vectorta must be zero: tar a(gbcvb! c) = 0 . Now,

suppose thatva and ! a follow the parallel transport equation (1.16). Sinceta is an arbitrary

tangent vector andva and ! a are non-zero, we must haver agbc = 0. Consequently

r agbc = 0 ) ~r agbc � Cd
abgdc � Cd

acgbd ) Cd
ab =

1
2

gcdf ~r agbd + ~r bgad � ~r dgabg: (1.19)

Therefore, we have shown that ifr agbc = 0, then there exists a unique derivative operator

r a satisfying this condition with the above choice ofCc
ab. If we adopt ~r a as the coordinate

derivative @a, then the corresponding Christo�el symbols can be computed as

� d
ab =

1
2

gcdf @agbd + @bgad � @dgabg; (1.20)
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which implies that the coordinate components of� �
�� are given by

� �
�� =

1
2

g�� f @� g�� + @� g�� � @� g�� g =
1
2

g��

�
@g��
@x�

+
@g��
@x�

�
@g��
@x�

�
: (1.21)

Here, x � represents the coordinates of a point on the manifold, and the indices�; �; and �

range over all possible values.

Let r a denote a derivative operator,! a a dual vector �eld, and f a smooth function.

The action of two derivative operators ontof ! c can be expressed as

r ar b(f ! c) = r a(! cr bf + f r b! c) = ( r ar bf )! c + r bf r a! c + r af r b! c + f r ar b! c: (1.22)

By subtracting the tensor r br a(f ! c) from both sides, we get

(r ar b � r br a)( f ! c) = f (r ar b � r br a)! c: (1.23)

This implies that the di�erence of two derivative operators acting onf ! c is proportional

to f (r ar b � r br a)! c, which suggests the existence of a tensor �eldR d
abc , known as the

Riemann curvature tensor, such that

r ar b! c � r br a! c = R d
abc ! d; (1.24)

for all dual vector �elds ! c.

The Riemann curvature tensorR d
abc has four key properties:

1. Antisymmetry in the �rst two indices: R d
abc = � R d

bac .

2. Total antisymmetry: The totally antisymmetric part of R d
abc is zero, i.e.,R d

[abc] = 0.

Here, the squared brackets denote total antisymmetrization, as de�ned in equation

(2.4.4) of Wald (1984).

3. Skew symmetry: For the derivative operatorr a associated with the metricr agbc = 0,

we haveRabcd = � Rabdc.
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4. First Bianchi identity : The Bianchi identity holds, which states that the cyclic sum of

covariant derivatives ofR d
abc vanishes, i.e.,

r [aR e
bc]d = 0: (1.25)

The Ricci tensorRab = R c
acb is a rank-2 tensor that encodes important geometric information

about a Riemannian manifold. The Ricci tensor is symmetric, i.e.,Rab = Rba, which follows

from the symmetry of the Riemann tensor. The scalar curvatureR is obtained by taking

the trace of the Ricci tensor, i.e.,R = R a
a . It is a scalar function that describes the intrinsic

curvature of the manifold at a given point. Contraction of the �rst Bianchi identity (1.25)

leads to

r aR a
bcd + r bRcd � r cRbd = r aR a

c + r bR b
c � r cR = 0; (1.26)

or

r a(Rab �
1
2

Rgab) � r aGab = 0; (1.27)

whereGab is called the Einstein tensor.

By choosing a coordinate system, we can express the derivative operator in terms of the

ordinary derivative @a and the Christo�el symbol � c
ab as discussed above. For a dual vector

�eld ! a, we have

r b! c = @b! c � � d
bc! d; (1.28)

so the equation (1.24) can be expressed as

R d
abc ! d = f� 2@[a� d

b]c + 2� e
c[a� d

b]eg! d ) R d
abc = � 2@[a� d

b]c + 2� e
c[a� d

b]e: (1.29)

The coordinate basis components of Riemann tensor is then

R �
��
 = � 2@[� � �

� ]
 + 2� �

 [� � �

� ]� ; (1.30)
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or explicitly

R �
��
 =

@
@x�

� �
�
 �

@
@x�

� �
�
 + � �


� � �
�� � � �


� � �
�� : (1.31)

If we de�ne r a! c � ! c;a and @a! c � ! c;a, and for coordinate basis componentsr � ! � � ! � ;�

and @� ! � = @!� =@x� � ! �;� , the above equation becomes

R �
��
 = � �

�
;� � � �
�
;� + � �

�
 � �
�� � � �

�
 � �
�� : (1.32)

A geodesic is a curve on a manifold, associated with a derivative operatorr a, whose

tangent vectorTa is parallel transported along itself, and satis�es the equationTar aTb = 0.

When a coordinate system is introduced, the geodesic is mapped to a curvex � (t) in Rn .

Using equation (1.17), the components ofTa, denoted T � = dx� =dt, satisfy the geodesic

equation
dT �

dt
+ � �

�� T � T � =
d2x �

dt2
+ � �

��
dx�

dt
dx�

dt
= 0: (1.33)

1.1.3 Einstein's �eld equation

The theory of general relativity is built on two fundamental principles: the equivalence

principle and the principle of general covariance. The equivalence principle states that

the e�ects of gravity and acceleration are indistinguishable. Speci�cally, a particle in a

gravitational �eld experiences a force equivalent to the force it would experience if it were

uniformly accelerated in the opposite direction. This principle is the foundation of general

relativity, which describes gravity as a curvature of spacetime caused by the presence of

matter and energy.

The principle of general covariance requires that the laws of physics be formulated inde-

pendently of the choice of coordinates used to describe physical phenomena. In other words,

the laws of physics should be the same in all coordinate systems related by a smooth transfor-

mation. This principle allows us to describe the laws of physics in a coordinate-independent

manner and is essential for a theory of gravity consistent with general relativity. By imposing

the principle of general covariance, we ensure that the laws of physics are consistent with the
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equivalence principle and that they hold true in any coordinate system, regardless of how

the coordinates are chosen.

In general relativity, spacetime is a manifoldM with a Lorentz metric gab of signature

� + � � � + . A curve is considered timelike if the norm of its tangent is everywhere negative,

gabTaTb < 0. Particle motion is represented by a timelike curve, and perfect �uids are

described using a 4-velocityua, density � , and pressurep. The electromagnetic �eld is

represented by an antisymmetric tensorFab. A particle with rest mass m and chargeq

placed in an electromagnetic �eldFab satis�es the Lorentz force equation

muar aub = qFb
cu

c; (1.34)

where F b
c = gbdFdc. The 4-velocity ua of a free particle satis�es the geodesic equation of

motion

uar aub = 0; (1.35)

where r a is the derivative operator associated withgab. If the accelerationab = uar aub is

non-zero, a forcef b = mab acts on the particle, wherem is its rest mass. The 4-momentum

of the particle can be de�ned as

Pa = mua: (1.36)

The energy of the particle, as measured by an observer with 4-velocityva at the event on

the particle's world line is given by

E = � Pava: (1.37)

A stress-energy tensorTab describes continuous matter distributions and �elds. For a perfect

�uid the stress-energy tensor is given by

Tab = �u aub + p(gab + uaub); (1.38)
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and it satis�es the equation of motion

r aTab = 0; (1.39)

which yields the following two equations:

uar a� + ( � + p)r aua = 0; (1.40)

and

(p + � )uar aub + ( gab + uaub)r ap = mua; (1.41)

whereub = gabua. Note that in the special case where the �uid is at rest, i.e.,u� = (1 ; 0; 0; 0),

the stress-energy tensor reduces to the familiar formT00 = � , Tij = p� ij , where � ij is the

Kronecker delta. In the context of general relativity, the spacetime manifoldM is typically

represented using a coordinate system that maps it ontoR4. In this coordinate system,

Latin letters are used to represent the spatial coordinates, withi; j; k; � � � = 1; 2; 3, while

Greek letters are used to represent the time coordinate plus the spatial coordinates, with

�; �; 
; � � � = 0; 1; 2; 3. Here, the number 0 represents the time coordinate, while 1, 2, and 3

represent the spatial coordinates. This convention is useful for representing the components

of tensors in a coordinate basis and for performing calculations involving them.

The Klein-Gordon scalar �eld � in curved spacetime satis�es the equation

r ar a� � m2� = 0: (1.42)

The stress-energy tensor of this �eld is

Tab = r a� r b� �
1
2

gab(r c� r c� + m2� 2); (1.43)

and satis�es the conservation equation (1.39).

Maxwell's equations in curved spacetime govern the behavior of the electromagnetic �eld.
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They consist of two equations:

r aFab = � 4�j b; (1.44)

which relates the current density 4-vectorj a to the �eld strength tensor Fab, and

r [aFbc] = 0; (1.45)

which expresses the fact that the electromagnetic �eld is divergence-free. Herej b = gabj a

and j a is the current density 4-vector of electric charge. The electromagnetic stress-energy

tensor is a measure of the energy and momentum density of the electromagnetic �eld. It is

given by

Tab =
1

4�

�
FacF c

b �
1
4

gabFdeF de

�
: (1.46)

The vector potential Aa satis�es the wave equation in curved spacetime,

r ar aAb � Rd
bAd = � 4�j b; (1.47)

in Lorenz gauge wherer aAa = 0. Rd
b = Rabgad is the Ricci curvature tensor. This equation

describes the propagation of electromagnetic waves in a curved spacetime.

Einstein's �eld equation is the cornerstone of general relativity, relating the geometry of

spacetime to the distribution of matter and energy within it. It takes the form

Gab � Rab �
1
2

Rgab = 8�T ab; (1.48)

where Gab is the Einstein tensor, R is the Ricci scalar, and we use units for which the

gravitational constant G and the speed of lightc are 1. The left-hand side represents the

curvature of spacetime, while the right-hand side represents the distribution of matter and

energy in spacetime. This equation encodes the fundamental principle that matter tells

spacetime how to curve, and through the geodesic equation or other matter equation og

motion, spacetime tells matter how to move. Einstein �rst proposed this equation in 1915,
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and it remains a fundamental equation of modern physics.

Einstein's �eld equation can be derived using the Lagrangian formalism in a coordinate

basisf dx� g, where the Einstein-Hilbert action is given by

SEH =
Z

1
16�

R
p

� gd4x; (1.49)

with g being the determinant of the metric tensor's coordinate basis componentsg�� and

G = c = 1. The complete action is de�ned as

S = SEH + SM =
Z �

1
16�

R + L M

�
p

� gd4x; (1.50)

whereSM and L M are the action and Lagrangian of matter.

Using the principle of least action, we vary the action with respect to the inverse metric

tensor g�� , which yields

0 = �S

=
Z �

1
16�

� (R
p

� g)
�g ��

+
� (L M

p
� g)

�g ��

�
�g �� d4x

=
Z �

1
16�

�
�R

�g ��
+

R
p

� g
�
p

� g
�g ��

�
+

1
p

� g
� (L M

p
� g)

�g ��

�
p

� g�g�� d4x; (1.51)

where� is the variation operator. This equation should be hold for any variation�g �� , thus

it becomes
�R

�g ��
+

R
p

� g
�
p

� g
�g ��

= �
16�
p

� g
� (L M

p
� g)

�g ��
: (1.52)

The �rst term on the left-hand-side of equation (1.52) requires the variation of the Ricci

scalar

�R = R�� �g �� + g�� �R �� ; (1.53)

which requires the variation of the Ricci tensor�R �� . From equation (1.32), we get the
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variation of the Riemann tensor

�R �
��
 = � � �

�
;� � � � �
�
;� + � �

�� � � �
�
 + � �

�
 � � �
�� � � �

�� � � �
�
 � � �

�
 � � �
��

= � � �
�
 ;� � � �

�� � � �
�
 + � �

�
 � � �
�� + � �

�� � � �
�
 � � � �

�
 ;� + � �
�� � � �

�
 � � �
�
 � � �

��

� � �
�� � � �

�
 + � �
�� � � �

�
 + � �
�
 � � �

�� � � �
�� � � �

�
 � � �
�
 � � �

��

= � � �
�
 ;� � � � �

�
 ;� ; (1.54)

so the variation of the Ricci tensor is

�R �
 = �R �
��
 = � � �

�
 ;� � � � �
�
 ;� : (1.55)

Therefore, equation (1.53) becomes

�R = R�� �g �� + ( g�� � � �
�� � g�� � � 



� );� � R�� �g �� + r � v� ; (1.56)

where the second term can be substituted back into equation (1.51) to get a boundary term

1
16�

Z
p

� gr � v� dx4: (1.57)

This boundary term does not contribute to the variation of the action when�g �� vanishes in

a neighborhood of the boundary or when there is no boundary. In this case, the �rst term

on the left-hand-side of equation (1.52) becomes

�R
�g ��

= R�� : (1.58)

In the second term on the left-hand-side of equation (1.52)

�
p

� g = �
1

2
p

� g
�g = �

1
2

p
� gg�� �g �� ; (1.59)
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where �g = gg�� �g �� and g�� �g �� = � g�� �g �� are used. Thus the second term of the left-

hand-side of equation (1.52) becomes

R
p

� g
�
p

� g
�g ��

= �
1
2

Rg�� ; (1.60)

and then equation (1.52) becomes

R�� �
1
2

Rg�� = �
16�
p

� g
� (L M

p
� g)

�g ��
: (1.61)

In the coordinate basis, the stress-energy tensor's components can be de�ned using the

Lagrangian densityL M for matter as follows:

T�� := �
2

p
� g

� (L M
p

� g)
�g ��

= � 2
� L M

�g ��
+ g�� L M : (1.62)

With this de�nition, equation (1.61) becomes Einstein's �eld equation (1.48) in the coordi-

nate basis

R�� �
1
2

Rg�� = 8�T �� : (1.63)

We can modify the Einstein-Hilbert action by adding a cosmological constant term:

~SHE =
Z

1
16�

(R � 2�)
p

� gd4x; (1.64)

where � is commonly know as a cosmological constant, which is a form of dark energy in

the standard � CDM model (Peebles, 1984). When we vary this modi�ed action, we obtain

a modi�ed version of Einstein's �eld equation (1.63):

R�� �
1
2

Rg�� + � g�� = G�� + � g�� = 8�T �� : (1.65)

Note that the property of the Einstein tensor,r � G�� = 0, allows the addition of the cosmo-

logical constant term � g�� into Einstein's �eld equation. We can also interpret Einstein's
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�eld equation (1.48) with the stress-energy tensor de�ned as:

T�� = TM
�� + T �

�� ; (1.66)

whereTM
�� is the stress-energy tensor de�ned in equation (1.62), and

T �
�� := �

�
8�

g�� : (1.67)

1.2 Friedmann equations

The cosmological principle asserts that the Universe is spatially homogeneous and isotropic

on large spatial scales. This means that the Friedmann-Lemaître-Robertson-Walker (FLRW)

metric can be used to describe the Universe, which takes the form:

ds2 = g�� dx� dx� = � dt2 + a2(t)
�

dr2

1 � kr 2
+ r 2(d� 2 + sin2 �d� 2)

�
; (1.68)

where g�� are the metric tensor components,c = 1, t is cosmic time,(r; �; � ) are spherical

coordinates, anda(t) is the scale factor. The scale factor is de�ned as:

r (t) = a(t)x; (1.69)

wherer (t) is the physical distance between two points at a given time, andx is the comoving

distance between those points. The curvature of the spatial hypersurfaces is described by

the value ofk, which can be positive (+1), zero, or negative (� 1). If k is positive, space is

positively curved like a sphere. Ifk is negative, space is negatively curved like a saddle. If

k is zero, space is �at like a sheet of paper.

From equation (1.68), we can see that the non-zero components of the metric tensor in
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coordinates(x0; x1; x2; x3) = ( t; r; �; � ) are

g00 = � 1; g11 =
a2

1 � kr 2
; g22 = a2r 2; g33 = a2r 2 sin2 �: (1.70)

Therefore by using equation (1.21), we obtain the non-zero components of the Christo�el

symbol � �
��

� 0
11 =

a_a
1 � kr 2

=
_a
a

g11; � 0
22 = a_ar2 =

_a
a

g22; � 0
33 = a_ar2 sin2 � =

_a
a

g33; () � 0
ij =

_a
a

gij ;

� i
0j = � i

j 0 =
_a
a

� i
j ; � 1

11 =
kr

1 � kr 2
; � 1

22 = � r (1 � kr 2); � 1
33 = � r (1 � kr 2) sin2 �;

� 2
12 = � 2

21 = � 3
13 = � 3

31 =
1
r

; � 2
33 = � sin� cos�; � 3

23 = � 3
32 = cot �: (1.71)

The stress-energy tensor of a perfect �uid takes the form of equation (1.38), whose com-

ponents in the coordinate basis is

T�� = �u � u� + p(g�� + u� u� ); (1.72)

where the symbols are introduced in Section 1.1.3. Sinceg0i = gi 0 = ui = ui = 0, the

non-zero parts ofT�� are

T00 = �; T ij = pgij : (1.73)

Thus Einstein's �eld equations (1.65) become the following two equations

R00 +
1
2

R = 8�� + � ; (1.74)

and

Rij �
1
2

Rgij = 8�pg ij � � gij : (1.75)

Note that the gravitational constant G = 1 is applied here.

From equation (1.71) we can derive the desired components of the Ricci tensorR�� and
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the Ricci scalarR as follows

R00 = � 3
•a
a

; Rij =
1
a2

(2_a2 + a•a + 2k)gij ; R = 6
�

•a
a

+
_a2

a2
+

k
a2

�
: (1.76)

Substituting equation (1.76) into equations (1.74) and (1.75), we get

�
_a
a

� 2

=
8�
3

� +
�
3

�
k
a2

; (1.77)

and

2
•a
a

+
_a2

a2
+

k
a2

= � 8�p + � : (1.78)

Equation (1.77) is known as the �rst Friedmann equation. By combining equations (1.77)

and (1.78), we can get the second Friedmann equation

•a
a

= �
4�
3

(� + 3p) +
�
3

: (1.79)

Friedmann equations (1.77) and (1.79) can yield

_� + 3
_a
a

(� + p) = 0 ; (1.80)

which expresses the conservation of the stress-energyT ��
;� = 0. If we de�ne an equation of

state parameter

w :=
p
�

; (1.81)

then equation (1.80) has a solution

� = � 0

� a0

a

� 3(1+ w)
; (1.82)

where at present timet = t0, � (t0) = � 0, and a(t0) = a0. For dust (p = 0), we �nd � / a� 3;

for radiation (p = �= 3), we �nd � / a� 4; and for the cosmological constant� � = � =8� ,

w� = � 1.
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The Hubble parameter is a measure of the expansion rate of the Universe and is de�ned

as the time derivative of the scale factora normalized by the scale factor itself, i.e.,

H :=
_a
a

: (1.83)

Here, an overdot represents a derivative with respect to cosmic timet. At the present time

t = t0, the value of the Hubble parameter is denoted asH0, which is commonly known as

the Hubble constant.

The �rst Friedmann equation (1.77) is a fundamental equation in cosmology that relates

the expansion rate of the Universe to its energy density and curvature. It takes the form

H 2 =
8�
3

(� m + � r + � � ) �
k
a2

; (1.84)

where� m , � r , and � � represent the matter, radiation, and dark energy density, respectively.

The term k=a2 accounts for the curvature of spatial hypersurfaces, wherek takes the values

� 1, 0, or 1 corresponding to open, �at, or closed spatial geometries, respectively. Equation

(1.84) can be rewritten in terms of the Hubble constantH0 as

H 2 = H 2
0

�
8�

3H 2
0

(� m + � r + � � ) �
k

a2H 2
0

�
: (1.85)

We can de�ne the cosmological parameters as follows:

ˆ The non-relativistic matter density parameter


 m :=
8�

3H 2
0

� m =
8�

3H 2
0

� m0

� a0

a

� 3
= 
 m0

� a0

a

� 3
; (1.86)

where the subscript �0� denotes the current value of the given quantities.

ˆ The radiation density parameter


 r :=
8�

3H 2
0

� r =
8�

3H 2
0

� r 0

� a0

a

� 4
= 
 r 0

� a0

a

� 4
: (1.87)
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ˆ The cosmological constant dark energy density parameter


 � :=
8�

3H 2
0

� � : (1.88)

ˆ The curvature density parameter


 k := �
k

a2H 2
0

= 
 k0

� a0

a

� 2
: (1.89)

Using these parameters, equation (1.85) becomes

H 2 = H 2
0 (
 m + 
 r + 
 k + 
 � ) = H 2

0

�

 m0

� a0

a

� 3
+ 
 r 0

� a0

a

� 4
+ 
 k0

� a0

a

� 2
+ 
 �

�
: (1.90)

1.3 Distance measures in cosmology

Light travels along null geodesics, which can be expressed asds2 = 0. For an isotropic

observer in the FLRW metric, it is always possible to �nd a new set of(�; � ) coordinates

such that the null geodesic is radial, leading to the following line element:

ds2 = � dt2 + a2 dr2

1 � kr 2
= 0; (1.91)

or equivalently,
dt
a

=
dr

p
1 � kr 2

: (1.92)

Consider a light source located atr = R that emits two light beams separated by a time

interval equal to the wavelength of light at the source,� S. The light beams are emitted at

times tS and tS+ � S. An observer located atr = 0 detects the light beams with a wavelength

of light at the observer,� O, at two di�erent times: tO and tO + � O, respectively. Integrating
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the light path (1.92) over t and r , we obtain

Z tO

tS

dt
a

�
Z tS+ � S

tS

dt
a

+
Z tO

tS+ � S

dt
a

=
Z 0

R

dr
p

1 � kr 2
=

Z tO + � O

tS+ � S

dt
a

; (1.93)

which yields Z tS+ � S

tS

dt
a

=
Z tO + � O

tO

dt
a

: (1.94)

For small time intervals � S and � O, we can consider scale factors at the source (aS) and at

the observer (aO) to be constants. Therefore, the above equation becomes

� S

aS
=

� O

aO
or

� S

� O
=

aS

aO
; (1.95)

We de�ne the redshift z as

z =
� O � � S

� S
=

� O

� S
� 1; (1.96)

which, combined with equation (1.95), gives

1 + z =
aO

aS
: (1.97)

We can simplify equation (1.97) by considering ourselves as the observer at the present time

t0 when the scale factor isa0, with the source at time t when the scale factor isa. Then we

have

1 + z =
a0

a
: (1.98)

By combining equation (1.98) with equation (1.90), we can express the Hubble parameter

as a function of redshiftz

H (z) = H0

p

 m0(1 + z)3 + 
 r 0(1 + z)4 + 
 k0(1 + z)2 + 
 � � H0E(z); (1.99)

whereE(z) is the expansion rate function.

Several key distance measures are used in cosmology to quantify the expansion of the
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Universe. The transverse comoving distanceDM (z), also known as the radial distance along

the line of sight, can be calculated from equation (1.93) and is given by

DM (z) =

8
>>>>>><

>>>>>>:

1
H 0

p

 k 0

sinh
�
H0

p

 k0DC (z)

�
if 
 k0 > 0;

DC (z) if 
 k0 = 0;

1
H 0

p
j 
 k 0 j

sin
h
H0

p
j
 k0jDC (z)

i
if 
 k0 < 0;

(1.100)

whereDC (z) is the comoving distance to the source, given by

DC (z) =
Z z

0

dz0

H (z0)
: (1.101)

DM (z) is related to other important distance measures, including the luminosity distance

DL (z) and the angular diameter distanceDA (z), through

DM (z) =
DL (z)
1 + z

= (1 + z)DA (z): (1.102)

In addition, the Hubble distance is de�ned as

DH (z) =
1

H (z)
; (1.103)

and the volume averaged distance is given by

DV (z) = [ zDH (z)D 2
M (z)]1=3: (1.104)

Another important quantity is the sound horizon at the drag epochzd, which is de�ned as

r s =
Z 1

zd

cs(z)
H (z)

dz; (1.105)
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where the sound speed in the photon-baryon �uid is given by

cs(z) =
1

r

3
�

1 + 3
4

� b
� r

� ; (1.106)

with � b being the baryon density. In practice, an approximation forr s calibrated from

numerical simulations is often used:

r s =
55:154 exp [� 72:3(
 � h2 + 0:0006)2]

(
 bh2)0:12807(
 ch2 + 
 bh2)0:25351
Mpc; (1.107)

where
 � h2, 
 bh2, 
 ch2 are the physical energy density parameters for non-relativistic neu-

trinos, baryons, and cold dark matter respectively, andh is the Hubble constant in units

of 100 km s� 1 Mpc� 1. This approximation is accurate to 0.021% for a standard radiation

background with e�ective number of neutrino speciesNe� = 3:046, total neutrino mass
P

m� < 0:6 eV, and values of
 bh2 and 
 ch2 within 3� of values derived using Planck CMB

anisotropy data (Aubourg et al., 2015).

Note that the sound horizon r s can be numerically computed using the Cosmic Lin-

ear Anisotropy Solving System (class ) code (Blas et al., 2011), without relying on CMB

anisotropy data. This is the approach used in our latest analyses, Cao & Ratra (2022); Cao

et al. (2022a,b,c,d); Cao et al. (2022e).

The distance modulus is de�ned as

� = m � M = 5 log
�

DL

10 pc

�
= 5 log DL + 25; (1.108)

wherem is the apparent magnitude of the object,M is its absolute magnitude, andDL is

the luminosity distance in units of Mpc. Throughout the thesis, unless otherwise speci�ed,

the symbol �log� represents the base-10 logarithm. The distance modulus is commonly used

in observational cosmology as a measure of the distance to distant objects, such as type

Ia supernovae, and can be inferred from the observed apparent magnitudes and the known

absolute magnitudes of such objects.
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Chapter 2

Dark energy cosmological models

Various measurements indicate that the Universe is currently expanding at an accelerating

rate. If general relativity is valid this acceleration is due to the presence of dark energy,

a hypothetical substance that has negative pressure. In the spatially-�at� CDM model

(Peebles, 1984), dark energy is represented by a cosmological constant and accounts for

around 70% of the total energy content of the Universe. However, recent observations might

indicate potential discrepancies with this model (Abdalla et al., 2022; Di Valentino et al.,

2021a; Hu & Wang, 2023; Moresco et al., 2022; Perivolaropoulos & Skara, 2022), leading

to investigations into alternative models that allow for non-zero spatial curvature and/or

dynamical dark energy. In our analyses we also explore some of these alternatives, described

next, to better understand the underlying physics of the Universe.

2.1 � CDM models

The Hubble parameter in �at and non-�at � CDM models are already derived in equation

(1.99), in which the expansion rate function is

E(z) =
q


 m0 (1 + z)3 + 
 k0 (1 + z)2 + 
 � ; (2.1)
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where
 m0 and 
 k0 are the current values of the cosmological non-relativistic matter density

parameter and the spatial curvature energy density parameter, respectively, the cosmological

constant dark energy density parameter
 � = 1 � 
 m0 � 
 k0, and z is the redshift. In the �at

� CDM model, 
 k0 = 0. For most of the data sets we used, the cosmological parameters being

constrained aref H0; 
 bh2; 
 ch2g (or f H0; 
 m0g) and f H0; 
 bh2; 
 ch2; 
 k0g (or f H0; 
 m0; 
 k0g)

in the �at and non-�at � CDM models, respectively. In some cases, certain data sets may not

provide constraints onH0 and 
 bh2, in which case �xed values of
 b and H0 are assumed.

For example, a commonly used set is
 b = 0:05 and H0 = 70 km s� 1 Mpc� 1. As noted

in section 1.2, the equation of state parameter of the cosmological constant dark energy is

w� = � 1.

It is worth noting that in equation (2.1) the contribution of radiation to the cosmological

energy budget is neglected. This is justi�ed for the low-redshift data sets that we used in

our analyses, as the contribution of radiation becomes negligible at late times.

2.2 XCDM parametrizations

In the XCDM parametrizations, dark energy is modeled as an X-�uid with a generalized

constant equation of state parameterwX , which distinguishes it from the � CDM models

wherew� = � 1. The cosmological X-�uid dynamical dark energy parameter is de�ned as


 X :=
8�

3H 2
0

� X =
8�

3H 2
0

� X0

� a0

a

� 3(1+ wX )
= 
 X0 (1 + z)3(1+ wX ) ; (2.2)

where � X (a) and � X0 (a0) are the X-�uid dynamical dark energy density (the scale factor)

at a given time and at the present time, respectively. By replacing
 � in equation (2.1) with


 X , we obtain the expansion rate

E(z) =
q


 m0 (1 + z)3 + 
 k0 (1 + z)2 + 
 X0 (1 + z)3(1+ wX ) ; (2.3)
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where the current value of the X-�uid dynamical dark energy density parameter
 X0 =

1 � 
 m0 � 
 k0. The cosmological parameters being constrained aref H0; 
 bh2; 
 ch2; wX g (or

f H0; 
 m0; wX g) and f H0; 
 bh2; 
 ch2; wX ; 
 k0g (or f H0; 
 m0; wX ; 
 k0g) in the �at and non-�at

XCDM parametrizations, respectively. Note that whenwX = � 1 XCDM reduces to� CDM.

2.3 � CDM models

A dynamical scalar �eld can play an important cosmological role. In particular, scalar �elds

are often used to model the behavior of the in�aton �eld, which is thought to have driven the

very rapid expansion of the Universe during an early in�ationary epoch. During in�ation,

the scalar �eld energy dominates the cosmological energy budget. The dynamics of the

scalar �eld during this period determines the rate and duration of in�ation, as well as the

properties of the resulting density �uctuations that seed the formation of large-scale cosmic

structures such as galaxies.

After in�ation, scalar �elds may also play a role in the late-time acceleration of the

expansion of the Universe, and are referred to as dynamical dark energy scalar �elds. The

study of scalar �eld dynamics in cosmology involves solving the equations of motion that

describe the behavior of the scalar �eld in the expanding Universe, and determining its e�ects

on the evolution of other cosmological parameters.

In this work we explore a dynamical scalar �eld dark energy model, also known as

Quintessence, where the dynamical dark energy is represented by a scalar �eld� instead

of a cosmological constant. The Lagrangian of the scalar �eld� is given by

L � = �
1

16�

�
1
2

g�� @� �@� � + V(� )
�

; (2.4)

whereV(� ) is the potential energy density of the scalar �eld. Following the analogy of the

stress-energy tensor of matter, we can de�ne the stress-energy tensor of the scalar �eld� as

T�� := �
2

p
� g

� (L �
p

� g)
�g ��

= � 2
� L �

�g ��
+ g�� L � : (2.5)
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The �rst term in the right-hand-side of equation (2.5) can be simpli�ed as

� 2
� L �

�g ��
=

1
8�

�
�g ��

�
1
2

g�� @� �@� � + V(� )
�

=
1

16�
@� �@� �: (2.6)

Therefore, the stress-energy tensor of� in equation (2.5) becomes

T�� =
1

16�

�
@� �@� � � g��

�
1
2

g�� @� �@� � + V(� )
��

: (2.7)

Consequently, we can obtain the components of the stress-energy tensor in the FLRW metric

as

T00 =
1

16�

�
@0�@0� � g00

�
1
2

g00@0�@0� + V(� )
��

=
1

16�

�
1
2

_� 2 + V(� )
�

;

Tij =
1

16�

�
@i �@j � � gij

�
1
2

g00@0�@0� + V(� )
��

=
1

16�

�
1
2

_� 2 � V (� )
�

gij ; (2.8)

where� is only a function oft due to the homogeneous and isotropic properties of the FLRW

metric. Similarly, following the same procedure as for the stress-energy tensor in equation

(1.73), we can identify the energy density and pressure of the scalar �eld� as

� � =
1

16�

�
1
2

_� 2 + V(� )
�

; (2.9)

and

p� =
1

16�

�
1
2

_� 2 � V (� )
�

; (2.10)

respectively. Therefore, we can express the equation of state of the scalar �eld dark energy

as follows:

w� =
1
2

_� 2 � V (� )
1
2

_� 2 + V(� )
: (2.11)

Therefore, the Friedmann equation can be expressed in terms of the Hubble parameter

H (z) = H0

q

 m0(1 + z)3 + 
 k0(1 + z)2 + 
 � (z; � ); (2.12)
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where the scalar �eld dynamical dark energy density parameter


 � (z; � ) :=
8�

3H 2
0

� � : (2.13)

The action for the scalar �eld � is given by

S� =
Z

L �
p

� gd4x = �
1

16�

Z �
1
2

g�� @� �@� � + V(� )
�

p
� gd4x: (2.14)

The equation of motion for� can be obtained using the principle of least action, which states

that the variation of the action with respect to � is zero:

0 = �S �

= �
1

16�
�

Z �
1
2

g�� @� �@� � + V(� )
�

p
� gd4x

= �
1

16�

Z �
1
2

g�� � (@� �@� � ) + V 0(� )��
�

p
� gd4x

= �
1

16�

Z
[g�� @� �� (@� � ) + V 0(� )�� ]

p
� gd4x

= �
1

16�

Z
[g�� @� �@� (�� ) + V 0(� )�� ]

p
� gd4x

= �
1

16�

Z � Z 1

�1
g�� @� ���

p
� gdx�

�
d3x �

1
16�

Z �
@� (

p
� gg�� @� � ) �

p
� gV0(� )

�
��d 4x

= �
1

16�

Z �
@� (

p
� gg�� @� � ) �

p
� gV0(� )

�
��d 4x: (2.15)

where we used the fact that�� vanishes at boundaries and a prime denotes a derivative with

respect to � . If equation (2.15) is valid for arbitrary �� , we obtain the equation of motion

for � :

@� (
p

� gg�� @� � ) = @� (
p

� g)g�� @� � +
p

� g@� (g�� @� � ) =
p

� gV0(� ): (2.16)
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In the FLRW metric, the above equation of motion becomes

@0(
p

� g)g00@0� +
p

� g@0(g00@0� ) =
p

� gV0(� )

=) @0(
p

� g)( � _� ) +
p

� g(� •� ) =
p

� gV0(� )

=) @0(a3)
p

� g
a3

(� _� ) +
p

� g(� •� ) =
p

� gV0(� )

=) � 3
_a
a

_� � •� = V 0(� )

=) •� + 3
_a
a

_� � V 0(� ) = 0 () •� + 3H _� � V 0(� ) = 0 : (2.17)

In this work, we use the� CDM models with an inverse power-law scalar �eld potential

energy density (Pavlov et al., 2013; Peebles & Ratra, 1988; Ratra & Peebles, 1988)

V(� ) =
1
2

�m 2
p� � � ; (2.18)

where mp is the Planck mass,� is a positive constant (with � = 0 corresponding to a

cosmological constant), and� is a constant that determines the strength of the coupling

between the scalar �eld and gravity. We obtain� either by using the shooting method in the

Cosmic Linear Anisotropy Solving System (class ) code (Blas et al., 2011) or by adopting

the matter-dominated initial condition form 1 given by

� =
8

3m2
p

�
� + 4
� + 2

��
2
3

� (� + 2)
� �= 2

: (2.19)

Using the numerical solutions of the Friedmann equation (2.12) and the equation of mo-

tion (2.17), we can obtain constraints on the cosmological parameters in the� CDM models.

Speci�cally, we can obtain constraints on the cosmological parametersf H0; 
 bh2; 
 ch2; � g

(or f H0; 
 m0; � g) and f H0; 
 bh2; 
 ch2; �; 
 k0g (or f H0; 
 m0; �; 
 k0g) in the �at and non-�at

� CDM models, respectively. For recent studies on constraints on� CDM see Refs. (Adil

et al., 2022; de Cruz Perez et al., 2021; Jesus et al., 2022; Ooba et al., 2018b, 2019; Park &

1The detailed derivation of this form can be found in subsection 3.6.3 of Farooq (2013).
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Ratra, 2018, 2019b, 2020; Singh et al., 2019; Sinha & Banerjee, 2021; Solà Peracaula et al.,

2019; Ureña-López & Roy, 2020; Xu et al., 2022; Zhai et al., 2017) and related references

within these papers.
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Chapter 3

Cosmological constraints from HII

starburst galaxy apparent magnitude

and other cosmological measurements

This chapter is based on Cao et al. (2020). Figures and tables by Shulei Cao, from analyses

conducted independently by Shulei Cao and Joseph Ryan (Ryan, 2021a).

3.1 Introduction

The accelerated expansion of the current universe is now well-established observationally

and is usually credited to a dark energy whose origins remain murky (see e.g. Coley &

Ellis, 2020; Martin, 2012; Ratra & Vogeley, 2008). The standard� CDM model of cosmology

(Peebles, 1984) describes a universe with �at spatial hypersurfaces predominantly �lled with

dark energy in the form of a cosmological constant� and cold dark matter (CDM) together

comprising � 95% of the total energy budget. While spatially-�at � CDM is mostly consis-

tent with cosmological observations (see e.g. Alam et al., 2017; Farooq et al., 2017; Planck

Collaboration, 2020; Scolnic et al., 2018), there are indications of some (mild) discrepances

between standard� CDM model predictions and cosmological measurements. In addition,
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the quality and quantity of cosmological data continue to grow, making it possible to con-

sider and constrain additional cosmological parameters beyond those that characterize the

standard � CDM model.

Given the uncertainty surrounding the origin of the cosmological constant, many workers

have investigated the possibility that the cosmological �constant� is not really constant, but

rather evolves in time, either by positing an equation of state parameterw 6= � 1 (thereby

introducing a redshift dependence into the dark energy density) or by replacing the constant

� in the Einstein-Hilbert action with a dynamical scalar �eld � (Peebles & Ratra, 1988;

Ratra & Peebles, 1988). Non-�at spatial geometry also introduces a time-dependent source

term in the Friedmann equations. In this paper we study the standard spatially-�at� CDM

model as well as dynamical dark energy and spatially non-�at extensions of this model.

One major goal of this paper is to use measurements of the redshift, apparent luminosity,

and gas velocity dispersion of HII starburst galaxies to constrain cosmological parameters.1

An HII starburst galaxy (hereinafter �H ii G�) is one that contains a large HII region, an

emission nebula sourced by the UV radiation from an O- or B-type star. There is a correlation

between the measured luminosity (L) and the inferred velocity dispersion (� ) of the ionized

gases within these Hii G, referred to as theL-� relation (see Section 3.2) which has been

shown to be a useful cosmological tracer (see Chávez et al., 2012, 2014, 2016; González-

Morán et al., 2019; Melnick et al., 2000; Plionis et al., 2011; Siegel et al., 2005; Terlevich

et al., 2015, and references therein). This relation has been used to constrain the Hubble

constant H0 (Chávez et al., 2012; Fernández Arenas et al., 2018), and it can also be used

to put constraints on the dark energy equation of state parameterw (Chávez et al., 2016;

González-Morán et al., 2019; Terlevich et al., 2015).

H ii G data reach to redshiftz � 2:4, a little beyond that of the highest redshift baryon

acoustic oscillation (BAO) data which reach toz � 2:3. H ii G data are among a handful of

cosmological observations that probe the largely unexplored part of redshift space fromz � 2

to z � 1100. Other data that probe this region include quasar angular size measurements

1For early attempts see Siegel et al. (2005), Plionis et al. (2009, 2010, 2011) and Mania & Ratra (2012).
For more recent discussions see Chávez et al. (2016), Wei et al. (2016), Yennapureddy & Melia (2017), Zheng
et al. (2019), Ruan et al. (2019), González-Morán et al. (2019), Wan et al. (2019), and Wu et al. (2020).
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that reach to z � 2:7 (Cao et al., 2017b; Chen & Ratra, 2003; Gurvits et al., 1999; Ryan

et al., 2019, and references therein), quasar �ux measurements that reach toz � 5 (Khadka

& Ratra, 2020a,b; Risaliti & Lusso, 2015, 2019; Yang et al., 2020; Zheng et al., 2020, and

references therein), and gamma ray burst data that reach toz � 8 (Demianski et al., 2021;

Lamb & Reichart, 2000; Samushia & Ratra, 2010, and references therein). In this paper

we also use quasar angular size measurements (hereinafter �QSO�) to constrain cosmological

model parameters.

While H ii G and QSO data probe the largely unexploredz � 2:3�2.7 part of the universe,

current H ii G and QSO measurements provide relatively weaker constraints on cosmological

parameters than those provided by more widely used measurements, such as BAO peak

length scale observations or Hubble parameter (hereinafter �H (z)�) observations (with these

latter data being at lower redshift but of better quality than Hii G or QSO data). However,

we �nd that the H ii G and QSO constraints are consistent with those that follow from

BAO and H (z) data, and so we use all four sets of data together to constrain cosmological

parameters. We �nd that the H ii G and QSO data tighten parameter constraints relative to

the H (z) + BAO only case.

Using six di�erent cosmological models to constrain cosmological parameters allows us to

determine which of our results are less model-dependent. In all models, the Hii G data favor

those parts of cosmological parameter space for which the current cosmological expansion is

accelerating.2 The joint analysis of the Hii G QSO, BAO andH (z) data results in relatively

model-independent and fairly tight determination of the Hubble constantH0 and the current

non-relativistic matter density parameter
 m0.3 Depending on the model,
 m0 ranges from a

low of 0:309+0 :015
� 0:014 to a high of0:319� 0:013, being consistent with most other estimates of this

2This result could weaken, however, as the Hii G data constraint contours could broaden when Hii G data
systematic uncertainties are taken into account. We do not incorporate any Hii G systematic uncertainties
into our analysis; see below.

3The BAO and H (z) data play a more signi�cant role than do the H ii G and QSO data in setting these
and other limits, but the H ii G and QSO data tighten the BAO + H (z) constraints. We note, however, that
the H (z) and QSO data, by themselves, give lower central values ofH0 but with larger error bars. Also,
because we calibrate the distance scale of the BAO measurements listed in Table 3.1 via the sound horizon
scale at the drag epoch (r s, about which see below), a quantity that depends on early-Universe physics, we
would expect these measurements to push the best-�tting valuesH0 lower when they are combined with
late-Universe measurements like Hii G (whose distance scale is not set by the physics of the early Universe).
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parameter (unless indicated otherwise, uncertainties given in this paper are� 1� ). The best-

�tting values of H0, ranging from 68:18+0 :97
� 0:75 km s� 1 Mpc� 1to 69:90 � 1:48 km s� 1 Mpc� 1,

are, from the quadrature sum of the error bars, 2.01� to 3.40� lower than the local H0 =

74:03� 1:42 km s� 1 Mpc� 1measurement of Riess et al. (2019) and only 0.06� to 0.60� higher

than the median statisticsH0 = 68 � 2:8 km s� 1 Mpc� 1estimate of Chen & Ratra (2011).

These combined measurements are consistent with the spatially-�at� CDM model, but also

do not strongly disallow some mild dark energy dynamics, as well as a little non-zero spatial

curvature energy density.

This paper is organized as follows. In Section 3.2 we introduce the data we use. The

models we analyze are described in Chapter 2, with a description of our analysis method in

Section 3.3. Our results are in Section 3.4, and we provide our conclusions in Section 3.5.

3.2 Data

We use a combination ofH (z), BAO, QSO, and Hii G data to obtain constraints on our

cosmological models. TheH (z) data, spanning the redshift range0:070 � z � 1:965, are

identical to the H (z) data used in Ryan et al. (2018, 2019) and compiled in Table 2 of Ryan

et al. (2018); see that paper for description. The QSO data compiled by Cao et al. (2017b)

(listed in Table 1 of that paper) and spanning the redshift range0:462 � z � 2:73, are

identical to that used in Ryan et al. (2019); see these papers for descriptions. Our BAO data

(see Table 3.1) have been updated relative to Ryan et al. (2019) and span the redshift range

0:38 � z � 2:34. Our H ii G data are new, comprising 107 low redshift (0:0088� z � 0:16417)

H ii G measurements, used in Chávez et al. (2014), and 46 high redshift (0:636427� z �

2:42935) H ii G measurements, used in González-Morán et al. (2019).4 These extinction-

corrected measurements (see below for a discussion of extinction correction) were very kindly

provided to us by Ana Luisa González-Morán (private communications, 2019 and 2020).

In order to use BAO measurements to constrain cosmological model parameters, knowl-

415 from González-Morán et al. (2019), 25 from Erb et al. (2006), Masters et al. (2014), and Maseda
et al. (2014), and 6 from Terlevich et al. (2015).
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Table 3.1: BAO data.

z Measurementa Value Ref.
0:38 DM (r s;�d =rs) 1512.39 Alam et al. (2017)b

0:38 H (z) (r s=rs;�d ) 81.2087 Alam et al. (2017)b

0:51 DM (r s;�d =rs) 1975.22 Alam et al. (2017)b

0:51 H (z) (r s=rs;�d ) 90.9029 Alam et al. (2017)b

0:61 DM (r s;�d =rs) 2306.68 Alam et al. (2017)b

0:61 H (z) (r s=rs;�d ) 98.9647 Alam et al. (2017)b

0:122 DV (r s;�d =rs) 539� 17 Carter et al. (2018)
0:81 DA =rs 10:75� 0:43 DES Collaboration (2019b)
1:52 DV (r s;�d =rs) 3843� 147 Ata et al. (2018)
2:34 DH =rs 8.86 de Sainte Agathe et al. (2019)c

2:34 DM =rs 37.41 de Sainte Agathe et al. (2019)c

a DM (r s;�d =rs), DV (r s;�d =rs), r s, and r s;�d have units of Mpc,
while H (z) (r s=rs;�d ) has units of km s� 1 Mpc� 1, and DA =rs is
dimensionless.

b The six measurements from Alam et al. (2017) are correlated;
see eq. (20) of Ryan et al. (2019) for their correlation matrix.

c The two measurements from de Sainte Agathe et al. (2019) are
correlated; see eq. (3.15) below for their correlation matrix.

edge of the sound horizon scale at the drag epoch (r s) is required. We compute this scale more

accurately than in Ryan et al. (2019) by using the approximate formula (1.107) (Aubourg

et al., 2015). Here
 cb0 = 
 c0 + 
 b0 = 
 m0 � 
 � 0 with 
 cb0 , 
 c0 , 
 b0 , and 
 � 0 = 0:0014

(following Carter et al., 2018) being the current values of the CDM + baryonic matter,

CDM, baryonic matter, and neutrino energy density parameters, respectively, and the Hub-

ble constant H0 = 100 h km s� 1 Mpc� 1. Here and in what follows, a subscript of `0' on

a given quantity denotes the current value of that quantity. Additionally, 
 b0 h2 is slightly

model-dependent; the values of this parameter that we use in this paper are the same as

those originally computed in Park & Ratra (2018, 2019a,c) and listed in Table 2 of Ryan

et al. (2019).

As mentioned in Section 3.1, Hii G can be used as cosmological probes because they

exhibit a tight correlation between the observed luminosity (L) of their Balmer emission

lines and the velocity dispersion (� ) of their ionized gas (as measured from the widths of the
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emission lines). That correlation can be expressed in the form

logL = � log� + 
; (3.1)

where 
 and � are the intercept and slope, respectively, andlog = log10 here and in what

follows. In order to determine the values of� and 
 , it is necessary to establish the extent

to which light from an H ii G is extinguished as it propagates through space. A correction

must be made to the observed �ux so as to account for the e�ect of this extinction. As

mentioned above, the data we received from Ana Luisa González-Morán have been corrected

for extinction. In González-Morán et al. (2019), the authors used the Gordon et al. (2003)

extinction law, and in so doing found

� = 5:022� 0:058; (3.2)

and


 = 33:268� 0:083; (3.3)

respectively. These are the values of� and 
 that we use in theL-� relation, eq. (3.1).

Once the luminosity of an Hii G has been established through eq. (3.1), this luminosity

can be used, in conjunction with a measurement of the �ux (f ) emitted by the H ii G, to

determine the distance modulus of the Hii G via

� obs = 2:5 logL � 2:5 logf � 100:2 (3.4)

(see e.g. Terlevich et al., 2015, González-Morán et al., 2019, and references therein).5 This

quantity can then be compared to the value of the distance modulus predicted within a given

cosmological model

� th (p; z) = 5 log DL (p; z) + 25; (3.5)

5For each Hii G in our sample we have the measured values and uncertainties oflog f , log � , and z.
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where the luminosity distanceDL (p; z) is related to the transverse comoving distanceDM (p; z)

and the angular size distanceDA (p; z) through equation (1.102). These are functions of the

redshift z and the parametersp of the model in question, andDM is de�ned in equation

(1.100).

As the precision of cosmological observations has grown over the last few years, a ten-

sion between measurements of the Hubble constant made with early-Universe probes and

measurements made with late-Universe probes has revealed itself (for a review, see Riess,

2019). Whether a given cosmological observation supports a lower value ofH0 (i.e. one that

is closer to the early-UniversePlanck measurement) or a higher value ofH0 (i.e. one that

is closer to the late-Universe value measured by Riess et al., 2019) may depend on whether

the distance scale associated with this observation has been set by early- or late-Universe

physics. It is therefore important to know what distance scale cosmological observations

have been calibrated to, so that the extent to which measurements ofH0 are pushed higher

or lower by these di�erent distance calibrations can be clearly identi�ed.

The H0 values we measure from the combinedH (z), BAO, QSO, and Hii G data are

based on a combination of both early- and late-Universe distance calibrations. As mentioned

above, the distance scale of our BAO measurements is set by the size of the sound horizon

at the drag epochr s. The sound horizon, in turn, depends on
 b0 h2, which was computed

by Park & Ratra (2018, 2019a,c) using early-Universe data. Our Hii G measurements, on

the other hand, have been calibrated using cosmological model independent distance ladder

measurements of the distances to nearby giant HII regions (see González-Morán et al., 2019

and references therein), so these data qualify as late-Universe probes. The distance scale

of our QSO measurements is set by the intrinsic linear size (lm ) of the QSOs themselves,

which is a late-Universe measurement (see Cao et al., 2017b). Finally, ourH (z) data depend

on late-Universe astrophysics through the modeling of the star formation histories of the

galaxies whose ages are measured to obtain the Hubble parameter (although the di�erences

between di�erent models are not thought to have a signi�cant e�ect on measurements of

H (z) from these galaxies; see Moresco et al., 2018, 2020).
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3.3 Data Analysis Methodology

We perform a Markov chain Monte Carlo (MCMC) analysis with the Python module emcee

(Foreman-Mackey et al., 2013) and maximize the likelihood function,L , to determine the

best-�tting values of the parametersp of the models. We use �at priors for all parameters

p. For all models, the priors on
 m0 and h are non-zero over the ranges0:1 � 
 m0 � 0:7 and

0:50 � h � 0:85. In the non-�at � CDM model the 
 � prior is non-zero over0:2 � 
 � � 1.

In the �at and non-�at XCDM parametrizations the prior range on wX is � 2 � wX � 0,

and the prior range on
 k0 in the non-�at XCDM parametrization is � 0:7 � 
 k0 � 0:7. In

the �at and non-�at � CDM models the prior range on� is 0:01 � � � 3 and 0:01 � � � 5,

respectively, and the prior range on
 k0 is also� 0:7 � 
 k0 � 0:7.

For H ii G, the likelihood function is

L H ii G = e� � 2
H ii G =2; (3.6)

where

� 2
H ii G(p) =

153X

i =1

[� th (p; zi ) � � obs(zi )]2

� 2
i

; (3.7)

and � i is the uncertainty of the i th measurement. Following González-Morán et al. (2019),�

has the form

� =
q

� 2
stat + � 2

sys; (3.8)

where the statistical uncertainties are

� 2
stat = 6:25

�
� 2

log f + � 2� 2
log � + � 2

� (log � )2 + � 2



�
+

�
@�th
@z

� 2

� 2
z: (3.9)

Following González-Morán et al. (2019) we do not account for systematic uncertainties in

our analysis, so the uncertainty on the Hii G measurements consists entirely of the statistical

uncertainty (so that � = � stat ).6 The reader should also note here that although the theoretical

statistical uncertainty depends our cosmological model parameters (through the theoretical

6A systematic error budget for H ii G data is available in the literature, however; see Chávez et al. (2016).
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distance modulus� th = � th (p; z)), the e�ect of this model-dependence on the parameter

constraints is negligible for the current data.7

For H (z), the likelihood function is

L H = e� � 2
H =2; (3.10)

where

� 2
H(p) =

31X

i =1

[H th (p; zi ) � Hobs(zi )]2

� 2
i

; (3.11)

and � i is the uncertainty of Hobs(zi ).

For the BAO data, the likelihood function is

L BAO = e� � 2
BAO =2; (3.12)

and for the uncorrelated BAO data (lines 7-9 in Table 3.1) the� 2 function takes the form

� 2
BAO (p) =

3X

i =1

[A th (p; zi ) � Aobs(zi )]2

� 2
i

; (3.13)

whereA th and Aobs are, respectively, the theoretical and observational quantities as listed in

Table 3.1, and� i corresponds to the uncertainty ofAobs(zi ). For the correlated BAO data,

the � 2 function takes the form

� 2
BAO (p) = [ A th (p) � Aobs(zi )]T C � 1[A th (p) � Aobs(zi )]; (3.14)

where superscriptsT and � 1 denote the transpose and inverse of the matrices, respectively.

7In contrast to our de�nition of � 2 in eq. (3.7), González-Morán et al. (2019) de�ned anH0-independent
� 2 function in their eq. (27) and weighted this � 2 function by 1=�2

stat (where � 2
stat is given by their eq. (15))

which we do not do. This procedure is discussed in the literature (Fernández Arenas et al., 2018; Melnick
et al., 2017), and when we use it we �nd that it leads to a reduced� 2 identical to that given in González-
Morán et al. (2019) (being less than 2 but greater than 1) without having a noticeable e�ect on the shapes
or peak locations of our posterior likelihoods (hence providing very similar best-�tting values and error bars
of the cosmological model parameters). As discussed below, with our� 2 de�nition we �nd reduced � 2 values
� 2:75. González-Morán et al. (2019) note that an accounting of systematic uncertainties could decrease the
reduced� 2 values towards unity.
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The covariance matrixC for the BAO data, taken from Alam et al. (2017), is given in eq.

(20) of Ryan et al. (2019), while for the BAO data from de Sainte Agathe et al. (2019),

C =

2

6
4

0:0841 � 0:183396

� 0:183396 3:4596

3

7
5 : (3.15)

For QSO, the likelihood function is

L QSO = e� � 2
QSO =2; (3.16)

and the � 2 function takes the form

� 2
QSO(p) =

120X

i =1

�
� th (p; zi ) � � obs(zi )

� i + 0:1� obs(zi )

� 2

; (3.17)

where� th (p; zi ) and � obs(zi ) are theoretical and observed values of the angular size at redshift

zi , respectively, and� i is the uncertainty of � obs(zi ) (see Ryan et al., 2019 for more details).

For the joint analysis of these data, the total likelihood function is obtained by multiplying

the individual likelihood functions (that is, eqs. (3.6), (3.10), (3.12), and (3.16)) together in

various combinations. For example, forH (z), BAO, and QSO data, we have

L = L HL BAO L QSO: (3.18)

We also use the Akaike Information Criterion (AIC ) and Bayesian Information Criterion

(BIC ) to compare the goodness of �t of models with di�erent numbers of parameters, where

AIC = � 2 lnL max + 2n � � 2
min + 2n; (3.19)

and

BIC = � 2 lnL max + n ln N � � 2
min + n ln N: (3.20)
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In these two equations,L max refers to the maximum value of the given likelihood function,

� 2
min refers to the corresponding minimum� 2 value, n is the number of parameters of the

given model, andN is the number of data points (for example for Hii G we haveN = 153,

etc.).

3.4 Results

3.4.1 H ii G constraints

We present the posterior one-dimensional (1D) probability distributions and two-dimensional

(2D) con�dence regions of the cosmological parameters for the six �at and non-�at models

in Figs. 3.1�3.6, in gray. The unmarginalized best-�tting parameter values are listed in

Table 3.2, along with the corresponding� 2, AIC , BIC , and degrees of freedom� (where

� � N � n). The marginalized best-�tting parameter values and uncertainties (� 1� error

bars or 2� limits) are given in Table 3.3.8

From the �t to the H ii G data, we see that most of the probability lies in the part of

the parameter space corresponding to currently-accelerating cosmological expansion (see the

gray contours in Figs. 3.1�3.6). This means that the Hii G data favor currently-accelerating

cosmological expansion,9 in agreement with supernova Type Ia, BAO,H (z), and other cos-

mological data.

From the H ii G data, we �nd that the constraints on the non-relativistic matter density

parameter 
 m0 are consistent with other estimates, ranging between a high of0:300+0 :106
� 0:083

(�at XCDM) and a low of 
 m0 = 0:210+0 :043
� 0:092 (�at � CDM).

The H ii G data constraints onH0 in Table 3.3 are consistent with the estimate ofH0 =

71:0� 2:8(stat:) � 2:1(sys:) km s� 1 Mpc� 1made by Fernández Arenas et al. (2018) based on a

compilation of Hii G measurements that di�ers from what we have used here. The Hii G H0

constraints listed in Table 3.3 are also consistent with other recent measurements ofH0, being

8We plot these �gures by using the Python package GetDist (Lewis, 2019), which we also use to compute
the central values (posterior means) and uncertainties of the cosmological parameters listed in Table 3.3.

9Although a full accounting of the systematic uncertainties in the H ii G data could weaken this conclusion.
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between0:90� (�at XCDM) and 1:56� (non-�at � CDM) lower than the recent local expansion

rate measurement ofH0 = 74:03 � 1:42 km s� 1 Mpc� 1(Riess et al., 2019),10 and between

0:78� (non-�at � CDM) and 1:13� (�at XCDM) higher than the median statistics estimate

of H0 = 68 � 2:8 km s� 1 Mpc� 1(Chen & Ratra, 2011),11 with our measurements ranging

from a low ofH0 = 70:60+1 :68
� 1:84 km s� 1 Mpc� 1(non-�at � CDM) to a high of H0 = 71:85� 1:96

km s� 1 Mpc� 1(�at XCDM).

As for spatial curvature, from the marginalized 1D likelihoods in Table 3.3, for non-

�at � CDM, non-�at XCDM, and non-�at � CDM, we measure
 k0 = 0:094+0 :237
� 0:363,

12 
 k0 =

0:011+0 :457
� 0:460, and 
 k0 = 0:291+0 :348

� 0:113, respectively. From the marginalized likelihoods, we see

that non-�at � CDM and XCDM models are consistent with all three spatial geometries,

while non-�at � CDM favors the open case at 2.58� . However, this seems to be a little

odd, especially for non-�at� CDM, considering their unmarginalized best-�tting 
 k0's are all

negative (see Table 3.2).

The �ts to the H ii G data are consistent with dark energy being a cosmological constant

but don't rule out dark energy dynamics. For �at (non-�at) XCDM, wX = � 1:180+0 :560
� 0:330

(wX = � 1:125+0 :537
� 0:321), which are both within 1� of wX = � 1. For �at (non-�at) � CDM, 2�

upper limits of � are � < 2:784(� < 4:590), with the 1D likelihood functions, in both cases,

peaking at � = 0.

Current H ii G data do not provide very restrictive constraints on cosmological model

parameters, but when used in conjunction with other cosmological data they can help tighten

the constraints.
10Note that other local expansion rate measurements are slightly lower with slightly larger error bars

(Dhawan et al., 2018; Fernández Arenas et al., 2018; Freedman et al., 2019, 2020; Rameez & Sarkar, 2021;
Rigault et al., 2015; Zhang et al., 2017).

11This is consistent with earlier median statistics estimates (Chen et al., 2003; Gott et al., 2001) and
also with a number of recentH0 measurements (Chen et al., 2017; Cuceu et al., 2019; DES Collaboration,
2018; Domínguez et al., 2019; Gómez-Valent & Amendola, 2018; Haridasu et al., 2018; Lin & Ishak, 2021;
Martinelli & Tutusaus, 2019; Planck Collaboration, 2020; Schöneberg et al., 2019; Zeng & Yan, 2019; Zhang,
2018; Zhang & Huang, 2019).

12Since
 k0 = 1 � 
 m0 � 
 � , in the non-�at � CDM model analysis we replace
 � with 
 k0 in the MCMC
chains of f H0; 
 m0 ; 
 � g to obtain new chains of f H0; 
 m0 ; 
 k0 g and so measure
 k0 central values and
uncertainties. A similar procedure, based on
 � = 1 � 
 m0 , is used to measure
 � in the �at � CDM model.
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(a) Full parameter range (b) Zoom in

Figure 3.1: 1� , 2� , and 3� con�dence contours for �at � CDM, where the right panel is the
comparison zoomed in. The black dotted line is the zero-acceleration line, which divides
the parameter space into regions associated with currently accelerated (below) and currently
decelerated (above) cosmological expansion.

3.4.2 H (z), BAO, and H ii G (HzBH) constraints

The H ii G constraints discussed in the previous subsection are consistent with constraints

from most other cosmological data, so it is appropriate to use the Hii G data in conjunction

with other data to constrain parameters. In this subsection we perform a full analysis ofH (z),

BAO, and H ii G (HzBH) data and derive tighter constraints on cosmological parameters.

The 1D probability distributions and 2D con�dence regions of the cosmological parame-

ters for the six �at and non-�at models are shown in Figs. 3.1�3.6, in red. The best-�tting

results and uncertainties are listed in Tables 3.2 and 3.3.

When we �t our cosmological models to the HzBH data we �nd that the measured values

of the matter density parameter
 m0 fall within a narrower range in comparison to the Hii G

only case, being between0:314� 0:015(non-�at � CDM) and 0:323+0 :014
� 0:016 (�at � CDM).

Similarly, the measured values ofH0 also fall within a narrower range when our models

are �t to the HzBH data combination (and are in better agreement with the median statistics
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Table 3.2: Unmarginalized best-�tting parameter values for all models from various combinations of data.

Model Data set 
 m0 
 � 
 k0 wX � H 0
a � 2 AIC BIC �

Flat � CDM H ii G 0.276 0.724 � � � 71.81 410.75 414.75 420.81 151
H (z) + BAO + H ii G 0.318 0.682 � � � 69.22 434.29 438.29 444.84 193
H (z) + BAO + QSO 0.315 0.685 � � � 68.61 372.88 376.88 383.06 160

H (z) + BAO + QSO + H ii G 0.315 0.685 � � � 69.06 786.50 790.50 798.01 313

Non-�at � CDM H ii G 0.312 0.998 � 0:310 � � 72.35 410.44 416.44 425.53 150
H (z) + BAO + H ii G 0.313 0.718 � 0:031 � � 70.24 433.38 439.38 449.19 192
H (z) + BAO + QSO 0.311 0.665 0.024 � � 68.37 372.82 378.82 388.08 159

H (z) + BAO + QSO + H ii G 0.309 0.716 � 0:025 � � 69.82 785.79 791.79 803.05 312

Flat XCDM H ii G 0.249 � � � 0:892 � 71.65 410.72 416.72 425.82 150
H (z) + BAO + H ii G 0.314 � � � 1:044 � 69.94 433.99 439.99 449.81 192
H (z) + BAO + QSO 0.322 � � � 0:890 � 66.62 371.95 377.95 387.21 159

H (z) + BAO + QSO + H ii G 0.311 � � � 1:045 � 69.80 786.19 792.19 803.45 312

Non-�at XCDM H ii G 0.104 � � 0:646 � 0:712 � 72.61 407.69 415.69 427.81 149
H (z) + BAO + H ii G 0.322 � � 0:117 � 0:878 � 66.67 432.85 440.85 453.94 191
H (z) + BAO + QSO 0.322 � � 0:112 � 0:759 � 65.80 370.68 378.68 391.03 158

H (z) + BAO + QSO + H ii G 0.310 � � 0:048 � 0:957 � 69.53 785.70 793.70 808.71 311

Flat � CDM H ii G 0.255 � � � 0.261 71.70 410.70 416.70 425.80 150
H (z) + BAO + H ii G 0.318 � � � 0.011 69.09 434.36 440.36 450.18 192
H (z) + BAO + QSO 0.321 � � � 0.281 66.82 372.05 378.05 387.31 159

H (z) + BAO + QSO + H ii G 0.315 � � � 0.012 68.95 786.58 792.58 803.84 312

Non-�at � CDM H ii G 0.114 � � 0:437 � 2.680 72.14 409.91 417.91 430.03 149
H (z) + BAO + H ii G 0.321 � � 0:132 � 0.412 69.69 432.75 440.75 453.84 191
H (z) + BAO + QSO 0.317 � � 0:106 � 0.778 66.27 370.83 378.83 391.18 158

H (z) + BAO + QSO + H ii G 0.310 � � 0:054 � 0.150 69.40 785.65 793.65 808.66 311
a km s� 1 Mpc� 1.
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Table 3.3: One-dimensional marginalized best-�tting parameter values and uncertainties (� 1� error bars or2� limits) for all models from
various combinations of data.

Model Data set 
 m0 
 � 
 k0 wX � H 0
a

Flat � CDM H ii G 0:289+0 :053
� 0:071 � � � � 71:70� 1:83

H (z) + BAO + H ii G 0:319+0 :014
� 0:015 � � � � 69:23� 0:74

H (z) + BAO + QSO 0:316+0 :013
� 0:014 � � � � 68:60� 0:68

H (z) + BAO + QSO + H ii G 0:315+0 :013
� 0:012 � � � � 69:06+0 :63

� 0:62

Non-�at � CDM H ii G 0:275+0 :081
� 0:078 > 0:501b 0:094+0 :237

� 0:363 � � 71:50+1 :80
� 1:81

H (z) + BAO + H ii G 0:314� 0:015 0:714+0 :054
� 0:049 � 0:029+0 :049

� 0:048 � � 70:21� 1:33
H (z) + BAO + QSO 0:313+0 :013

� 0:015 0:658+0 :069
� 0:060 0:029+0 :056

� 0:063 � � 68:29� 1:47
H (z) + BAO + QSO + H ii G 0:310� 0:013 0:711+0 :053

� 0:048 � 0:021+0 :044
� 0:048 � � 69:76+1 :12

� 1:11

Flat XCDM H ii G 0:300+0 :106
� 0:083 � � � 1:180+0 :560

� 0:330 � 71:85� 1:96
H (z) + BAO + H ii G 0:315+0 :016

� 0:017 � � � 1:052+0 :092
� 0:082 � 70:05� 1:54

H (z) + BAO + QSO 0:322+0 :015
� 0:016 � � � 0:911+0 :122

� 0:098 � 66:98+1 :95
� 2:30

H (z) + BAO + QSO + H ii G 0:312� 0:014 � � � 1:053+0 :091
� 0:082 � 69:90� 1:48

Non-�at XCDM H ii G 0:275+0 :084
� 0:125 � 0:011+0 :457

� 0:460 � 1:125+0 :537
� 0:321 � 71:71+2 :07

� 2:08
H (z) + BAO + H ii G 0:318� 0:019 � � 0:082+0 :135

� 0:119 � 0:958+0 :219
� 0:098 � 69:83+1 :50

� 1:62
H (z) + BAO + QSO 0:320� 0:015 � � 0:078+0 :124

� 0:112 � 0:826+0 :185
� 0:088 � 66:29+1 :90

� 2:35
H (z) + BAO + QSO + H ii G 0:309+0 :015

� 0:014 � � 0:025� 0:092 � 1:022+0 :208
� 0:104 � 69:68+1 :49

� 1:64

Flat � CDM H ii G 0:210+0 :043
� 0:092 � � � < 2:784 71:23+1 :79

� 1:80
H (z) + BAO + H ii G 0:323+0 :014

� 0:016 � � � < 0:411 68:36+1 :05
� 0:86

H (z) + BAO + QSO 0:324+0 :014
� 0:015 � � � 0:460+0 :116

� 0:440 66:03+1 :79
� 1:42

H (z) + BAO + QSO + H ii G 0:319� 0:013 � � � < 0:411 68:18+0 :97
� 0:75

Non-�at � CDM H ii G < 0:321 � 0:291+0 :348
� 0:113 � < 4:590 70:60+1 :68

� 1:84
H (z) + BAO + H ii G 0:322+0 :015

� 0:016 � � 0:153+0 :114
� 0:079 � 0:538+0 :151

� 0:519 69:39� 1:37
H (z) + BAO + QSO 0:319+0 :013

� 0:015 � � 0:103+0 :111
� 0:091 � 0:854+0 :379

� 0:594 65:94+1 :75
� 1:73

H (z) + BAO + QSO + H ii G 0:313+0 :012
� 0:014 � � 0:098+0 :082

� 0:061 � < 0:926 68:83� 1:23
a km s� 1 Mpc� 1.
b This is the 1� lower limit. The 2� lower limit is set by the prior, and is not shown here.
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(a) Full parameter range (b) Zoom in

Figure 3.2: Same as Fig. 3.1 but for non-�at� CDM. The cyan dash-dot line represents
the �at case, with closed spatial hypersurfaces to the upper right. The black dotted line is
the zero-acceleration line, which divides the parameter space into regions associated with
currently accelerated (above left) and currently decelerated (below right) cosmological ex-
pansion.
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(a) Full parameter range (b) Zoom in

Figure 3.3: 1� , 2� , and 3� con�dence contours for �at XCDM. The black dotted line is
the zero-acceleration line, which divides the parameter space into regions associated with
currently accelerated (below left) and currently decelerated (above right) cosmological ex-
pansion. The magenta lines denotewX = � 1, i.e. the �at � CDM model.
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(a) Full parameter range (b) Zoom in

Figure 3.4: Same as Fig. 3.3 but for non-�at XCDM, where the zero acceleration lines in
each of the three subpanels are computed for the third cosmological parameter set to the
H ii G data only best-�tting values listed in Table 3.2. Currently-accelerated cosmological
expansion occurs below these lines. The cyan dash-dot lines represent the �at case, with
closed spatial hypersurfaces either below or to the left. The magenta lines indicatewX = � 1,
i.e. the non-�at � CDM model.
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(a) Full parameter range (b) Zoom in

Figure 3.5: 1� , 2� , and 3� con�dence contours for �at � CDM. The black dotted zero-
acceleration line splits the parameter space into regions of currently accelerated (below left)
and currently decelerated (above right) cosmological expansion. The� = 0 axis is the �at
� CDM model.
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(a) Full parameter range (b) Zoom in

Figure 3.6: Same as Fig. 3.5 but for non-�at� CDM, where the zero-acceleration lines in each
of the subpanels are computed for the third cosmological parameter set to the Hii G data
only best-�tting values listed in Table 3.2. Currently-accelerating cosmological expansion
occurs below these lines. The cyan dash-dot lines represent the �at case, with closed spatial
geometry either below or to the left. The� = 0 axis is the non-�at � CDM model.
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estimate of H0 from Chen & Ratra, 2011 than with the local measurement carried out by

Riess et al., 2019; this is because theH (z) and BAO data favor a lowerH0 value) being

betweenH0 = 68:36+1 :05
� 0:86 km s� 1 Mpc� 1(�at � CDM) and 70:21� 1:33 km s� 1 Mpc� 1(non-�at

� CDM). We assume that the tension between early- and late-Universe measurements ofH0

is not a major issue here, because the 2D and 1D contours in Fig. 3.1 overlap, and so we

compute a combinedH0 value (but if one is concerned about the early- vs late-UniverseH0

tension then one should not compare our combined-dataH0's here, and in Secs. 3.4.3 and

3.4.4, directly to the measurements of Riess et al., 2019 or of Planck Collaboration, 2020).

In contrast to the H ii G only cases, when �t to the HzBH data combination the non-

�at models mildly favor closed spatial hypersurfaces. This is because theH (z) and BAO

data mildly favor closed spatial hypersurfaces; see, e.g. Park & Ratra (2019b) and Ryan

et al. (2019). For non-�at � CDM, non-�at XCDM, and non-�at � CDM, we �nd 
 k0 =

� 0:029+0 :049
� 0:048, 
 k0 = � 0:082+0 :135

� 0:119, and 
 k0 = � 0:153+0 :114
� 0:079, respectively, with the non-�at

� CDM model favoring closed spatial hypersurfaces at 1.34� .

The �t to the HzBH data combination produces weaker evidence for dark energy dynamics

(in comparison to the Hii G only case) with tighter error bars on the measured values ofwX

and � . For �at (non-�at) XCDM, wX = � 1:052+0 :092
� 0:082 (wX = � 0:958+0 :219

� 0:098), with wX = � 1

still being within the 1� range. For �at (non-�at) � CDM, � < 0:411(� = 0:538+0 :151
� 0:519), where

the former is peaked at� = 0 but for the latter, � = 0 is just out of the 1� range.

3.4.3 H (z), BAO, and QSO (HzBQ) constraints

The H (z), BAO, and QSO (HzBQ) data combination has previously been studied (Ryan

et al., 2019). Relative to that analysis, we use an updated BAO data compilation, a more

accurate formula forr s, and the MCMC formalism (instead of the grid-based� 2 approach);

consequently the parameter constraints derived here slightly di�er from those of Ryan et al.

(2019).

The 1D probability distributions and 2D con�dence regions of the cosmological param-

eters for all models are presented in Figs. 3.1�3.6, in green. The corresponding best-�tting
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results and uncertainties are listed in Tables 3.2 and 3.3.

The measured values of
 m0 here fall within a similar range to the range quoted in the

last subsection, being between0:313+0 :013
� 0:015 (non-�at � CDM) and 0:324+0 :014

� 0:015 (�at � CDM).

This range is larger than, but still consistent with, the range of
 m0 reported in Ryan et al.

(2019), where the same models are �t to the HzBQ data combination.

The H0 measurements in this case fall within a broader range than in the HzBH case,

being between65:94+1 :75
� 1:73 km s� 1 Mpc� 1(non-�at � CDM) and 68:60� 0:68 km s� 1 Mpc� 1(�at

� CDM). In addition, they are lower than the corresponding measurements in the HzBH cases,

and are in better agreement with the median statistics (Chen & Ratra, 2011) estimate ofH0

than with what is measured from the local expansion rate (Riess et al., 2019). Compared

with Ryan et al. (2019), the central values are lower except for the non-�at XCDM model.

For non-�at � CDM, non-�at XCDM, and non-�at � CDM, we measure
 k0 = 0:029+0 :056
� 0:063,


 k0 = � 0:078+0 :124
� 0:112, and 
 k0 = � 0:103+0 :111

� 0:091, respectively. These results are consistent

with their unmarginalized best-�ttings (see Table 3.2), where the best-�tting to the non-�at

� CDM model favors open spatial hypersurfaces, and the best-�ttings to the non-�at XCDM

parametrization and the non-�at � CDM model both favor closed spatial hypersurfaces. Note

that the central values are larger than those of Ryan et al. (2019), especially for non-�at

� CDM (positive instead of negative). In all three models the constraints are consistent with

�at spatial hyperfurfaces.

The �t to the HzBQ data combination provides slightly stronger evidence for dark energy

dynamics than does the �t to the HzBH data combination. For �at (non-�at) XCDM, wX =

� 0:911+0 :122
� 0:098 (wX = � 0:826+0 :185

� 0:088), with the former barely within 1� of wX = � 1 and the latter

almost 2� away from wX = � 1. For �at (non-�at) � CDM, � = 0:460+0 :116
� 0:440 (� = 0:854+0 :379

� 0:594),

with the former 1.05� and the latter 1.44� away from the � = 0 cosmological constant.

In comparison with Ryan et al. (2019), central values ofwX are larger and smaller for �at

and non-�at XCDM models, respectively, and that of� are larger for both �at and non-�at

� CDM models.
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3.4.4 H (z), BAO, QSO, and H ii G (HzBQH) constraints

Comparing the results of the previous two subsections, we see that when used in conjunction

with H (z) and BAO data, the QSO data result in tighter constraints on
 m0 , 
 k0 (in non-�at

XCDM), wX (in non-�at XCDM), and H0 (in �at � CDM), while the H ii G data result in

tighter constraints on H0 (except for �at � CDM), 
 � , 
 k0 (in non-�at � CDM and � CDM),

wX (in �at XCDM), and � . Consequently, it is useful to derive constraints from an analysis

of the combinedH (z), BAO, QSO, and Hii G (HzBQH) data. We present the results of such

an analysis in this subsection.

In Figs. 3.1�3.6, we present the 1D probability distributions and 2D con�dence con-

straints for the HzBQH cases in blue. Tables 3.2 and 3.3 list the best-�tting results and

uncertainties.

It is interesting that the best-�tting values of 
 m0 in this case are lower compared with

both the HzBQ and the HzBH results, being between0:309+0 :015
� 0:014 (non-�at XCDM) and

0:319� 0:013 (�at � CDM). The best-�tting values of H0 are higher than the HzBQ cases

and have central values that are closer to those of the HzBH cases, but are still in better

agreement with the lower median statistics estimate ofH0 (Chen & Ratra, 2011) than the

higher local expansion rate measurement ofH0 (Riess et al., 2019), being between68:18+0 :97
� 0:75

km s� 1 Mpc� 1(�at � CDM) and 69:90� 1:48 km s� 1 Mpc� 1(�at XCDM).

For non-�at � CDM, non-�at XCDM, and non-�at � CDM, we measure
 k0 = � 0:021+0 :044
� 0:048,


 k0 = � 0:025� 0:092, and 
 k0 = � 0:098+0 :082
� 0:061, respectively. For non-�at � CDM and XCDM,

the measured values of the curvature energy density parameter are within 0.48� and 0.27�

of 
 k0 = 0, respectively, while the non-�at � CDM model favors a closed geometry with an


 k0 that is 1.20� away from zero.

There is not much evidence in support of dark energy dynamics in the HzBQH case,

with � consistent with this data combination. For �at (non-�at) XCDM, wX = � 1:053+0 :091
� 0:082

(wX = � 1:022+0 :208
� 0:104). For �at (non-�at) � CDM, the 2� upper limits are � < 0:411 (� <

0:926), which indicates that � = 0 or � is consistent with these data.
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Table 3.4: � � 2, � AIC , � BIC , and � 2
min =� values.

Quantity Data set Flat � CDM Non-�at � CDM Flat XCDM Non-�at XCDM Flat � CDM Non-�at � CDM
H ii G 3.06 2.75 3.03 0.00 3.01 2.22

� � 2 H (z) + BAO + H ii G 1.54 0.63 1.24 0.10 1.61 0.00
H (z) + BAO + QSO 2.20 2.14 1.27 0.00 1.37 0.15

H (z) + BAO + QSO + H ii G 0.85 0.14 0.54 0.05 0.93 0.00

H ii G 0.00 1.69 1.97 0.94 1.95 3.16
� AIC H (z) + BAO + H ii G 0.00 1.09 1.70 2.56 2.07 2.46

H (z) + BAO + QSO 0.00 1.94 1.07 1.80 1.17 1.95
H (z) + BAO + QSO + H ii G 0.00 1.29 1.69 3.20 2.08 3.15

H ii G 0.00 4.72 5.01 7.00 4.99 9.22
� BIC H (z) + BAO + H ii G 0.00 4.35 4.97 9.10 5.34 9.00

H (z) + BAO + QSO 0.00 5.02 4.15 7.97 4.25 8.12
H (z) + BAO + QSO + H ii G 0.00 5.04 5.44 10.70 5.83 10.65

H ii G 2.72 2.74 2.74 2.74 2.74 2.75
� 2

min =� H (z) + BAO + H ii G 2.25 2.26 2.26 2.27 2.26 2.27
H (z) + BAO + QSO 2.33 2.34 2.34 2.35 2.34 2.35

H (z) + BAO + QSO + H ii G 2.51 2.52 2.52 2.53 2.52 2.53

3.4.5 Model comparison

From Table 3.4, we see that the reduced� 2 for all models is relatively large (being between

2.25 and 2.75). This could probably be attributed to underestimated systematic uncertainties

in the H ii G data.13 This is suggested by González-Morán et al. (2019), who also found

relatively large values of� 2=� in their cosmological model �ts to the Hii G data (though not

as large as ours, because they compute a di�erent� 2, as explained in footnote 7 in Section

3.3). They note that an additional systematic uncertainty of� 0:22 could bring their � 2=�

down to � 1. As mentioned previously, we do not account for Hii G systematic uncertainties

in our analysis.

One thing that is clear, regardless of the absolute size of Hii G or QSO systematics (and

ignoring the large values of� 2=� ), is that the �at � CDM model remains the most favored

model among the six models we studied, based on theAIC andBIC criteria (see Table 3.4).14

In Table 3.4 we de�ne� � 2, � AIC , and � BIC , respectively, as the di�erences between the

values of the� 2, AIC , and BIC associated with a given model and their corresponding

13Underestimated systematic uncertainties might also explain the large reduced� 2 of QSO data (Ryan
et al., 2019).

14Note that based on the � � 2 results of Table 3.4 non-�at XCDM has the minimum � 2 in the H ii G and
HzBQ cases, whereas non-�at� CDM has the minimum � 2 for the HzBH and HzBQH cases. The� � 2 values
do not, however, penalize a model for having more parameters.
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minimum values among all models.

From the H ii G results for � AIC and � BIC listed in Table 3.4, we see that the evidence

against non-�at � CDM, �at XCDM, and �at � CDM is weak (according to� AIC ) and

positive (according to � BIC ) where, among these three models, the �at XCDM model is

the least favored. The evidence against the non-�at XCDM model is weak regarding� AIC

but strong based on� BIC , while the evidence against non-�at� CDM in this case is positive

(� AIC ) and strong (� BIC ), respectively, with it being the least favored model overall.

Largely similar conclusions result from� AIC and � BIC values for the Hii G and HzBQ

data. The exception is that the HzBQ� AIC value gives only weak evidence against non-�at

� CDM, instead of the positive evidence against it from the Hii G � AIC value.

The HzBH and HzBQH values of� AIC and � BIC result in the following conclusions:

1) the evidence against both non-�at� CDM and �at XCDM is weak (HzBH) and positive

(HzBQH) for � AIC and � BIC ;

2) the evidence against �at� CDM is positive;

3) non-�at XCDM is the least favored model with non-�at � CDM doing almost as badly.

� AIC gives positive evidence against non-�at XCDM and non-�at� CDM, while � BIC

strongly disfavors (HzBH) and very strongly disfavors (HzBQH) both of these non-�at mod-

els.

3.5 Conclusions

In this paper, we have constrained cosmological parameters in six �at and non-�at cosmo-

logical models by analyzing a total of 315 observations, comprising 31H (z), 11 BAO, 120

QSO, and 153 Hii G measurements. The QSO angular size and Hii G apparent magnitude

measurements are particularly noteworthy, as they reach toz � 2:7 and z � 2:4 respectively

(somewhat beyond the highestz � 2:3 reached by BAO data) and into a much less studied

area of redshift space. While the current Hii G and QSO data do not provide very restrictive

constraints, they do tighten the limits when they are used in conjunction with BAO +H (z)

data.
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By measuring cosmological parameters in a variety of cosmological models, we are able

to draw some relatively model-independent conclusions (i.e. conclusions that do not dif-

fer signi�cantly between the di�erent models). Speci�cally, for the full data set (i.e the

HzBQH data), we �nd quite restrictive constraints on 
 m0, a reasonable summary perhaps

being 
 m0 = 0:310� 0:013, in good agreement with many other recent estimates.H0 is

also fairly tightly constrained, with a reasonable summary perhaps beingH0 = 69:5 � 1:2

km s� 1 Mpc� 1, which is in better agreement with the results of Chen & Ratra (2011) and

Planck Collaboration (2020) than that of Riess et al. (2019). The HzBQH measurements are

consistent with the standard spatially-�at � CDM model, but do not strongly rule out mild

dark energy dynamics or a little spatial curvature energy density. More and better-quality

H ii G, QSO, and other data atz � 2�4 will signi�cantly help to test these extensions.

57



Chapter 4

Cosmological constraints from

higher-redshift gamma-ray burst, H ii

starburst galaxy, and quasar (and other)

data

This chapter is based on Cao et al. (2021a). Figures and tables by Shulei Cao, from analyses

conducted independently by Shulei Cao, Joseph Ryan, and Narayan Khadka.

4.1 Introduction

There is a large body of evidence indicating that the Universe recently transitioned from a

decelerated to an accelerated phase of expansion (at redshiftz � 3=4; see e.g. Farooq et al.,

2017) and has been undergoing accelerated expansion ever since (for reviews, see e.g. Coley

& Ellis, 2020; Martin, 2012; Ratra & Vogeley, 2008). In the standard model of cosmology,

called the� CDM model (Peebles, 1984), the accelerated expansion is powered by a constant

dark energy density (the cosmological constant,� ). This model also assumes that spatial

hypersurfaces are �at on cosmological scales, and that the majority of non-relativistic matter
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in the Universe consists of cold dark matter (CDM).

Out of all the models that have been devised to explain the observed accelerated expan-

sion of the Universe, the� CDM model is currently the most highly favored in terms of both

observational data and theoretical parsimony (see e.g. eBOSS Collaboration, 2021; Farooq

et al., 2017; Planck Collaboration, 2020; Scolnic et al., 2018). In spite of these virtues,

however, there are some indications that the� CDM model may not tell the whole story.

On the observational side, some workers have found evidence of discrepancies between the

� CDM model and cosmological observations (Martinelli & Tutusaus, 2019; Riess, 2019) and

on the theoretical side, the origin of� has yet to be explained in fundamental terms (e.g.,

Martin, 2012). One way to pin down the nature of dark energy is by studying its dynamics

phenomenologically. It is possible that the dark energy density may evolve in time (Peebles

& Ratra, 1988), and many dark energy models exhibiting this behavior have been proposed.

Cosmological models have largely been tested in the redshift range0 . z . 2:3, with

baryon acoustic oscillation (BAO1) measurements probing the upper end of this range, and

at z � 1100, using cosmic microwave background (CMB) anisotropy data. To determine the

accuracy of our cosmological models, we also need to test them in the redshift range2:3 .

z . 1100. Quasar angular size (QSO-AS), Hii starburst galaxy (Hii G), quasar X-ray and

UV �ux (QSO-Flux), and gamma-ray burst (GRB) measurements are some of the handful of

data available in this range. The main goal of this paper is, therefore, to examine the e�ect

that QSO-AS, Hii G, and GRB data have on cosmological model parameter constraints, in

combination with each other, and in combination with more well-known probes.2

Gamma-ray bursts are promising cosmological probes for two reasons. First, it is believed

that they can be used as standardizable candles (Amati et al., 2002, 2008, 2009; Demianski

& Piedipalumbo, 2011; Ghirlanda et al., 2004; Lamb & Reichart, 2000, 2001; Wang et al.,

2015). Second, they cover a redshift range that is wider than most other commonly-used

cosmological probes, having been observed up toz � 8:2 (Amati et al., 2008, 2009, 2019;

1In our BAO data analyses in this paper the sound horizon computation assumes a value for the current
baryonic matter physical density parameter 
 b0 h2, appropriate for the model under study, computed from
Planck CMB anisotropy data.

2We relegate the analysis of QSO-Flux data to Appendix A, the reasons for which are discussed there.
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Demianski & Piedipalumbo, 2011; Demianski et al., 2017, 2021; Fana Dirirsa et al., 2019;

Khadka & Ratra, 2020c; Samushia & Ratra, 2010; Wang et al., 2016). In particular, thez �

2:7�8.2 part of the Universe is primarily accessed by GRBs,3 so if GRBs can be standardized,

they could provide useful information about a large, mostly unexplored, part of the Universe.

QSO-AS data currently reach toz � 2:7. These data, consisting of measurements of the

angular size of astrophysical radio sources, furnish a standard ruler that is independent of

that provided by the BAO sound horizon scale. The intrinsic linear sizelm of intermediate

luminosity QSOs has recently been accurately determined by Cao et al. (2017b), opening the

way for QSOs to, like GRBs, test cosmological models in a little-explored region of redshift

space.4

H ii G data reach toz � 2:4, just beyond the range of current BAO data. Measurements

of the luminosities of the Balmer lines in Hii galaxies can be correlated with the velocity

dispersion of the radiating gas, making Hii galaxies a standard candle that can comple-

ment both GRBs and lower-redshift standard candles like supernovae (Chávez et al., 2014;

González-Morán et al., 2019; Mania & Ratra, 2012; Plionis et al., 2009; Siegel et al., 2005).

Current QSO-Flux measurements reach toz � 5:1, but they favor a higher value of the

current (denoted by the subscript �0�) non-relativistic matter density parameter (
 m0 ) than

what is currently thought to be reasonable. The
 m0 values obtained using QSO-Flux data,

in a number of cosmological models, are in nearly 2� tension with the values obtained by

using other well-established cosmological probes like CMB, BAO, and Type Ia supernovae

(Khadka & Ratra, 2020b; Risaliti & Lusso, 2019; Wei & Melia, 2020; Yang et al., 2020).

Techniques for standardizing QSO-Flux measurements are still under development, so it

might be too early to draw strong conclusions about the cosmological constraints obtained

from QSO-Flux measurements. Therefore, in this paper, we use QSO-Flux data alone and in

combination with other data to constrain cosmological parameters in four di�erent models,

and record these results in Appendix A.

3Though QSO-Flux measurements can reach up toz � 5:1.
4The use of QSO-AS measurements to constrain cosmological models dates back to near the turn of the

century (e.g. Chen & Ratra, 2003; Gurvits et al., 1999; Lima & Alcaniz, 2002; Vishwakarma, 2001; Zhu &
Fujimoto, 2002), but, as discussed in Ryan et al. (2019), these earlier results are suspect, because they are
based on an inaccurate determination oflm .
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We �nd that the GRB, H ii G, and QSO-AS constraints are largely mutually consistent,

and that their joint constraints are consistent with those from more widely used, and more

restrictive, BAO and Hubble parameter (H (z)) data. When used jointly with the H (z) +

BAO data, these higher-z data tighten the H (z) + BAO constraints.

This paper is organized as follows. In Section 4.2 we introduce the data we use. The

models we analyze are described in Chapter 2, with a description of our analysis method

in Section 4.3. Our results are in Section 4.4. We provide our conclusions in Section 4.5.

Additionally, we discuss our results for QSO-Flux measurements in Appendix A.

4.2 Data

We use QSO-AS, Hii G, QSO-Flux, and GRB data to obtain constraints on the cosmological

models we study. The QSO-AS data, comprising 120 measurements compiled by Cao et al.

(2017b) (listed in Table 1 of that paper) and spanning the redshift range0:462� z � 2:73, are

also used in Ryan et al. (2019); see these papers for descriptions. The Hii G data, comprising

107 low redshift (0:0088� z � 0:16417) H ii G measurements, used in Chávez et al. (2014)

(recalibrated by González-Morán et al., 2019), and 46 high redshift (0:636427� z � 2:42935)

H ii G measurements, used in González-Morán et al. (2019), are also used in Cao et al. (2020).

The GRB data, spanning the redshift range0:48 � z � 8:2, are collected from Fana Dirirsa

et al. (2019) (25 from Table 2 of that paper (F10), and the remaining 94 from Table 5

of the same, which are a subset of those compiled by Wang et al., 2016) and also used in

Khadka & Ratra (2020c). Note that in our analyses here we did not use the correct value

of Ep = 871 � 123 keV for GRB081121, as discussed in Ref. Liu et al. (2022), although the

e�ects on the parameter constraints are small. We also add 1598 QSO-Flux measurements

spanning the redshift range0:036 � z � 5:1003, from Risaliti & Lusso (2019). These data

are used in Khadka & Ratra (2020b); see that paper for details. Results related to these

QSO-Flux data are discussed in Appendix A.

In order to be useful as cosmological probes, GRBs need to be standardized, and many

phenomenological relations have been proposed for this purpose (Amati et al., 2002, Ghirlanda
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et al., 2004, Liang & Zhang, 2005, Muccino, 2020, and references therein). As in Khadka

& Ratra (2020c), we use the Amati relation (Amati et al., 2002), which is an observed cor-

relation between the peak photon energyEp and the isotropic-equivalent radiated energy

E iso of long-duration GRBs, to standardize GRB measurements. There have been many at-

tempts to standardize GRBs using the Amati relation. Some analyses assume a �xed value

of 
 m0 to calibrate the Amati relation, so they favor a relatively reasonable value of
 m0 .

Others use supernovae data to calibrate the Amati relation, while some useH (z) data to

calibrate it. This means that most previous GRB analyses are a�ected by some non-GRB

external factors. In some cases this leads to a circularity problem, in which the models to be

constrained by using the Amati relation are also used to calibrate the Amati relation itself

(Demianski et al., 2017, 2021; Fana Dirirsa et al., 2019; Liu & Wei, 2015). In other cases,

the data used in the calibration process dominate the analysis results. To overcome these

problems, we �t the parameters of the Amati relation simultaneously with the parameters of

the cosmological models we study (as done in Khadka & Ratra, 2020c; also see Wang et al.,

2016).

The isotropic radiated energyE iso of a source in its rest frame at a luminosity distance

DL is

E iso =
4�D 2

L

1 + z
Sbolo; (4.1)

where Sbolo is the bolometric �uence, andDL (de�ned below) depends onz and on the

parameters of our cosmological models.E iso is connected to the source's peak energy output

Ep via the Amati relation (Amati et al., 2008, 2009)

logE iso = a + blogEp; (4.2)

wherea and b are free parameters that we vary in our model �ts.5 Note here that the peak

energyEp = (1 + z)Ep;obs whereEp;obs is the observed peak energy.

The correlation between Hii G luminosity (L) and velocity dispersion (� ) is shown in

5log = log10 is implied hereinafter.
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equation (3.1). One can test a cosmological model with parametersp by using it to compute

a theoretical distance modulus (3.5) and comparing this prediction to the distance modulus

computed from observational Hii G luminosity and �ux ( f ) data

� obs = 2:5 logL � 2:5 logf � 100:2; (4.3)

(González-Morán et al., 2019; Terlevich et al., 2015).

QSO-AS data can be used to test cosmological models by comparing the theoretical

angular size of the QSO

� th =
lm
DA

(4.4)

with its observed angular size� obs. In equation (4.4), lm is the characteristic linear size of

the QSO,6 and DA (de�ned below) is its angular size distance.

Underestimated systematic uncertainties for both Hii G and QSO-AS data might be

responsible for the large reduced� 2 (described in Sec. 4.4.4).

The transverse comoving distanceDM (p; z) is related to the luminosity distanceDL (p; z)

and the angular size distanceDA (p; z) through equation (1.102), and is a function ofz and

the parametersp as shown in equation (1.100).

We also useH (z) and BAO measurements to constrain cosmological parameters. The

H (z) data, 31 measurements spanning the redshift range0:070� z � 1:965, are compiled in

Table 2 of Ryan et al. (2018). The BAO data, 11 measurements spanning the redshift range

0:38 � z � 2:34, are listed in Table 1 of Cao et al. (2020).

Systematic errors that a�ect H (z) measurements include assumptions about the stellar

metallicity of the galaxies in which cosmic chronometers are found, progenitor bias, the

presence of a population of young stars in these galaxies, and assumptions about stellar

population synthesis models. These e�ects were studied in Moresco et al. (2012, 2016, 2018,

2020). Moresco et al. (2020) found that the dominant contribution to the systematic error

budget comes from the choice of stellar population synthesis model, which introduces an

6For the data sample we use, this quantity is equal to11:03� 0:25 pc; see Cao et al. (2017b).
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average systematic error of� 8:9% (though the authors say that this can be reduced to

� 4:5% by removing an outlier model from the analysis). The impacts of a population of

young stars and of the progenitor bias were found to be negligible in Moresco et al. (2012,

2018), and Moresco et al. (2020) found that the impact of a� 5�10% uncertainty in the

metallicity estimates produces a� 4�9% systematic error in theH (z) measurements.

The systematic uncertainties of BAO from Alam et al. (2017) (described in Sec. 7) are

included in their covariance matrix. The BAO data from Carter et al. (2018) is the combined

result of the 6dF Galaxy Survey1 (6dFGS) and the SDSS DR7 MGS, where the systematic

e�ects are described in detail in Jones et al. (2009) and Ross et al. (2015) (negligible),

respectively. As described in DES Collaboration (2019b), the BAO systematic uncertainty

is 15% of their statistical uncertainty and thus negligible. The same negligible systematic

e�ect applies to the BAO measurement from Ata et al. (2018). de Sainte Agathe et al.

(2019) added polynomial terms to the correlation function, so as to test the sensitivity of

the slowly-varying part of the correlation function to systematic e�ects. They found that

this shifted the BAO peak position by less than1� relative to its position in their �ducial

model.

4.3 Data Analysis Methodology

By using the python moduleemcee (Foreman-Mackey et al., 2013), we perform a Markov

chain Monte Carlo (MCMC) analysis to maximize the likelihood function,L , and thereby

determine the best-�tting values of the free parameters. The �at cosmological parameter

priors are the same as those used in Cao et al. (2020) and the �at priors of the parameters

of the Amati relation are non-zero over0 � � ext � 10 (described below),40 � a � 60, and

0 � b � 5.

The likelihood functions associated withH (z), BAO, H ii G, and QSO-AS data are de-

scribed in Cao et al. (2020). For GRB data, the natural log of its likelihood function
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(D'Agostini, 2005) is

ln L GRB = �
1
2

"

� 2
GRB +

119X

i =1

ln
�
2� (� 2

ext + � 2
yi

+ b2� 2
x i

)
�

#

; (4.5)

where

� 2
GRB =

119X

i =1

�
(yi � bxi � a)2

(� 2
ext + � 2

yi
+ b2� 2

x i
)

�
; (4.6)

x = log Ep

keV , � x =
� E p

Ep ln 10 , y = log E iso
erg , and � ext is the extrinsic scatter parameter, which

contains the unknown systematic uncertainty. For the GRB with� z uncertainty in z,

� 2
y =

�
� Sbolo

Sbolo ln 10

� 2

+

 
2(1 + z) @DM

@z + DM

(1 + z)DM ln 10
� z

! 2

; (4.7)

and for those without z uncertainties � z = 0 (the non-zero� z has a negligible e�ect on our

results).

The Akaike Information Criterion (AIC ) and the Bayesian Information Criterion (BIC )

are used to compare the goodness of �t of models with di�erent numbers of parameters,

where

AIC = � 2 lnL max + 2n; (4.8)

and

BIC = � 2 lnL max + n ln N: (4.9)

In these equations,L max is the maximum value of the relevant likelihood function,n is the

number of free parameters of the model under consideration, andN is the number of data

points (e.g., for GRBN = 119).
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(a) All parameters (b) Cosmological parameters zoom in

Figure 4.1: 1� , 2� , and 3� con�dence contours for �at � CDM, where the right panel is the
cosmological parameters comparison zoomed in. The black dotted lines in the left sub-panels
of the left panel are the zero-acceleration lines, which divide the parameter space into regions
associated with currently-accelerating (left) and currently-decelerating (right) cosmological
expansion.
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(a) All parameters (b) Cosmological parameters zoom in

Figure 4.2: Same as Fig. 4.1 but for non-�at� CDM. The cyan dash-dot line represents
the �at � CDM case, with closed spatial hypersurfaces to the upper right. The black dotted
line is the zero-acceleration line, which divides the parameter space into regions associated
with currently-accelerating (above left) and currently-decelerating (below right) cosmological
expansion.
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4.4 Results

4.4.1 H ii G, QSO-AS, and GRB constraints, individually

We present the posterior one-dimensional (1D) probability distributions and two-dimensional

(2D) con�dence regions of the cosmological and Amati relation parameters for the six �at

and non-�at models in Figs. 4.1�4.6, in gray (GRB), red (Hii G), and green (QSO-AS).

The unmarginalized best-�tting parameter values are listed in Table 4.1, along with the

corresponding� 2, � 2 lnL max , AIC , BIC , and degrees of freedom� (where � � N � n).7

The values of� � 2, � AIC , and � BIC reported in Table 4.1 are discussed in Section 4.4.4,

where we de�ne� � 2, � AIC , and � BIC , respectively, as the di�erences between the values

of the � 2, AIC , and BIC associated with a given model and their corresponding minimum

values among all models. The marginalized best-�tting parameter values and uncertainties

(� 1� error bars or 2� limits) are given in Table 4.2.8 From Table 4.2 we �nd that the

QSO-AS constraints on
 m0 are consistent with other results within a 1� range but with

large error bars, ranging from a low of0:329+0 :086
� 0:171 (�at � CDM) to a high of 0:364+0 :083

� 0:150 (�at

� CDM).

The QSO-AS constraints onH0 are betweenH0 = 61:91+2 :83
� 4:92 km s� 1 Mpc� 1(non-�at

� CDM) and H0 = 68:39+6 :14
� 8:98 km s� 1 Mpc� 1(�at XCDM), with large error bars and relatively

low values for non-�at XCDM and the � CDM models.

The non-�at models mildly favor open geometry, but are also consistent, given the large

error bars, with spatially-�at hypersurfaces (except for non-�at � CDM, where the open case

is favored at 2:76� ). For non-�at � CDM, non-�at XCDM, and non-�at � CDM, we �nd


 k0 = 0:017+0 :184
� 0:277, 
 k0 = 0:115+0 :466

� 0:293, and 
 k0 = 0:254+0 :304
� 0:092, respectively.9

The �ts to the QSO-AS data favor dark energy being a cosmological constant but do

not strongly disfavor dark energy dynamics. For �at (non-�at) XCDM, wX = � 1:161+0 :430
� 0:679

7Note that the � 2 values listed in Tables 4.1 and A.1 are computed from the best-�tting parameter values
and are not necessarily the minimum (especially when including GRB and QSO-Flux data).

8We use thepython packagegetdist (Lewis, 2019) to plot these �gures and compute the central values
(posterior means) and uncertainties of the free parameters listed in Table 4.2.

9From Table 4.2 we see that GRB data are also consistent with �at spatial geometry in the non-�at
� CDM and XCDM cases, but also favor, at 2:92� , open spatial geometry in the case of non-�at� CDM.

68



(wX = � 1:030+0 :593
� 0:548), and for �at (non-�at) � CDM, 2� upper limits of � are � < 2:841

(� < 4:752). In the former case, both results are within 1� of wX = � 1, and in the latter

case, both 1D likelihoods peak at� = 0.

Constraints on cosmological model parameters derived solely from Hii G data are dis-

cussed in Sec. 5.1 of Cao et al. (2020), while those derived from GRB data are described

in Sec. 5.1 of Khadka & Ratra (2020a) (though there are slight di�erences coming from the

di�erent treatments of H0 and the di�erent ranges of �at priors used there and here); both

are listed in Table 4.2 here. In contrast to the Hii G and QSO-AS data sets, the GRB data

alone cannot constrainH0 because there is a degeneracy between the intercept parameter

(a) of the Amati relation and H0; for consistency with the analyses of the Hii G and QSO-AS

data, we treat H0 as a free parameter in the GRB data analysis here.

Cosmological constraints obtained using the Hii G, QSO-AS, and GRB data sets are

mutually consistent, and are also consistent with those obtained from most other cosmological

probes. This is partially a consequence of the larger Hii G, QSO-AS, and GRB data error

bars, which lead to relatively weaker constraints on cosmological parameters when each

of these data sets is used alone (see Table 4.2). However, because the Hii G, QSO-AS,

and GRB constraints are mutually consistent, we may jointly analyze these data. Their

combined cosmological constraints will therefore be more restrictive than when they are

analyzed individually.

We note, from Figs. 4.1�4.6, that a signi�cant part of the likelihood of each of these three

data sets lies in the parameter space part with currently-accelerating cosmological expansion.

4.4.2 H ii G, QSO-AS, and GRB (HQASG) joint constraints

Because the Hii G, QSO-AS, and GRB contours are mutually consistent for all six of the

models we study, we jointly analyze these data to obtain HQASG constraints.

The 1D probability distributions and 2D con�dence regions of the cosmological and Amati

relation parameters from the HQASG data are in Figs. 4.1�4.6, in blue, Figs. 4.7�4.12, in

green, and panels (a) of Figs. A.4�A.4, in red. The best-�tting results and uncertainties are
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