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Abstract 

Agricultural development is an essential factor in the economic development of much of the 

developing world and comprises a significant element of foreign assistance portfolios. Over the 

last decade, there has seen a renewed interest in more credible estimates of the economic impacts 

of development programs, such as assistance to extension programs. We compare the estimation 

of technical efficiency to farm output and income as an outcome variable to evaluate the impact of 

development programs such as farm education and extension programs. We develop a simple 

theoretical model which shows that using technical efficiency as an outcome variable could be a 

viable alternative to more traditionally used outcome variables such as farm output and farm profit. 

We note that when farmers are capital constrained, extension programs can theoretically have a 

large efficiency effect despite a small or zero change in farm profits.  

If farm technical efficiency is used as an outcome variable, then it must be estimated correctly. 

Mismeasurement of farm technical efficiency leads to misleading extension program evaluations. 

Farm households face heterogeneous infrastructural constraints (Suri 2011; Ojiem et al. 2006), 

credit constraints, information barriers and other input market constraints (Duflo, Kremer and 

Robinson 2011; Jack 201; Suri 2011and Stifel and Minten 2008), labor markets constraints 

(Henning and Henningsen 2007), socio-economical (Ojiem et al. 2006) and non-farm income 

opportunities (Chang et al. 2012) and thus have different access to agricultural inputs and outputs. 

These constraints have a substantial impact on agricultural production decisions of farm 

households. A key production decision of farm households is the allocation of resource to cash 

and food crops. Production of cash crops requires relatively higher market involvement in both the 

purchase of inputs and the selling of output than home-consumed food crops.  The heterogeneous 

constraints across farm households leads to a substantial imbalance in the transaction costs 



 

 

associated with the production of each crop. Moreover, home-consumed crops may have quality 

attributes (e.g. color, taste, softness of dough, and suitability for certain dishes) not reflected in 

market prices. Factors such as transaction costs, crop quality attributes, and other factors such as 

household characteristics are farmer specific and drive a heterogeneous price wedge between the 

market prices for household’s crop production and the economic value of these crops for the 

household. These distinctions have important implication for farm productivity analysis, such as 

technical efficiency measurement.  

The standard approach to productivity analysis, such as efficiency estimation, assume that farm 

households face homogenous price wedges that leads to homogenous set of production and profit 

functions.  However, the price gap created by transaction costs, crop quality attributes, and other 

factors such as household characteristics generally vary among subsistence, semi-subsistence and 

commercial farmers and leads to a heterogeneous set of profit and production frontiers. 

Subsistence and semi-subsistence farmers who produce largely home consumed crops have 

potentially greater price wedges than commercial farmers. Failing to account for the heterogeneity 

in price wedges that drive heterogeneity profit and production frontiers is likely to lead to 

underestimation of the efficiency of subsistence and semi-subsistence farmers. We test if 

traditional productivity analysis indeed underestimates the efficiency of subsistence and semi-

subsistence farmers by employing a conditional Data Envelopment Analysis (DEA) model for 

household survey data in Uganda. Results confirm that naïve estimates of efficiency understate the 

efficiency scores of subsistence and semi-subsistence farmers.  The results cast doubt on policies, 

such as extension programs or other information treatments, that interpret low efficiency scores 

for subsistence and semi-subsistence farmers as a management shortfall. 



 

 

We demonstrate the use of farm technical efficiency as an outcome measure by analyzing data 

from 2008-2012 for farm training program in Armenia. In this program, farmers received technical 

guidance on modern farm techniques.  Two previous evaluations (Schwab and Shanoyan 2016; 

Fortson et al. 2012) find ambiguous evidence that farm profits increased. The measurement or 

potential gain from an extension program is captured using farm technical efficiency measures. 

We find evidence that the program in Armenia increased farm technical efficiency from 2008 to 

2012. 
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Abstract 

Agricultural development is an essential factor in the economic development of much of the 

developing world and comprises a significant element of foreign assistance portfolios. Over the 

last decade, there has seen a renewed interest in more credible estimates of the economic impacts 

of development programs, such as assistance to extension programs. We compare the estimation 

of technical efficiency to farm output and income as an outcome variable to evaluate the impact of 

development programs such as farm education and extension programs. We develop a simple 

theoretical model which shows that using technical efficiency as an outcome variable could be a 

viable alternative to more traditionally used outcome variables such as farm output and farm profit. 

We note that when farmers are capital constrained, extension programs can theoretically have a 

large efficiency effect despite a small or zero change in farm profits.  

If farm technical efficiency is used as an outcome variable, then it must be estimated correctly. 

Mismeasurement of farm technical efficiency leads to misleading extension program evaluations. 

Farm households face heterogeneous infrastructural constraints (Suri 2011; Ojiem et al. 2006), 

credit constraints, information barriers and other input market constraints (Duflo, Kremer and 

Robinson 2011; Jack 201; Suri 2011and Stifel and Minten 2008), labor markets constraints 

(Henning and Henningsen 2007), socio-economical (Ojiem et al. 2006) and non-farm income 

opportunities (Chang et al. 2012) and thus have different access to agricultural inputs and outputs. 

These constraints have a substantial impact on agricultural production decisions of farm 

households. A key production decision of farm households is the allocation of resource to cash 

and food crops. Production of cash crops requires relatively higher market involvement in both the 

purchase of inputs and the selling of output than home-consumed food crops.  The heterogeneous 

constraints across farm households leads to a substantial imbalance in the transaction costs 



 

 

associated with the production of each crop. Moreover, home-consumed crops may have quality 

attributes (e.g. color, taste, softness of dough, and suitability for certain dishes) not reflected in 

market prices. Factors such as transaction costs, crop quality attributes, and other factors such as 

household characteristics are farmer specific and drive a heterogeneous price wedge between the 

market prices for household’s crop production and the economic value of these crops for the 

household. These distinctions have important implication for farm productivity analysis, such as 

technical efficiency measurement.  

The standard approach to productivity analysis, such as efficiency estimation, assume that farm 

households face homogenous price wedges that leads to homogenous set of production and profit 

functions.  However, the price gap created by transaction costs, crop quality attributes, and other 

factors such as household characteristics generally vary among subsistence, semi-subsistence and 

commercial farmers and leads to a heterogeneous set of profit and production frontiers. 

Subsistence and semi-subsistence farmers who produce largely home consumed crops have 

potentially greater price wedges than commercial farmers. Failing to account for the heterogeneity 

in price wedges that drive heterogeneity profit and production frontiers is likely to lead to 

underestimation of the efficiency of subsistence and semi-subsistence farmers. We test if 

traditional productivity analysis indeed underestimates the efficiency of subsistence and semi-

subsistence farmers by employing a conditional Data Envelopment Analysis (DEA) model for 

household survey data in Uganda. Results confirm that naïve estimates of efficiency understate the 

efficiency scores of subsistence and semi-subsistence farmers.  The results cast doubt on policies, 

such as extension programs or other information treatments, that interpret low efficiency scores 

for subsistence and semi-subsistence farmers as a management shortfall. 



 

 

We demonstrate the use of farm technical efficiency as an outcome measure by analyzing data 

from 2008-2012 for farm training program in Armenia. In this program, farmers received technical 

guidance on modern farm techniques.  Two previous evaluations (Schwab and Shanoyan 2016; 

Fortson et al. 2012) find ambiguous evidence that farm profits increased. The measurement or 

potential gain from an extension program is captured using farm technical efficiency measures. 

We find evidence that the program in Armenia increased farm technical efficiency from 2008 to 

2012. 
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Chapter 1. Overall Introduction 

1.1. Motivation  

Agricultural development is the cornerstone of economic development for much of the developing 

world. As a result, agricultural development programs comprise a significant element of most 

foreign assistance portfolios. The last decade has seen a renewed interest in more credible 

estimates of the economic impacts of these agricultural development programs. Development 

funds for agriculture are frequently funneled to farm education and extension programs. For 

example, about 70 percent of the Ministry of Agriculture budget in Kenya (Muyanga and Jane 

2006), 4 million dollars in Ethiopia (only under Agricultural Transformation Agency in the year 

2009), 24.4 million US dollars of the government budget in Uganda (Kuteesa et al. 2018), and 60 

million dollars in India (in the year 2010) are used to fund farm education and extension programs.  

These extensions based programs seek to provide farmers with the most up-to-date information on 

new farm techniques and technologies, with the goal of alleviating information constraints to 

profitable technology adoption (Jack 2011).  

Birner et al. (2006) defines agricultural extension programs as complete sets of organizations that 

include: governmental, non-governmental, and producer organizations that assist farmers in 

obtaining information, skills, and technologies that increase agricultural production and improve 

income and well-being of farm households. Equipping farmers with new techniques and 

technologies can increase farm productivity (including farm technical efficiency), which in turn 

can increase income and well-being. Due to an increasingly limited availability of land, and 

continual increases in world population (9.7 billion by 2050, a 2.7 billion higher than today’s 

population; United Nation 2015 report) increasing agricultural production and productivity 

through increases in efficiency and/or innovation is crucial to alleviate future food security issues. 
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In addition, gains in farm productivity increase the competitiveness of farmers, which ultimately 

increases market share domestically and at the world stage, as well as help to convince state and 

federal governments to allocate funds for development programs. Assessing information-based 

development programs, such as extension program using farm efficiency as an outcome variable 

is important. The use of farm efficiency and/or innovation directly as an outcome variable for 

evaluating extension programs has been relatively limited in previous studies. Several studies that 

assess the impact of extension program use changes in farmers’ income, yield or input use as an 

outcome variable in their evaluation (Cole and Fernando 2014; Wordofa and Sassi 2014; Davis et 

al. 2012; Fortson et al. 2012). Previous studies that strictly use farm income or yield as an outcome 

variable seem to forget that depending on the level of input use, extension programs may show 

different effects.  

The theory of most extension programs is that they will affect farmer’s knowledge, which then 

translates into a more efficient allocation of inputs (technical efficiency). Technical efficiency is 

the ability of the production firm to avoid waste through producing maximum output for a given 

technology or producing an output level using the minimum amount of input required (Farrell 

1957). Increases in technical efficiency thereby can often increase output or yields, which can 

result in increases in farm income. For the single output case, technical efficiency is defined as 

average output produced per unit of input, or referred to as average productivity (APP) (Battese 

and Coelli 1988).    

There are three stages of the production process (stage 1 to 3), assuming that some factors of 

production remain fixed, while other inputs vary. Stage 1 represents the beginning of production 

up to the point where average productivity (APP) reaches its maximum or is equal to Marginal 

Physical Production (MPP). MPP is the change in total output per unit of input. Stage 2, ranges 
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from the end of stage 1 to the point where MPP becomes zero or Total Physical Product (TPP), or 

total output, reaches its maximum. Stage 3 of production is when TPP falls as more input is added 

to the process or MPP becomes negative. Average productivity (APP) is a measure of technical 

efficiency and increases throughout stage 1 and decreases throughout stages 2 and 3. Output and 

profits of a farmer increase with the increase in technical efficiency, keeping input and output 

prices constant. However, in stage 1, of the production process, per unit changes in technical 

efficiency exceed the change in profit as input use changes. Profit, which is the difference between 

total revenue and total cost is lower in magnitude than the change in technical efficiency. 

The simple theoretical proof of this is presented in chapter two of this dissertation. Under these 

conditions, using technical efficiency, which potentially may change in a larger way, as an 

outcome variable can better capture the treatment effects of extension programs than profit. In this 

sense, technical efficiency is a more sensitive measure of program effects and increases the 

likelihood of detecting a true program impact that may otherwise may go undetected. Duflo, 

Kremer and Robinson (2011); Jack (2011) and Stifel and Minten (2008) note that farmers in 

developing countries are often faced with several constraints to agricultural production.  Credit 

constraints and input market imperfections, in particular, may prevent farmers from using optimal 

levels of inputs.  Crucially, these constraints suggest underutilization of inputs, which suggests 

that farmers may choose ‘irrational’ input levels for reasons other than information constraints. 

Hence, depending on the stage of the production, technical efficiency may be more viable option 

than using profit when examining extension program for the above reasons. 
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1.2. Purpose and Objectives 

The overall purpose of this dissertation is to identify the most appropriate methods for 

evaluation of agricultural development and extension programs in developing countries. 

More specifically, this study evaluates the impact of agricultural extension programs on farm 

productivity and development, but it can also easily be extended and used on impact analyses of 

other related agricultural development programs. This purpose is achieved by meeting the 

following objectives: 

1. Develop a theoretical framework for the evaluation of extension programs that explicitly 

identifies the conditions under which farm technical efficiency is complementary to using 

farm income as an outcome measure; 

2. Develop a measure for farm technical efficiency for inseparable production and 

consumption decisions of farm households; and  

3. Demonstrate the use of farm technical efficiency or farm productivity as an outcome 

measure to evaluate extension program. 

1.3. Approach 

Using a simple theoretical model, we show that that relative desirability of using output, farm 

profit/income or technical efficiency as a metric to evaluate extension programs depends on the 

level of input use by the farm.  In particular, we note that when farmers produce at input levels 

whereby marginal physical product (MPP) exceeds average physical product (APP), known as 

Stage 1 of production, an increase in productive efficiency may not produce a commensurately 

large change in profit as compared to farm technical efficiency on relative basis.  While this stage 

of production is often ignored, as rational producers would not ‘choose’ to produce in this region, 

the population targeted by extension programs are often beset by binding constraints, such as 
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credit, that can prevent farmers from taking advantage of increasing returns to investment (Jack 

2011) and constraining them to operate in the 1st stage of production. Thus, an extension program 

targeting farmers that shows no or little impact on profit may still have resulted in more efficient 

production behavior.  As a result, in the case of a null effect of profit or income, using an outcome 

measure for efficiency can allow program evaluators to determine if the extension program 

provided no positive production effects or if farmer efficiency improved but was beset by other 

binding constraints.  

To use farm technical efficiency as an outcome variable, it must be estimated correctly. If we do 

not measure it correctly, then using farm technical efficiency as an outcome variable will lead to 

misleading extension program evaluations. Farm households face heterogeneous infrastructural 

constraints (Suri 2011; Ojiem et al. 2006), credit constraints, information barriers and other input 

market constraints (Duflo, Kremer and Robinson 2011; Jack 201; Suri 2011and Stifel and Minten 

2008), labor markets constraints (Henning and Henningsen 2007), socio-economical (Ojiem et al. 

2006) and non-farm income opportunities (Chang et al. 2012) which leads to different access to 

agricultural inputs and outputs choices. This affects the farm household’s agricultural production 

decisions. 

Generally, production decisions of farm households are broadly classified in to cash and food 

crops. Production of cash crops requires relatively higher market involvement in both the purchase 

of inputs and the selling of output than home-consumed food crops (Henning and Henningsen 

2007; Masanjala 2006; Key et al 2000; Jayne 1994).  The heterogeneous constraints across farm 

households leads to a substantial imbalance in the transaction costs associated with the production 

of each crop. Moreover, home-consumed crops may have quality attributes (e.g. color, taste, 

softness of dough, and suitability for certain dishes) not reflected in market prices (Arslan 2011; 



6 
 

Arslan and Taylor 2009). Transaction costs, crop quality attributes, and other factors, such as 

household characteristics, are farmer specific and drive a heterogeneous price wedge between the 

market prices for a household’s crop production and the economic value of these crops for the 

household. These distinctions have important implication for farm productivity analysis, such as 

efficiency measurement.  

The standard approach to measure productivity analysis, such as efficiency, assumes that farm 

households face homogenous price wedges that leads to homogenous sets of production and profit 

frontiers.  However, the price gap created by transaction costs, crop quality attributes, and other 

factors such as household characteristics generally varies and differs between subsistence, semi-

subsistence and commercial farmers and leads to a heterogeneous set of profit and production 

frontiers. Subsistence and semi-subsistence farmers who produce largely home consumed crops 

have potentially greater price wedges than commercial farmers. Failing to account for the 

heterogeneity in price wedges that drive heterogeneous profit and production frontiers is likely to 

lead to underestimation of the efficiency for subsistence and semi-subsistence farmers. We test if 

traditional productivity analysis indeed underestimates the efficiency of subsistence and semi-

subsistence farmers by employing a Conditional Data Envelopment Analysis (CDEA) using 

household survey data from Uganda. Results confirm that naïve estimates of efficiency understate 

the efficiency scores of subsistence and semi-subsistence farmers.  The results cast doubt on 

policies, such as extension programs or other information treatments, that are interpret low 

efficiency scores for subsistence and semi-subsistence farmers as a management shortfall. 

We demonstrate the use of farm technical efficiency as an outcome measure by analyzing data 

from 2008-2012 for farm training program in Armenia. In this program, farmers received technical 

guidance on modern farm techniques.  Two previous evaluations (Schwab and Shanoyan 2016; 



7 
 

Fortson et al. 2012) find ambiguous evidence that farm profits increased as a result of the training 

program. The measurement or potential gain from an extension program is captured using farm 

technical efficiency measures instead. We find evidence that the program in Armenia increased 

farm technical efficiency from 2008 to 2012. 

1.4. Contribution 

The dissertation contributes to the literature on agricultural research evaluation and farm 

productivity in three ways. First, we demonstrate theoretically why measures of farm efficiency 

may be useful outcome measures for extension programs, particularly those in developing 

countries.  Second, we demonstrate measures of efficiency for farmers that account for inseparable 

production and consumption decisions. Third, we show the use of farm efficiency as an outcome 

measure using a randomized control trial (RCT) of a farm training program in Armenia, whereas 

most previous literature assesses the impact of treatment on farm households’ profit, yield, and 

input use (Wordofa and Sassi 2014; Davis et al. 2012; Fortson et al. 2012). While the dissertation 

deals specifically with agricultural extension programs, the framework can be easily extended for 

impact analyses of other related agricultural development programs.  

1.5. Organization  

The rest of the dissertation is presented as follows. Chapter 2, presents the comparison of farm 

technical efficiency versus output and income as outcome variables to evaluate development 

programs such as agricultural extension. Chapter 3, presents the demonstration of modeling farm 

productivity, such as technical efficiency for farmers that are heterogeneous in transaction costs, 

quality of crops and other factors, applied especially, to farmers in developing countries, using 

farm household data from Uganda. Chapter 4, presents the evaluation of an extension program 
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using an impact of randomized control trial (RCT) farm training on technical efficiency and farm 

productivity in Armenia. Chapter 5, presents the overall conclusion. 
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Chapter 2. Modeling the Impact of an Extension Program on Profit and 

Efficiency 

2.1. Abstract 

We show the comparison of estimating technical efficiency versus farm output and income as an 

outcome variable to evaluate the impact of farm education and extension programs. We develop a 

simple theoretical model which shows that using technical efficiency as an outcome variable for 

assessing effectiveness of farm education and extension program, could be a viable alternative to 

more traditionally used outcome variables such as farm output and farm profit. We note that when 

farmers are capital constrained, extension programs can theoretically have a large efficiency effect 

on technical efficiency despite little change in farm profits.  
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2.2. Introduction 

Governments and Non-Governmental Organizations (NGOs) heavily invest in agricultural 

extension programs that assist farmers in obtaining information, skills, and technologies that 

increase agricultural production and improve income and well-being of farm households. 

Agricultural extension programs that provide farmers with the most updated information on new 

techniques and technologies can help to increase farmers’ income through increases in technical 

efficiency or management (Cole and Fernando 2014). Information plays a key role in adoption and 

integration of new technologies. Duflo, Kremer and Rabinson (2008) note that a lack of 

information can constrain farmers from adopting profitable technologies. Extension programs 

provide information to farmers directly (through training, printed documents, demonstrations), 

such as in Fortson et al. 2012, or via mobile-based technologies (Cole and Fernando 2014). 

Agricultural researchers are frequently asked to evaluate the effectiveness of agricultural extension 

programs. In most impact evaluation studies, the availability of data is a common challenge (Athey 

and Imbens 2017; Davis et al. 2012). Thus, researchers tend to rely on methodological 

improvements, new tools and approaches for enhancing their ability to fully and accurately capture 

program impact (Davis et al. 2012).  The improved ability to accurately and credibly evaluate the 

impact of extension programs can result in more efficient allocation of limited funds and resources 

(Moyo et al. 2007). With increasing demand and declining supply of development funds, the need 

for more innovative and rigorous impact evaluation methods is becoming critical for international 

development in general and for extension and technology transfer programs. Similarly, if the full 

impact of a development program is not adequately captured and some key benefits go undetected, 

the case for allocating funds for such programs may weaken unnecessarily.  
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To our knowledge, there are only a few studies that assess the effectiveness of extension program 

using credible research designs. These studies assessed programs by analyzing changes in farmer’s 

income, and output (Cole and Fernando 2014; Wordofa and Sassi 2014; Davis et al. 2012; Fortson 

et al. 2012). The results are mixed. For example, Cole and Fernando (2014), examined the impact 

of mobile-based extension programs on cumin and cotton output between 2012 and 2013 in India 

using a randomized control trial  and found the program increased output of both crops. Wordofa 

and Sassi (2014) also assessed the impact of extension programs on farmers’ income in 2013 using 

cross sectional data in Ethiopia using propensity score matching method. They showed that the 

extension program increased farmer’s income.  

However, Davis et al. (2012), evaluated the impact of extension programs on output and income 

between 1999 and 2008 across three eastern Africa countries: Kenya, Tanzania and Uganda using 

propensity score matching and covariate matching methods. Results show that extension programs 

increased output and income in Kenya and Tanzania, but not in Uganda. Another interesting 

finding from the Davis et al. (2012) results were that, even in Kenya and Tanzania, land poor 

farmers didn’t benefit as much from the program as compared to their counterparts.  

Two other previous studies, Schwab and Shanoyan (2016) and Fortson et al (2012), examined the 

effectiveness of farm training program between 2007 and 2012 in Armenia.   The Millennium 

Challenge Corporation Compact (MCC) launched a farm training program that increases 

agricultural performance, which in turn increases farmers’ income in 2007/8 in Armenia. The farm 

training includes: training on farm water management, high value agriculture production, post-

harvest management, processing, marketing, and access to credit. Fortson et al 2012, using an 

intention to treat (ITT) approach, found the program did not change average output, and found 

positive but not robust or precisely estimated effects on farm income and profits on program 
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effectiveness.  Schwab and Shanoyan (2016), using the same data, attempted to correct for two-

sided non-compliance in the data by estimating local average treatment effects (LATE), using 

randomization as an instrument.  They find similar results, though the positive impacts on farm 

profits are larger and slightly more precisely estimated.  Overall, the evaluations using traditional 

outcome measures provide an ambiguous picture of the impact of extension program, and do not 

provide persuasive evidence for a strong effect at times. 

Using technical efficiency as an outcome variable for assessing effectiveness of farm education 

and extension program could be a viable alternative to the more traditionally used outcome 

variables. In this paper, we do not consider the level or type of extension programs offered as a 

choice variable. We assume that program assessment is conducted ex post or after program has 

taken effect. Another interesting question not address here, is the optimal level or type of extension 

program that could be offered in a particular situation. An extension program with no or little 

impact on profit may still have positive impact on technical efficiency for subsistence and semi-

subsistence farmers that are often beset by input constraints. Subsistence farmers refers to small 

scale farming primarily operate to produce food for family consumption. Commercial farmers refer 

to farming primarily operate to produce food for profit. And semi-subsistence farmers are between 

the two (refer to farmers that sell less than 50 percent of the total production). Extension programs 

that provide up-to-date information about farming increases farmer’s knowledge, which is 

translated into a more efficient allocation of inputs (technical efficiency).  

The theory underlying the development and usefulness of extension programs is the idea that they 

affect farmer’s knowledge, which should translate into a more efficient allocation of inputs 

(technical efficiency). Technical efficiency is the ability of a production firm to avoid waste 

through producing maximum output for a given technology or producing an output level using the 
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minimum level of input required (Farrell 1957). Increases in technical efficiency thereby often 

increase output, which then may increase farm income. For simplicity, assume that a farmer 

produces a single output using a single input and technical efficiency is defined as output over 

input use. The measure is called average productivity (Battese and Coelli 1988).  There are three 

stages of the production process: stage 1, stage 2 and stage 3, assuming that some factors of 

production remain fixed, while other inputs vary (see figure 1).  

Figure 2.1: Three stage of production function (Stage I to III) 

Stage I Stage II Stage III
Output

Input

Output

TPP

MPP APP

Input
 

Stage 1 ranges from the beginning of the production function until the point where average 

productivity (APP) reaches its maximum and is equal to Marginal Physical Product (MPP). MPP 

is the change in total output per unit input. Stage 2, ranges from the end of stage 1 until the point 

where MPP becomes zero or Total Physical Product (TPP) reaches its maximum. TPP is the total 

output produced. Stage 3 encompasses the remainder of the production function or where TPP falls 

and MPP is negative. Average productivity (APP), measure of technical efficiency, increases 
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throughout stage 1 and then decreases throughout stages 2 and 3. Output and profit of a farmer 

increase with an increase in technical efficiency, keeping input and output prices constant. 

However, in stage 1 of the production process, relative changes (percentage change) in technical 

efficiency are likely greater than relative changes in a profit. The relative changes in profit, which 

is equal to the difference between relative changes in total revenue and total cost are lower in 

magnitude than the relative changes in technical efficiency. For farmers that operate in stage one 

of the production process, extension programs could theoretically result in lower impacts when 

using farm income than technical efficiency.  

Stage one is commonly referred to as an irrational stage of production, as any input allocation 

corresponding to this stage will be non-optimal.  However, as Duflo, Kremer and Robinson (2011); 

Jack (2011) and Stifel and Minten (2008) note, farmers in developing countries are often faced 

with several constraints to agricultural production.  Credit constraints and input market 

imperfections may prevent farmers from using optimal levels of inputs.  Crucially, these 

constraints suggest underutilization of inputs, which implies that farmers may choose ‘irrational’ 

input levels for reasons other than information constraints. Hence, depending on the stage of the 

production, technical efficiency may be a more viable option to income when evaluating extension 

programs. 

However, the use of farm technical efficiency directly as an outcome variable for evaluating 

extension programs has been relatively limited in previous work. The purpose of this paper is to 

develop a theoretical framework for the evaluation of extension programs that explains the 

conditions under which farm technical efficiency is complementary to using farm income or output 

as an outcome measure.  
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2.3. Theoretical Framework for Extension Program Assessment 

2.3.1. Technical Efficiency 

in this chapter, when we refer to treatment effect, we are referring to the impact of an extension 

program. We use the terms “treatment effect(s)” or ‘impact of extension program(s)” 

interchangeably throughout the paper. Treatment effects of the impact of extension programs have 

been traditionally been estimated using output and profit (income) as outcome variables. 

Alternatively, technical efficiency (farm productivity) may be used explicitly as an outcome 

measure to evaluate extension programs. Following Battese and Coelli (1988), we define 

efficiency as average productivity (APP). For simplicity, assume a single input, single output profit 

maximizing farmer. 

(1) E(T) =
𝑌(𝑋(𝑇))

𝑋(𝑇)
,  

where E is technical efficiency, T is extension program (T) which we refer to as ‘treatment’ 

through the paper, X is inputs, and Y is total output. E, X and Y are all functions of treatment 

effect. 

One can derive the treatment (extension program) effect on technical efficiency using the first 

order derivative of technical efficiency with respect to T, which is equal to: 

(2) 
𝜕𝐸

𝜕𝑇
= 

𝜕𝑌

𝜕𝑋
∗ 
𝜕𝑋

𝜕𝑇
∗𝑋 − 

𝜕𝑋

𝜕𝑇
∗𝑌

𝑋2
= 

𝜕𝑌

𝜕𝑇
∗𝑋 − 

𝜕𝑋

𝜕𝑇
∗𝑌

𝑋2
 

If treatment does not affect output ( 
𝜕𝑌(𝑋)

𝜕𝑇
= 0), but improves input allocation (

𝜕𝑋

𝜕𝑇
< 0),  then 

𝜕𝐸

𝜕𝑇
>

0. In this case, the relative change in technical efficiency due to treatment is greater than the 

relative change in output. When the treatment effect using technical efficiency is higher, then we 

learn that farmers are operating at stage two of the production function, that they decrease input 
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use and still produce the same level of output. For farmers who initially produce output at the point 

where marginal revenue is less than marginal cost, extension programs may advise them to reduce 

their input use and produce the same level or more output.  

2.3.2.  Profit and Technical Efficiency 

In this section, we discuss the importance of using profit and technical efficiency as outcome 

variables to evaluate extension programs. The equation for profit (π) is given by the following: 

(3) π(T) = PY(X(T)) −WX(T) 

where P and W are output and input prices, respectively. Assume prices are exogenous and the 

profit function is continuous and differentiable, such that  
𝜕𝜋

𝜕𝑇
 > 0, and  

𝜕2𝜋

𝜕𝑇2
  < 0 (or concave in T). 

This assumption is valid if markets are complete, where prices (output and input) are determined 

by the market. However, this may not be valid for thin or incomplete markets, where farm 

households consume all of their output.  If farm households use their output produced for home 

consumption, then prices are endogenously determined (Dillon and Barrett 2017, Lafave and 

Thomas 2016; Chang, Huang, Chen 2012; Binam et al. 2004; Jayne 1994; De Janvry, Fafchamps 

and Sadoulet 1991). For the time being, though, our model excludes farmers who don’t participate 

in the market, we will return to this case in Chapter 3 of the dissertation. 

The first order derivatives of the profit function with respect to treatment give: 

(4) 
𝜕𝜋

𝜕𝑇
=

𝜕𝑌(𝑋)

𝜕𝑇
𝑃 −

𝜕𝑋

𝜕𝑇
𝑊  

recognizing that  
𝜕𝑌(𝑋)

𝜕𝑇
=

𝜕𝑌

𝜕𝑋
∗
𝜕𝑋

𝜕𝑇
.  
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Substituting  
𝜕𝑌(𝑋)

𝜕𝑇
=

𝜕𝐸

𝜕𝑇
𝑋 +

𝜕𝑋

𝜕𝑇
𝐸 derived from equation (2) into equation (4) and recognizing that 

where 𝐸 = 𝐴𝑃𝑃, as in equation (1),  

we get: 

(5)  
𝜕𝜋

𝜕𝑇
=

𝜕𝐸

𝜕𝑇
𝑃𝑋 +

𝜕𝑋

𝜕𝑇
(𝑃𝐸 −𝑊) 

Assuming the market is competitive, input prices are equal to the MVP (marginal value product) 

of the input (P*MPP). MVP refers to the value of the output resulting due to an additional unit of 

input. We can then rewrite equation (5) as: 

(6) 
𝜕𝜋

𝜕𝑇
=

𝜕𝐸

𝜕𝑇
𝑃𝑋 +

𝜕𝑋

𝜕𝑇
∗ 𝑃(𝐴𝑃𝑃 − 𝑀𝑃𝑃) 

Equation (6) then allows us to examine when the use of APP or technical efficiency may be 

equivalent to or relatively better than using farm profit or income as an outcome measure to 

evaluate extension programs.  

When 𝐴𝑃𝑃 = 𝑀𝑃𝑃, there is no distinction between using farm profit (income) or technical 

efficiency as an outcome variable. The measures are only different by scale and are relatively the 

same. Disparities occur when 𝐴𝑃𝑃 ≠ 𝑀𝑃𝑃.  

When 𝐴𝑃𝑃 > 𝑀𝑃𝑃, we see that the effect of a program on relative profit incorporates both the 

scaled efficiency effect (the first term on the RHS), as well as the relative value of the difference 

between average and marginal products (second term on the RHS).  This case corresponds to the 

familiar second stage of production, where farmers increase their use of input X to the point where 

marginal revenue (MR) is equal to marginal cost. In this case, using farm profit to examine may 

be relatively better than using farm technical efficiency as an outcome measure to evaluate 

extension programs. 
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However, when 𝐴𝑃𝑃 < 𝑀𝑃𝑃, a farmer is in the first stage of production. If 
𝜕𝑋

𝜕𝑇
> 0, the second 

term on the RHS becomes negative, which means that an increase in farm efficiency due to the 

program may not necessarily be reflected in profits.  For large gaps between APP and MPP, which 

occur close to the inflection point of the marginal product curve in the canonical production 

process, the differential effects of treatment on a technical efficiency may be relatively large. Stage 

one of the production process therefore permits the case that increases in farm efficiency may 

correspond to zero or little changes in profit.  In this stage, increase in relative average productivity 

of inputs exceeds the increase in relative profit (a difference between marginal revenue and cost) 

on a relative basis (e.g. percentage change). This could be common in developing countries where 

farmers often face input constraints (Jack 2011), which potentially lead them to operate in the first 

stage of the production function. Hence, depending on the scenario, technical efficiency is a viable 

alternative to output (such as case 1), or profit (such as in case 2) when examining impact of 

treatment effects, as extension programs could positively affect farmers with constrained input 

use.  

We compared output and profit (income) with technical efficiency derived from single input and 

single output as outcome variables to evaluate extension programs. We recommend a future 

research that compare output and profit (income) with technical efficiency derived from multiple 

inputs and multiple outputs as outcome variables to evaluate extension programs. 
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Conclusion:  

Extension programs that provide farmers with the most up-to-date information can potentially 

increase farm output and income through increasing farm technical efficiency. In this paper, we 

show that farm efficiency can be used as a complementary outcome variable to farm output and/or 

profit/income to evaluate extension programs. We develop a simple model that shows that an 

extension program with no or little impact on profit may still have resulted in more efficient 

production behavior for farmers that operate in stage one of the production process. Subsistence 

and semi-subsistence farmers are often beset by input constraints, which potentially leads them to 

operate in the first stage of the production function. We note that when farmers are capital 

constrained, extension programs can theoretically have a large efficiency effect despite little or no 

change in farm profits/income. Alternative methods to evaluate extension programs, such as using 

farm technical efficiency instead of farm income or output as outcome variables can helps to 

identify program impacts that may have otherwise gone undetected.  

 

 

 

 

 

 

 

 



20 
 

References: 

Athey, S., & Imbens, G. W. (2017). The state of applied econometrics: Causality and policy 

evaluation. Journal of Economic Perspectives, 31(2), 3-32. 

Barrett, C. B. (2008). Smallholder market participation: Concepts and evidence from eastern and 

southern Africa. Food policy, 33(4), 299-317.  

Battese, G. E., & Coelli, T. J. (1988). Prediction of firm-level technical efficiencies with a 

generalized frontier production function and panel data. Journal of econometrics, 38(3), 387-

399. 

Binam, J. N., Tonye, J., Nyambi, G., & Akoa, M. (2004). Factors affecting the technical 

efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon. Food 

policy, 29(5), 531-545. 

Birner, R., Davis, K., Pender, J., Nkonya, E., Anandajayasekeram, P., Ekboir, J. M., ... & 

Kisamba-Mugerwa, W. (2006). From" best practice" to" best fit": a framework for designing 

and analyzing  

Chamberlin, J., & Jayne, T. S. (2013). Unpacking the meaning of ‘market access’: evidence from 

rural Kenya. World development, 41, 245-264. 

Chang, Y. M., Huang, B. W., & Chen, Y. J. (2012). Labor supply, income, and welfare of the 

farm household. Labour Economics, 19(3), 427-437. 

Cole, S. A., & Fernando, A. N. (2014). The value of advice: Evidence from the adoption of 

agricultural practices. HBS Working Group Paper, 1(1.3), 6. 



21 
 

Cotlear, D. (1989). The effects of education on farm productivity. Journal of Development 

Planning. 

Davis, K., Nkonya, E., Kato, E., Mekonnen, D. A., Odendo, M., Miiro, R., & Nkuba, J. (2012). 

Impact of farmer field schools on agricultural productivity and poverty in East Africa. World 

Development, 40(2), 402-413. 

De Janvry, A., Fafchamps, M., & Sadoulet, E. (1991). Peasant household behaviour with missing 

markets: some paradoxes explained. The Economic Journal, 101(409), 1400-1417. 

Dillon, B., & Barrett, C. B. (2017). Agricultural factor markets in Sub-Saharan Africa: an 

updated view with formal tests for market failure. Food Policy, 67, 64-77. 

Duflo, Esther, Michael Kremer, and Jonathan Robinson. (2011). "Nudging Farmers to Use 

Fertilizer: Theory and Experimental Evidence from Kenya." American Economic 

Review, 101(6): 2350-90. 

Duflo, E., Kremer, M., & Robinson, J. (2008). How high are rates of return to fertilizer? 

Evidence from field experiments in Kenya. American economic review, 98(2), 482-88. 

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical 

Society. Series A (General), 120(3), 253-290. 

Fortson, K., Rangarajan, A., Blair, R., Lee, J., & Gilbert, V. (2012). Evaluation of water-to-

market training in Armenia (No. 8336f2393a7f4513b95947ee7face8b0). Mathematica Policy 

Research. 

Kuteesa, A., Kisaame, K. E., & Barungi, J. (2018). Public Expenditure Governance in Uganda's 

Agricultural Extension System. 



22 
 

Jack, B. K. (2011). Constraints on the adoption of agricultural technologies in developing 

countries. White paper, Agricultural Technology Adoption Initiative, Boston: J-PAL (MIT) and 

Berkeley: CEGA (UC Berkeley). 

Jayne, T. S. (1994). Do high food marketing costs constrain cash crop production? Evidence 

from Zimbabwe. Economic development and cultural change, 42(2), 387-402. 

Moyo, S., Norton, G. W., Alwang, J., Rhinehart, I., & Deom, C. M. (2007). Peanut research and 

poverty reduction: Impacts of variety improvement to control peanut viruses in Uganda. American 

journal of agricultural economics, 89(2), 448-460. 

Muyanga, M. and Jayne, T.S., 2006. Agricultural extension in Kenya: Practice and policy 

lessons. Egerton university. Tegemeo institute of agricultural policy and development. 

Stifel, D. and Minten, B., 2008. Isolation and agricultural productivity. Agricultural 

Economics, 39(1), pp.1-15. 

Wordofa, M. G., & Sassi, M. (2014). Improving Smallholder Farmers’ Income through Farmer 

Training Centers: an Impact Evaluation in Haramaya District, Ethiopia. 

  



23 
 

Chapter 3. Modeling Farm Productivity for Heterogeneous Farm Households 

in Developing Countries 

3.1. Abstract:  

Relative to home-consumed crops, production of cash crops requires relatively higher market 

involvement in both the purchase of inputs and the selling of output.  This difference leads to a 

substantial imbalance in the transaction costs associated with the production of each crop. 

Moreover, home-consumed crops may have quality attributes (e.g. color, taste, softness of dough, 

and suitability for certain dishes) not reflected in market prices. Factors such as transaction costs, 

crop quality attributes, and household characteristics are farmer specific and drive a heterogeneous 

price wedge between the market prices for household crop production and the economic value of 

these crops for the household. These distinctions have important implication for farm productivity 

analysis, such as efficiency measurement. The standard approach to measure productivity analysis, 

such as efficiency, assumes that farm households face homogenous price wedges that lead to a 

homogenous set of production and profit functions.  However, the price gap created by transaction 

costs, crop quality attributes, and other household characteristics generally varies among 

subsistence, semi-subsistence and commercial farmers and leads to a heterogeneous set of 

production frontiers. Subsistence and semi-subsistence farmers, who produce largely home 

consumed crops, have potentially greater price wedges than commercial farmers. Failing to 

account for the heterogeneity in price wedges that drive heterogeneity in production frontiers is 

likely to lead to underestimation of the efficiency of subsistence and semi-subsistence farmers. We 

test if traditional productivity analysis indeed underestimates the efficiency of such farmers by 

employing a conditional Data Envelopment Analysis (DEA) model for household survey data in 

Uganda. Results confirm that naïve estimates of efficiency understate the efficiency scores of 

subsistence and semi-subsistence farmers.  The results cast doubt on policies, such as extension 
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programs or other information treatments, that are promised on interpreting low efficiency scores 

for subsistence and semi-subsistence farmers as a management shortfall. 

Key words: joint production and consumption decisions, Data Envelopment Analysis, efficiency  
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3.2. Introduction 

In most developing countries, improving agricultural productivity growth is considered an 

important strategy for reducing high poverty levels. Agriculture remains a key sector in terms of 

output and source of employment. For example, more than 60% of the African population depends 

on agriculture for their livelihood (Elias et al. 2013). The World Development Report (2008) 

identifies improving agricultural productivity and development as a key pathway to escape 

poverty. Farm households that face different infrastructural constraints (Suri 2011; Ojiem et al. 

2006), credit constraints, information barriers, input market constraints (Duflo, Kremer and 

Robinson 2011; Jack 201; Suri 2011and Stifel and Minten 2008), labor market constraints 

(Henning and Henningsen 2007), socio-economic factors (Ojiem et al. 2006) and non-farm income 

opportunities (Chang et al. 2012) have different access to agricultural inputs and outputs. This has 

a big impact on farm households’ agricultural production decisions.  

Agricultural production in developing countries can be broadly classified into cash versus home 

consumed crops. Cash crops are produced for market sale, while some food commodities are often 

produced solely for home consumption. Production of cash and marketed crops (excess of 

consumption) have relatively higher degrees of market involvement for both the purchase of inputs 

and selling of outputs. As such, transaction costs associated with cash and marketed crops exceed 

those for home-consumed crops.1 Transaction costs include search costs associated with finding 

the best price and quality, transportation costs, negotiations, commissions, cost of screening and 

supervision necessary due to asymmetric information, governmental fees, etc (Henning and 

Henningsen 2007; Masanjala 2006; Key et al 2000; Jayne 1994). The heterogeneous constraints 

such as infrastructure, credit, non-farm income and others across farm households leads to a 

                                                           
1 Transaction costs may be fixed, proportional and variable (see Henning and Henningsen 2007; Key et al. 2000). 
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substantial imbalance in the transaction costs associated with the production of each crop. 

Moreover, farm households who produce cash and marketed crops must also purchase food for 

consumption. Transaction costs reduce the profitability of cash and marketed crops and increase 

the cost of buying home consumed crops from market. Farmers who produce home consumed 

crops do not incur such costs. Moreover, production of home consumed crops may have quality 

attributes (e.g. ease of shelling and processing, color, taste, softness of dough, and suitability for 

certain dishes) that market prices may not reflect (Arslan 2011; Arslan and Taylor 2009).  

Transaction costs and crop quality attributes not embedded in the market price, as well as other 

factors such as household characteristics can drive a price wedges between market prices for 

household’s crop production and the economic value of these crops for households. The price 

wedge, the difference between the market price and shadow price of home consumed crops can be 

substantial (Arslan 2011; Arslan and Taylor 2009). Arslan and Taylor (2009), for example, 

estimated the shadow price of local maize in rural Mexico using the marginal productivity of labor 

as a proxy. They find that the shadow price of local maize consumed at home 210 percent higher 

than the market price.  

Price wedges, generally increase with market interactions. Price wedges are farmer specific and 

appear in the optimality conditions associated with the farm household’s choice of cash and 

marketed versus home-consumed crops (Suri 2011; Jayne 1994). Heterogeneity in factors that 

drive price wedges leads to heterogeneity in production frontiers. Farm efficiency measures 

assumes homogeneous production frontier, which leads to potentially biased efficiency estimates. 

As a result, consideration of these factors is important for productivity analysis such as efficiency 

estimation. Productivity analysis of farm households that face potentially significant price 

differences may be difficult to assess if these factors are not explicitly addressed.  



27 
 

Some farm household models have incorporated price wedges in their analysis (Suri 2011; Arslan 

and Taylor 2009; Henning and Henningsen 2007; Masanjala 2006; Key et al 2000; Jayne 1994). 

However, to our knowledge, research focused on farm households’ productivity measurement, 

especially efficiency analysis, have not considered potential biases arising from price wedges 

(Ghebru and Holden 2015; Peterman et al. 2011: Balcombe et al. 2008; Chavas, Petrie and Roth, 

2005; Rahman, 2003; Wang, Cramer and Wailes, 1996 etc). Such analyses implicitly assume 

failure to produce at the frontier (i.e. ‘inefficiency’) stems from managerial failure (i.e. shortfalls 

in choosing the optimal mix of inputs for a given production technologies), but may in fact arise 

due to the presence of large price wedges (e.g. high transaction costs). 

The standard approach to measuring productivity analysis assumes that farm households face 

homogenous price wedges and homogenous production frontiers.  Price wedges created due to 

heterogeneous transaction costs, crop quality attributes and other factors such as household 

characteristics leads to heterogeneous production frontiers (Suri 2011; Arslan 2011; Arslan and 

Taylor 2009; Henning and Henningsen 2007). Because of significant differences in price wedges, 

subsistence, semi-subsistence and relatively commercial farmers likely have different production 

frontiers. Failure to account for the price wedges underestimates the value of the production of 

home consumed crops, which leads to underestimation of efficiency for farmers who produce such 

crops. If the production frontiers are heterogeneous across farmers, then estimating and comparing 

efficiency of farms without accounting for these factors is useful only to determine levels of 

efficiency ‘as if’ price wedges did not exist.  The purpose of this study is to model farm 

productivity and estimate farm efficiency in a manner that accounts for the influence of 

heterogeneous price wedges across farm households.  
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In this paper, we explicitly model the potential impact of price wedges on farm technical efficiency 

of farmers that make optimal crop choices based on a utility maximizing farm household model. 

As in previous work, we show that the existence of price wedges discourages production of cash 

and encourages production of home consumed crops. The optimal production mix varies due to 

these price wedges. With the increase of such price wedges, a utility maximizing farm household, 

more typically a subsistence farmer, withdraws inputs from cash crops and allocates them toward 

home consumed crop production. All else equal, the magnitude of the price wedges is expected to 

be higher for relatively subsistence farmers who produce crops predominantly for home 

consumption than for commercial farmers.  

We discuss the implication of performing productivity analysis with and without taking price 

wedges into account. We focus here only on estimating technical efficiency, as the methods 

developed here would be similar for estimating other types of efficiency. Infrastructure constraints, 

credit constraints and other input market imperfections could lead to different access to input and 

output markets. Which in turn lead to higher transaction costs. Higher transaction costs lead to 

higher price wedges which may discourage farmers from using some specific agricultural inputs. 

For instance, farmers located in remote area may have less access to agricultural machinery than 

farmers located closer to roads. Farmers with better access to credit or non-farm income 

opportunities could easily afford better agricultural inputs than farmers with low access to credit 

or non-farm income opportunities.  

We measure technical efficiency using unconditional (naïve DEA) and conditional Data 

Envelopment Analysis (DEA). We use conditional DEA to account for heterogeneity in production 

frontiers due to price wedges when estimating the technical efficiency of farmers. Conditional 

DEA measures technical efficiency by grouping farmers who face similar price wedges together 
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and the allowing construction of a separate production frontier for that group. That is, efficiency 

is estimated comparing relatively subsistence with subsistence farmers and commercial with 

commercial farmers. Subsistence and semi-subsistence farmers may be better-off by producing 

home consumed crops over cash and marketed crops. From a profit maximization point of view, 

subsistence and semi-subsistence farmers appear to choose the “wrong” crop production mix, 

which includes more home consumed using fewer modern inputs. However, internalizing price 

wedges into the profit and production analysis may give quite different and more important 

answers to the puzzle of modern input adoption and commercialization.  

We find that naïve estimates of technical efficiency understate the efficiency scores of subsistence 

and semi-subsistence farmers. The average technical efficiency score using naive and conditional 

DEA estimators are 0.48 and 0.68, respectively. The average bias, the difference between 

conditional and unconditional technical efficiency score is about 0.21 (Table 4). This is important 

for development programs, such as extension and other information based programs to identify the 

actual efficiency loss due to managerial inefficiency.  

3.3. Background 

Efforts to increase agricultural productivity often focus on promotion of technological change and 

commercialization (Masanjala 2006; Zeller, Diagne and Mataya 1998; Binswanger and Braun 

1991). Agricultural technological advancement increases agricultural production and farmers’ 

income through increases in per unit productivity. Commercialization further improves farm 

productivity and income via specialization in farm products that farmers may have a comparative 

advantage in producing (Barrett 2008; Binswanger and Braun 1991). Significant development 

resources have been invested by both domestic and international agencies in teaching subsistence 

farmers about modern agricultural inputs and high value, commercial products under the belief 
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that farmers lack awareness and knowledge (Sturdy, Aquino and Molyneaux 2014; Elias et al. 

2013; Fortson et al. 2012). Such extension programs often seek to provide farmers with technical 

and practical information about the management of modern technologies, often with the goal of 

alleviating information constraints to profitable technology adoption (Jack 2011).  

However, adoption of modern agricultural technology, particularly in many parts of sub-Saharan 

Africa, remains low, and agricultural output and employment continue to be dominated by 

subsistence and semi-subsistence farmers (Suri 2011; Binam et al. 2004; Zeller, Diagne and 

Mataya 1998; Jayne 1994; De Janvry, Fafchamps and Sadoulet 1991). These farmers largely 

produce food crops for home consumption and supply excess to the market. Several studies show 

that many farmers in developing countries continue to produce a high proportion of home 

consumed commodities, even though researchers identify higher returns from cash commodities 

(Suri 2011; Arslan and Taylor 2009; Henning and Henningsen 2007; Masanjala 2006; Key et al 

2000; Jayne 1994).  

Transaction costs remain a fundamental reason for the lack of market specialization. Key et al. 

(2000) delineate a clear link between transaction costs and agricultural household market 

participation. Small holder farmers are often surrounded by thin (few buyers and sellers) and 

incomplete markets. Thin and incomplete markets increase the cost of exchanging goods and 

services (Dillon and Barrett 2017; Lafave and Thomas 2016; Chang, Huang, Chen 2012; Henning 

and Henningsen 2007; Masanjala 2006; Key et al. 2000; Omamo 1998).  

In well-functioning markets, input and output prices are exogenously determined by the market, 

and production and consumption decisions are separable. However, in thin and poorly functioning 

markets, farm household’s input and output prices are endogenously determined by their shadow 

prices, which differ from the prevailing market prices (Barrett 2008). The difference between the 
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market price and economic value of the crop to the household is called a price wedge. When farm 

households find it optimal to satisfy family consumption from their own agricultural production, 

then the shadow price (opportunity cost of consuming the crop) is influenced by both supply and 

demand factors, leading to inseparable production and consumption decisions (Dillon and Barrett 

2017, Lafave and Thomas 2016; Chang, Huang, Chen 2012; Binam et al. 2004; Jayne 1994; De 

Janvry, Fafchamps and Sadoulet 1991; Singh, Squire and Strauss 1986).  

The shadow prices are household specific and are an important determinant of the adoption of 

modern inputs, high value crops and commercialization. Because of differences between the 

market price and the shadow price, farm households may find adoption of modern inputs and 

production of cash (commercial) outputs, such as high value crops, unprofitable (Shamdasani 

2016; Suri 2011; Arslan and Taylor 2009). Factors that may contribute to differences in transaction 

costs for instance and hence to differences between market and shadow prices are variation in 

credit access, infrastructure settings, biophysical factors, socio-economic factors, and off-farm 

income opportunities (Zhao and Barry 2014; Chang et al. 2012; Tittonell et al. 2007; Ojiem et al. 

2006; Nehring et al. 2005; Zeller et al. 1998; Jayne 1994).   Understanding these price wedges is 

essential to understanding how farm households prioritize the production of cash and versus home 

consumed crops. Failure to account for such wedges can mislead policy makers into believing that 

knowledge gaps are the primary barrier to production of cash crops over home consumed crops, 

as such ‘high value’ crops appear profitable under market prices.  

Profit maximizing farmers intend to produce cash crops over home consumed crops if the market 

price is high enough to cover the costs of buying home consumed crops (Henning and Henningsen 

2007; Key et al 2000; Jayne 1994). If the return from marketed crops is lower than the cost of 

buying home consumed crops, including any foregone value from non-priced quality attributes of 
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home-produced crops, then it is rational for farmers to choose to produce home consumed over 

cash crops (Arslan and Taylor 2009). The return for farmers who produce home consumed crops 

is lower by the amount equal to the price wedges.  

Accounting for price wedges, production of high values crops can become unprofitable for 

subsistence and some of the semi-subsistence farmers. On the other hand, use of modern 

technologies and production of high value crops are still profitable for other, relatively commercial 

farmers. Price wedges appear in the optimality conditions of production and play a significant role 

in the choice of cash and marketed versus home-consumed crops. Price wedges generally vary 

between subsistence, semi-subsistence and relatively commercial farmers and lead to 

heterogeneous sets of profit and production frontiers. Hence, the evaluation of farmer’s 

productivity needs to account for these heterogeneous sets of production frontiers between 

subsistence, semi-subsistence and commercial farmers.  

3.4. Theory 

We present a theoretical model to illustrate the potential influence of price wedges (Arslan and 

Taylor 2009; Henning and Henningsen 2007; Key et al 2000; and Jayne 1994). Using a farm 

household model, we explicitly model profit and production decisions that account for price 

wedges. We explain the implication of price wedges in measuring efficiency. We define two types 

of crops: cash (𝑚𝑖) and food crops (ℎ𝑖). Food crops can be home consumed crops (𝑜𝑖)  and/or 

marketed (excess of home consumption) (𝑔𝑖) crops.  Farmers may specialize in production of cash 

crops or food crops or a combination of both. Assume that total output produced (𝑄𝑖) is a 

combination of cash (𝑚𝑖) and food crops (ℎ𝑖) produced using a fixed vector of inputs 𝐴𝑖, where it 

is given by:  𝑄𝑖 = 𝑓(ℎ𝑖;  𝑚𝑖;  𝐴𝑖). To simply the analysis, we assume inputs available for 

production are fixed (i.e. for land inputs see Arslan and Taylor (2009) and labor inputs see De 
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Janvry, Fafchamps and Sadoulet (1991). We assume production is separable for cash and home 

consumed food crops. Thus, we have a separate production functions for cash crops (𝑚𝑖) and home 

consumed crops (ℎ𝑖). This case may arise when some farmers choose to specialize completely in 

cash crops; produce specially crops that are only for sale at the market; certain crops are produced 

communally; among other reasons. Input allocation is still constrained and connects the production 

process for both types of crops as 𝐴𝑚𝑖 + 𝐴ℎ𝑖 = 𝐴𝑖, where 𝐴𝑖 is the vector of fixed inputs such as  

family and hired labor (L) and capital (K) available for production, 𝐴ℎ𝑖 is the vector of inputs 

allocated to food crop production, 𝐴𝑚𝑖 is the vector of  inputs allocated to cash crop production. 

In our model, farm households maximize utility (𝑈𝑖), through production of cash, and/or food 

crops subject to an income constraint, production technology and availability of inputs.  

Transaction costs reduce the effective prices received from cash crops and increase the cost of 

buying home consumed crops. Assume that utility (U) and production functions (𝑓) are concave 

and twice differentiable. 

The ith farm household’s optimization problem is modelled as follows: 

(1)      max
 𝑜𝑖; 𝑛𝑖; 𝑔𝑖;𝐴ℎ𝑖,𝐴𝑚𝑖 

U = (𝑜𝑖; 𝑛𝑖 ; 𝑍𝑢𝑖) 

s.t: 

(2) (𝑝𝑚𝑖 − 𝑡𝑚𝑖)𝑚𝑖 + (𝑝𝑔𝑖 − 𝑡𝑔𝑖)𝑔𝑖 − (𝑝𝑛𝑖 + 𝑡𝑛𝑖) 𝑛𝑖 + 𝑇𝑖 = 0 

(3)  𝑓(𝐴ℎ𝑖;  𝑧ℎ𝑖) = ℎ𝑖       

(4) ℎ𝑖 = 𝑔𝑖 + 𝑜𝑖  

(5)  𝑓(𝐴𝑚𝑖;  𝑧𝑚𝑖) = 𝑚𝑖       
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(6)  𝐴𝑚𝑖 + 𝐴ℎ𝑖 = 𝐴𝑖 

(7) 𝑜𝑖, 𝑔𝑖, 𝑚𝑖, 𝑛𝑖 ≥ 0,  

where ℎ𝑖 is the food crop for farm household i, 𝑚𝑖 is cash crops, 𝑜𝑖 is food crops produced for 

home consumption, 𝑔𝑖 is food crops sold to the market,  𝑛𝑖 is purchased items used for home 

consumption,  𝑝𝑚 is the per unit net price (revenue minus cost)  for cash crop, 𝑝𝑔 is the per unit 

net price (revenue minus cost)  for food crop sold, 𝑝𝑛 is the per unit output price for purchased 

crops, 𝑡𝑚𝑖
 is the per unit output transaction costs (such as fixed, proportional and variable 

transaction costs) associated with marketing and selling cash crops, 𝑡𝑔𝑖 is the per unit output 

transaction costs (such as fixed, proportional and variable transaction costs) associated with 

marketing and selling food crops sold, 𝑡𝑛𝑖 is vector of per unit transaction costs (such as fixed, 

proportional and variable transaction costs) associated with buying consumed items, 𝑍𝑢𝑖 is vector 

of utility shifters (e.g. farm household characteristics), 𝑧𝑚𝑖 is a vector of production shifters for 

cash crops,  𝑧ℎ𝑖 is vector of production shifters for food crops (e.g. improved seed), 𝑇𝑖 is other net 

income such as off-farm, transfers, government payments, and 𝑓𝑖 is a production function. Farm 

households are constrained by income, given by equation (2), production technology, given by 

equations (3) and (4), and input allocations, given equation (5).  

We assume that the marginal return of inputs is positive and subject to diminishing marginal 

returns. In addition, we assume the production functions are concave in the level of inputs used, 

implying that the first derivatives are positive and second derivatives are negative. 

i.e. 𝑓𝑚𝑖
=

𝑑𝑚𝑖

𝑑𝐴𝑚𝑖
> 0, 𝑓ℎ𝑖 = 

𝑑ℎ𝑖

𝑑𝐴ℎ𝑖
> 0, 𝑓𝑚𝑖𝑚𝑖

= 
𝑑2𝑚𝑖

𝑑𝐴𝑚𝑖
2 < 0, 𝑓ℎ𝑖ℎ𝑖 =

𝑑2ℎ𝑖

𝑑𝐴ℎ𝑖
2 < 0. 
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Substituting ℎ𝑖 = 𝑓(𝐴ℎ𝑖;  𝑧ℎ𝑖) and 𝑚𝑖 =  𝑓(𝐴𝑚𝑖
;  𝑧𝑚𝑖), we have the following Lagrangian 

function:   

 (9)  𝐿 = U(𝑜𝑖; 𝑛𝑖  ; 𝑍𝑢𝑖) + 𝜆𝑖[(𝑃𝑚𝑖
− 𝑡𝑚𝑖

) 𝑓(𝐴𝑚𝑖
;  𝑧𝑚𝑖) + (𝑃𝑔𝑖 − 𝑡𝑔𝑖) (𝑓(𝐴ℎ𝑖;  𝑧ℎ𝑖) − 𝑜𝑖) −

(𝑝𝑛𝑖 + 𝑡𝑛𝑖) 𝑛𝑖 + 𝑇𝑖] + 𝑟𝑖[𝐴𝑖 − (𝐴𝑚𝑖
+ 𝐴ℎ𝑖)] 

Which can be used to determine the optimal level of production of cash and food crops, as well 

as optimal input allocation that will maximize utility. 

From equation (4), 𝑔𝑖 = ℎ𝑖 − 𝑜𝑖, or the amount of food crops sold is equal to total food crops 

production minus food crops used for home consumption. 

The first order conditions (FOCs) for maximizing equation (9) are: 

(i) for home consumed crops: optimal consumption of food crops is governed by:  

(10)  
𝑑𝐿

𝑑𝑜𝑖
=

𝑑𝑢

𝑑𝑜𝑖
− 𝜆𝑖(𝑃𝑔𝑖 − 𝑡𝑔𝑖) = 0 ⇒ 𝑀𝑈𝑜𝑖 − 𝜆𝑖(𝑃𝑔𝑖 − 𝑡𝑔𝑖) = 0; 

(ii) for purchased food crops: optimal consumption of purchased crops is governed by: 

 (11)  
𝑑𝐿

𝑑𝑛𝑖
=  

𝑑𝑢

𝑑𝑛𝑖
− 𝜆𝑖(𝑝𝑛𝑖 + 𝑡𝑛𝑖) = 0 ⇒ 𝑀𝑈𝑛𝑖 − 𝜆𝑖(𝑝𝑛𝑖 + 𝑡𝑛𝑖) = 0; 

(iii) for inputs used for food crops: optimal allocation of inputs used for food crops are governed 

by:  

(12) 
𝑑𝐿

𝑑𝐴ℎ𝑖
= 𝜆𝑖(𝑃𝑔𝑖 − 𝑡𝑔𝑖)𝑓ℎ𝑖(𝐴ℎ𝑖) − 𝑟𝑖 = 0; and  

(iv) for inputs used for cash crops: optimal allocation of inputs used for cash crops are governed 

by: 
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(13) 
𝑑𝐿

𝑑𝐴𝑚𝑖
=  𝜆𝑖(𝑃𝑚𝑖

− 𝑡𝑚𝑖
)𝑓𝑚𝑖

(𝐴𝑚𝑖
) − 𝑟𝑖 = 0;  

where 𝑀𝑈𝑜𝑖 is the marginal utility of consuming food crops, 𝜆𝑖 is marginal utility of income, and 

𝑀𝑈𝑛𝑖 is the marginal utility of consuming purchased goods.  

To estimate prices for home consumed crops, we optimize utility with respect to outputs and input 

allocations. Implicitly, households optimize output by optimally choosing inputs. Using the 

Karush-Kuhn-Tucker (KKT) conditions, we can derive the optimal conditions, including the 

corner solution, for producing food versus cash crops.  

The optimal decision prices for farm crops sold, consumption crops bought and farm crops 

consumed are similar to those in Arslan (2011), Arslan and Taylor (2009), Henning and 

Henningsen (2007), Key et al. (2000), Jayne (1994), and De Janvry, Fafchamps and Sadoulet 

(1991).  The net prices for each potential crop is given by the following: 

(14)  𝑃𝑖 =

{
 
 

 
 

𝑃𝑚 − 𝑡𝑚 ,      𝑓𝑜𝑟 𝑐𝑎𝑠ℎ 𝑐𝑟𝑜𝑝𝑠
𝑃𝑔 − 𝑡𝑔 ,      𝑓𝑜𝑜𝑑 𝑐𝑟𝑜𝑝𝑠 𝑠𝑜𝑙𝑑

 𝑃𝑛 + 𝑡𝑛 ,         𝑓𝑜𝑟 𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒𝑑 𝑐𝑟𝑜𝑝𝑠
𝑀𝑈𝑜𝑖

𝜆𝑖
,        𝑓𝑜𝑟 ℎ𝑜𝑚𝑒 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 𝑐𝑟𝑜𝑝𝑠

  

A detailed derivation of the above prices is provided in the appendix.  

The shadow price for home consumed crops is given by: 

(15) 𝑃𝑖 =
𝑀𝑈𝑜𝑖

𝜆𝑖
,  

𝑀𝑈ℎ𝑖 and 𝜆𝑖 represent the marginal utilities of home consumed crops and income, respectively       

(see De Janvry, Fafchamps and Sadoulet 1991). Define 𝜑𝑖 as the price wedge, or the difference 

between the shadow (
𝑀𝑈𝑜𝑖

𝜆𝑖
) and market price (𝑝𝑔𝑖). That is, 
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(16) 𝜑𝑖 =
𝑀𝑈𝑜𝑖

𝜆𝑖
− 𝑝𝑔.  

The shadow price can then be written as:  

(17) 
𝑀𝑈𝑜𝑖

𝜆𝑖
= 𝑃𝑖 = 𝑃𝑔 + 𝜑𝑖  .  

where 𝑃𝑔 is the market price of home consumed crops if it is sold to the market. 

Price wedges are functions of several factors. The household saves 𝑡𝑔𝑖, the amount that would have 

been paid if the household sold the crop to the market. That is, the market value is higher by 𝑡𝑔𝑖. 

Moreover, production of food crops might have embedded quality attributes that are not reflected 

in the market prices (see Arslan 2011; Arslan and Taylor 2009). Assume that the market values of 

these quality attributes for the household are equal to  𝜃𝑖. There could also be other household 

characteristics (socio-cultural, preferences etc.) and factors that affect price wedges. The price 

wedges (𝜑𝑖) then is a function of the transaction costs (𝑡𝑔𝑖) (Henning and Henningsen 2007; Key 

et al. 2000), crop quality attributes (𝜃𝑖) (Arslan 2011; Suri 2011; Arslan and Taylor 2009) and 

these other factors (e.g. household characteristics) (Suri 2011; Ojiem et al. 2006 and Jayne 1994). 

The objective here is to show that profitability and productivity analysis of farm households 

explicitly must incorporate price wedges. The next step is to derive the optimal condition for 

maximizing utility of cash versus food crops accounting for price wedges. We have three cases to 

determine the optimal solution or product mix; two boundary solutions and one interior solution. 

Case 1: interior solution:  𝑚𝑖 ≠ 0, ℎ𝑖 ≠ 0. 

From equation (10) and (12): 
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(18) 𝑟𝑖 = 𝑀𝑈𝑜𝑖𝑀𝑃ℎ𝑖 where 𝑀𝑃ℎ𝑖 = 𝑓ℎ𝑖(𝐴ℎ𝑖) is the marginal productivity of inputs used for food 

crop production. 

From equation (13) and (18): 

(19) 𝑀𝑈𝑜𝑖𝑀𝑃ℎ𝑖 = 𝜆𝑖(𝑃𝑚𝑖
− 𝑡𝑚𝑖

)𝑀𝑃𝑚𝑖
 where 𝑀𝑃𝑚𝑖

= 𝑓𝑚𝑖
(𝐴𝑚𝑖

) is the marginal productivity of 

inputs used for cash crop production. 

At equilibrium: 

(20) 
𝑀𝑈𝑜𝑖

𝜆𝑖
𝑀𝑃ℎ𝑖 = (𝑃𝑚𝑖

− 𝑡𝑚𝑖
)𝑀𝑃𝑚𝑖

 

Note that the 
𝑀𝑈𝑜𝑖

𝜆𝑖
 is the shadow price for home consumed crops, which is equal to 𝑃𝑔 +𝜑𝑖. 

If we replace 
𝑀𝑈𝑜𝑖

𝜆𝑖
 by 𝑃𝑔 + 𝜑𝑖 in equation (20), then the equilibrium point of production can be 

written as: 

(21) (𝑃𝑔 + 𝜑𝑖) 𝑀𝑃ℎ𝑖 = (𝑃𝑚𝑖
− 𝑡𝑚𝑖

)𝑀𝑃𝑚𝑖
 

If (𝑃𝑔 + 𝜑𝑖) 𝑀𝑃ℎ𝑖 ≥ (𝑃𝑚𝑖
− 𝑡𝑚𝑖

)𝑀𝑃𝑚𝑖
, farmers start to move input/s toward home consumed 

crops, decreasing marginal productivity for home consumed crops and increasing marginal 

productivity for cash crops, and vice-versa. At equilibrium, the ratio of marginal physical (MP) 

products of the crops is equal to their inverse effective price ratio. That is: 

(22)  
𝑀𝑃𝑚𝑖

𝑀𝑃ℎ𝑖
=

(𝑃𝑔𝑖+𝜑𝑖)

(𝑃𝑚𝑖−𝑡𝑚𝑖)
. 

When the an interior equilibrium is unique, (𝑝𝑔𝑖 + 𝜑𝑖)𝑀𝑃ℎ𝑖= (𝑝𝑚𝑖 − 𝑡𝑚𝑖
)𝑀𝑃𝑚𝑖, and farmers 

allocate resource between home consumed and cash crops until the point where the shadow value 
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of the marginal product of allocating the resources to home consume crops is equal to the marginal 

value of resources allocated to cash crops.  

Case 2: Boundary solution:ℎ𝑖 ≠ 0, 𝑜𝑟 𝑚𝑖 = 0.  

This occurs when only home consumed crops are profitable for the farmers. A farmer allocates all 

the inputs to home consumed crop production.  

Under this case; (𝑝𝑚𝑖 − 𝑡𝑚𝑖
)𝑀𝑃𝑚𝑖 ≤ (𝑝𝑔𝑖 + 𝜑𝑖)𝑀𝑃ℎ𝑖 , which implies that the value of the 

contribution of allocating one unit to cash crops is always less than the contribution of allocating 

one unit to home consumed crop. The farmer allocates all the inputs to home consumed crops and 

zero inputs to cash crops, implying 𝐴𝑚𝑖
= 0, and 𝐴ℎ𝑖 = 𝐴𝑖. Case 2 represents the optimal 

allocation for subsistence farmers. 

Case 3: Boundary solution:𝑚𝑖 ≠ 0, ℎ𝑖 = 0.  

This occurs when only cash crops are profitable for the farmers. A farmer allocates all the inputs 

to cash crop production.  

Under this case; (𝑝𝑔𝑖 + 𝜑𝑖)𝑀𝑃ℎ𝑖 ≤ (𝑝𝑚𝑖 − 𝑡𝑚𝑖
)𝑀𝑃𝑚𝑖 , which implies that the value of the 

contribution of allocating one unit to home consumed crops is less than the value of the 

contribution of allocating one unit to cash crop. The farmer allocates all the inputs to cash crops 

and zero inputs to food crops, implying 𝐴ℎ𝑖 = 0, and 𝐴𝑚𝑖
= 𝐴𝑖. It is more profitable to buy food 

crops for home consumption than to produce them. Case 3 represents the optimal allocation for 

commercial farmers. The effects of changes in price wedges on farm household’s optimality 

conditions can be examined using second order derivatives. 
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3.5. Comparative Statistics of the Change in Price Wedge Between Cash and Food 

Crops Production 

From equations (12) and (13),  

(24) (𝑃𝑔𝑖 + 𝜑𝑖(𝑡𝑔𝑖))𝑓ℎ𝑖(𝐴ℎ𝑖) = 𝑟𝑖 

(25) (𝑃𝑚𝑖
− 𝑡𝑚𝑖

)𝑓𝑚𝑖
(𝐴𝑚𝑖

) = 𝑟𝑖, and 

(26)  𝐴𝑚𝑖
+ 𝐴ℎ𝑖 = 𝐴𝑖  

We perform total differential of the system to examine how changes in price wedges due to change 

in factors of price wedges such as transaction costs affect farm household decisions to allocate 

inputs toward cash versus home consumed crop production. 

From equation (24), (25) and (26), the Hessian determinants or total differential of the system are: 

[ 

(𝑃𝑔𝑖 + 𝜑𝑖(𝑡𝑔𝑖))𝑓ℎ𝑖ℎ𝑖        0       − 1  

0                (𝑃𝑚𝑖
− 𝑡𝑚𝑖

)𝑓𝑚𝑖𝑚𝑖
 − 1

1                        1                   0

] [

𝑑𝐴ℎ𝑖
𝑑𝐴𝑚𝑖

𝑑𝑟𝑖

]=[

−𝑑𝑃𝑔𝑖𝑓ℎ𝑖 − 𝜑𝑡𝑔𝑖𝑓ℎ𝑖
−𝑑𝑃𝑚𝑖

𝑓𝑚𝑖
+ 𝑑𝑡𝑚𝑖

𝑓𝑚𝑖

𝑑𝐴𝑖

] 

where 𝜑𝑡𝑔𝑖 represents 
𝑑𝜑𝑖

𝑑𝑡𝑔𝑖
> 0 

The Jacobian determinant is: J= (𝑃𝑚𝑖
− 𝑡𝑚𝑖

)𝑓𝑚𝑖𝑚𝑖
+ (𝑃𝑔𝑖 + 𝜑𝑖(𝑡𝑔𝑖))𝑓ℎ𝑖ℎ𝑖 < 0 

𝑑𝐴ℎ𝑖 = −𝑑𝑃𝑔𝑖𝑓ℎ𝑖 − 𝜑𝑡𝑔𝑖𝑓ℎ𝑖 − (−𝑑𝑃𝑚𝑖
𝑓𝑚𝑖

+ 𝑑𝑡𝑚𝑖
𝑓𝑚𝑖
) +  𝑑𝐴𝑖 ((𝑃𝑚𝑖

− 𝑡𝑚𝑖
)𝑓𝑚𝑖𝑚𝑖

) 

𝑑𝐴𝑚𝑖
= (𝑃𝑔𝑖 + 𝜑𝑖)𝑓ℎ𝑖(𝑑𝐴𝑖) + (−𝑑𝑃𝑔𝑖𝑓ℎ𝑖 − 𝜑𝑡𝑔𝑖𝑓ℎ𝑖) (−1) − (−𝑑𝑃𝑚𝑖

𝑓, + 𝑑𝑡𝑚𝑖
𝑓𝑚𝑖
(−1).  

This information can be used to show that: 

(28) 
𝑑𝐴ℎ𝑖
𝜑𝑡𝑔𝑖

=
−𝑓ℎ𝑖
𝐽
> 0 
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(29) 
𝑑𝐴ℎ𝑖
𝑑𝑡𝑚𝑖

=
−𝑓𝑚𝑖

𝐽
> 0 

(30) 
𝑑𝐴ℎ𝑖
𝑑𝐴𝑖

=
(𝑃𝑚𝑖−𝑡𝑚𝑖)𝑓𝑚𝑖𝑚𝑖

𝐽
> 0 

Assuming that 𝑃𝑚𝑖
− 𝑡𝑚𝑖

> 0. 

(31) 
𝑑𝐴𝑚𝑖

𝜑𝑡𝑔𝑖
=

𝑓ℎ𝑖
𝐽
< 0 

(32) 
𝑑𝐴ℎ𝑖
𝑑𝑡𝑚𝑖

=
𝑓𝑚𝑖

𝐽
< 0 

(33) 
𝑑𝐴𝑚𝑖

𝑑𝐴𝑖
=

(𝑃𝑔𝑖+𝜑𝑖)𝑓ℎ𝑖ℎ𝑖

𝐽
> 0 

The price wedge is a function of transaction costs, crop quality attributes and household 

characteristics. Increases in price wedges due to either of these factors affect the cash versus food 

crop production decision of farmers. For instance, an increase in transaction costs (𝑡𝑔𝑖) increases 

the price wedges (𝜑𝑖), which discourage production of cash crops (equation (31)) and encourages 

the production of home consumed crops (equation (28)) and vice-versa. A sample of farmers facing 

heterogeneous transaction costs and other factors that contribute to price wedges will result in a 

heterogeneous production frontier. Thus, accounting for such heterogeneity in production frontiers 

is important when measuring efficiency.   

3.6. Impact on Efficiency Analysis 

We have demonstrated theoretically that utility maximizing farmers such as subsistence, semi-

subsistence and commercial producers likely have different production frontiers. Following Daraio 

and Simar (2005), the production attainable set (𝝭) that is conditional on price wedges (𝜑) is 

defined as: 
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(34) Ψ𝜑𝑖 = {(𝐴, 𝑄)|𝜑𝑖, 𝐴 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑄}  

We note that farmers that have higher price wedges (𝜑) allocate more inputs toward production of 

food crops, implying that their total agricultural production has a greater composition of home 

consumed crops (ℎ𝑖) relative to cash crops (𝑚𝑖). On the other hand, farmers that have lower price 

wedges (𝜑) allocate more inputs toward cash crops and have agricultural production that has less 

composition of home consumed crops (ℎ𝑖) and more of cash crops (𝑚𝑖). We also note that if we 

don’t account for price wedges, then we undervalue the return for subsistence and semi-subsistence 

farmers that dominantly produce home consumed crops (due to higher price wedges). 

Undervaluing the returns for subsistence and semi-subsistence farmers as compared to commercial 

farmers, implies that the production set (𝝭) for subsistence and semi-subsistence farmers is lower 

than it would have been, which we interpret it lower efficiency. Estimating efficiency for all 

farmers ignoring the price wedges implies that one may unnecessarily understate the return and 

efficiency of subsistence and semi-subsistence farmers who have potentially higher price wedges. 

However, one could correct this issue by allowing one to set separate production frontiers for 

farmers that have similar price wedges (Ψ𝜑𝑖). That is, there will be a separate production sets for 

subsistence, semi-subsistence and commercial farmers which helps to estimate efficiency through 

a comparison within each group that has similar price wedges, instead of across all farmers. This 

helps to overcome the efficiency loss due to price wedges and identify true management shortfalls.   

3.7. Empirical Model 

We test the supposition that accounting for price wedges understates technical efficiency for 

subsistence and semi-subsistence farmers using a conditional Data Envelopment Analysis (DEA) 

approach. We use DEA for two reasons. First, DEA is widely used and performs well in estimating 

efficiency for multi-output and multi-input production process. Second, as it constructs production 
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frontiers from the data, mismeasurement of the return to cash versus home consumed crops will 

likely affect the efficiency estimation. It is well documented that non-parametric efficiency 

measures such as DEA are sensitive to heterogeneity across decision making units (Dai and 

Kuosmanen 2014; Charnes, Cooper and Rhodes 1978). Conditional DEA was developed to 

account for such heterogeneity (Daraio and Simar 2007; Simar and Wilson 2007). Our contribution 

is to explain the consequences of this characteristic of the DEA method for farm production 

efficiency in a developing country settings, and demonstrate how conditional DEA techniques 

offers a potential remedy. 

The empirical model is presented as follows: First, we measure technical efficiency using a 

conditional DEA technique that accounts for heterogeneous price wedges between market and 

shadow prices (“first-stage”). Second, we examine the impact of various factors on the conditional 

technical efficiency of farm households (“second stage”). 

3.7.1. First Stage of DEA 

Our empirical strategy is to estimate efficiency that accounts for price wedges between market and 

shadow prices. It is based on a novel approach developed by Daraio and Simar (2007), Simar and 

Wilson (2007), and further elaborated and applied by Badin, Daraio and Simar (2012).  Traditional 

efficiency measures under DEA are often criticized for not considering environmental variables in 

the first stage (Daraio and Simar 2007). Environmental variables are variables that do not directly 

impact or are not directly considered in production decisions. Environmental variables may affect 

not only the distribution of inefficiency among farmers, but also the production frontier itself. 

Simar and Wilson (2007) note that ignoring environmental variables in DEA may lead to invalid 

inferences in any second stage evaluations of efficiency scores. To correct the bias in the first 

stage, Daraio and Simar (2007) and Simar and Wilson (2007) propose a methodology to implement 
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DEA conditioned on environmental variables. In the first stage, efficiency calculations are derived 

from comparing the performance of farmers with similar values of the environmental variables. 

We test in our model if ignoring environmental variables in the first stage of DEA leads to invalid 

inferences in the second stage.  

The environmental variables considered here are proxies for the factors that drive price wedges, 

which are often difficult to measure.  For example, transport costs may be known only for those 

households who sell crops, and are likely to systematically differ for non-participants.  The value 

of quality differences may also be unobservable. Instead, we construct a sales index based on the 

percentage of production sold as a proxy for the factors that contribute to price wedges. We 

calculate the percentage of total crop production sold to the market. Our assumption is that these 

factors that drive price wedges are relatively similar among farmers who largely participate in the 

market. On the other hand, a price wedge is likely to be largely similar for subsistence and semi-

subsistence farmers who consume much of their own production. We estimate efficiency 

conditional on the sales indices. Efficiency of a farmer is estimated based on the production 

technology constructed from farmers with similar sales indices. Farmers with similar sales indices 

are assumed to face similar factors that drive price wedges which leads to similar production 

frontiers.  

There could be farmers with identical factors that drive price wedges, but farmers may have a large 

sales index simply due to wealth. If farmers with a high value of sales index are more technically 

efficient than those with a low sales index, separately estimating the efficiency of low sales index 

farms using DEA will artificially increase their efficiency scores. To determine if the sales index 

is indeed simply proxying for wealth derived from higher efficiency, we test if using another 

variable correlated with wealth, but not necessarily with any element of the price wedge, impacts 
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efficiency estimation. We use the value of a households’ radio and television assets as a placebo 

variable to test our proposition. The assumption is that if efficiency estimates conditioning on sales 

index and value of radio and television show similar results, then the sales index is indeed a poor 

proxy variable for factors that drive a gap between market and shadow prices of farm households. 

Conditional DEA estimates technical efficiency within the boundary of farms with similar 

environmental variable values. Consider, farmer i, uses a vector of inputs A to produce a vector of 

outputs Q. Let Z be a vector of environmental variables that impacts the production process. 

Technical efficiency “𝜃” is estimated through examining the performance of the farmer from the 

frontier “𝛹𝑧”, a frontier formed within the bounds of similar farms based on Z.  

The conditional DEA production set is given by: 

𝛹𝑧
𝐷𝐸𝐴 = {(𝐴, 𝑄)|𝑍 = 𝑧, 𝐴 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑄}  

We estimate technical efficiency (𝜃) using output oriented DEA. The conditional output oriented 

DEA efficiency measure is given by: 

𝑀𝑎𝑥 𝜃𝑖|𝑍 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

∑𝑣𝑗𝑖

𝑛

𝑗=1

𝐴𝑟𝑗𝑖 ≤ 𝜃𝐴𝑟𝑖|Z      

  ∑𝑣𝑗𝑖

𝑛

𝑗=1

𝑄𝑠𝑗𝑖 ≤ 𝑄𝑠𝑖 |Z       

∑𝑣𝑗𝑖

𝑡

𝑡=1

= 1, 𝑣𝑗𝑖 ≥ 0       

where 𝑣 represents weights for r vectors of inputs and s vectors of outputs and i represents 

observation. 
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The efficiency estimation is performed using linear programing (see Badin, Daraio and Simar 

2012). To perform the conditional DEA, we first rank farmers from smallest to largest using the 

value of the environmental variable. For instance, farmers who have the lowest and largest sales 

index are ranked first and last, respectively. Following Daraio and Simar (2007), and Badin, Daraio 

and Simar (2012), we estimate efficiency via grouping at intervals of about 140, or at deciles of 

the sample, which provides sufficient coverage to estimate efficiency within each group. The Sales 

indices are zero (sells nothing) for group one, 0.10-0.30 percent for group 2, 0.31-0.75 percent for 

group 3, 0.76-1.33 percent for group 4, 1.34-2.21 percent for group 5, 2.22-3.48 percent for group 

6, 3.50-5.37 percent for group 7, 5.38-9.46 percent for group 8 and 9.50-100 percent for group 9.    

The total sample size is 1388. The assumption is that farmers in the same groups have similar price 

wedges. The efficiency is estimated based on the performance among 140 farmers, bootstrapped 

1,000 times, which provides confidence intervals in spite of the deterministic nature of DEA (i.e.e 

DEA does not allow noise). The Bootstrap procedure helps to overcome the bias that stems from 

uncertainty of sampling variations (see Simar and Wilson 2000).  

3.7.2.  Second Stage of DEA 

In the second stage of the DEA analysis, we estimate the effect of factors that impact efficiency 

using the following steps. First, we whiten the conditional efficiency scores by removing the effect 

of environmental variable, in this case of the sales index, as in Badin, Daraio and Simar (2012). 

The effect of the environmental variable on conditional efficiency is estimated using a non-

parametric regression, given in equation (35) and (36).  

 (35)   𝜃 𝑧̂𝑖 = 𝜇(𝑍)𝑖  + 𝜎(𝑍)𝛿𝑖    

(36) 𝛿𝑖   =
   𝜃

𝑧̂
𝑖−𝜇(𝑍)𝑖

𝜎(𝑍)𝑖   
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where 𝜇(𝑍) is the average effect of the sales index on technical efficiency, 𝜎(𝑍) is the dispersion 

of efficiency scores due to the sales index, and 𝛿 is the unexplained (managerial) part of conditional 

efficiency. Average effects of sales index on efficiency, 𝜇(𝑍) are estimated using local polynomial 

(nonparametric) regression as suggested by Badin, Daraio and Simar (2012). Similarly, dispersion, 

𝜎(𝑍) is measured by regressing the square of the residuals from equation (35) on sales index using 

local polynomial regression. Once we get the estimates for 𝜇(𝑍) and 𝜎(𝑍), we calculated the 

whitened efficiency (pure efficiency) using equation (36). These pure efficiency (managerial 

efficiency) values range between 0 and 1. Farms with large 𝛿 values have lower efficiency levels, 

while farms with small 𝛿 values have higher efficiency levels (see Badin, Daraio and Simar 2012). 

Finally, we estimate the impact of factors on the whitened efficiency score using OLS. 

(37)  𝛿𝑓   =
 α𝑓𝐺𝑓+ ε𝑓 

where 𝐺𝑓 are explanatory variables that may impact farm technical efficiency, α𝑓 is a vector of 

parameter, and ε𝑓 is a mean 0 IID error term. 

Simar and Wilson (2007) indicate that if environmental variables affect the production frontier 

then, naïve technical efficiency scores will lead to an incorrect inference about the factors that 

impact efficiency in the second stage.  To test this proposition in our case, we directly compare 

the naïve and conditional DEA estimates. 

Factors that affect farm technical efficiency, which is measured by equation (36) are non-farm 

income, age, family size, extension, education, and gender.2  

                                                           
2 Factors such as non-farm income, age, family size, extension, education, and gender that affect farm 

technical efficiency (see Tiruneh and Geta 2016; Muange et al. 2015; Abebe 2014; Karimov et al. 2014; 

Kitila and Alemu 2014; Thibbotuwa et al. 2013; Beshir et al. 2012; Makombe et al. 2011; Aye and 

Mungatana 2010; Speelman et al. 2008) 
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3.8. Data 

Table 3.1 presents the summary statistics of key variables used in the study. We use the World 

Bank’s nationally representative Living Standards Measurement Study (LSMS) household survey 

of 2010/2011 from Uganda. Information from survey households pertaining to crop production 

and other variables of interest were extracted from the survey data. The total sample size is 1,388. 

In our sample, the average household head’s age is 56, and the average household has nine  

members. Sixty-seven percent of the households are male headed.  Twenty-two percent of farm 

households have a father who completed elementary school. 

Efficiency estimates using DEA require data on multiple outputs and inputs. In our sample, farmers 

grow a variety of crops such as rice, soybean, maize, beans, cassava, coffee, millet, banana food 

crop, sweet potato, groundnut and sorghum. We categorize inputs into six categories: fertilizer 

costs, pesticide costs, hired labor costs, machinery costs, family labor (measured in hours) and 

land (measured in acres). Crop outputs are converted to revenue using own price for those who 

sell to the market and using average regional prices for farm households who do not sell. 

Farm households earn about 919, 449 Ugandan Shillings of non-farm income per year. On average, 

maize contribute the highest farm household crop revenue share (21%), followed by beans (14%), 

banana food crop (12%), groundnuts (10%), sweet potato (9%), coffee (8%), millet (4%), rice 

(4%), cassava (2%), sorghum (1%) and soybeans, (0.6%). Similarly, farm households incur the 

highest expense for crop production from hired labor (59,263), followed by fertilizer (44, 853), 

pesticide (5,764), and machinery (2,169) Ugandan Shillings per year. Farm households use an 

average of 219 hours of family labor per year. The average land holding, an important farm asset, 

is 4 acres per farm household. Only 30% of the farm households visit extension centers each year. 

On average, farmers sold approximately 27 percent of their crop. Percentage of sales ranges from 
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0 to 100 percent, assuming that farmers with low percentage of sales have high price wedges and 

farmers with higher percentage of sales have lower or zero price wedges. 

3.9. Results and Discussion 

We test if accounting for price wedges impacts the DEA technical efficiency estimation. We 

estimate technical efficiency conditional on a sales index, a proxy variable for price wedges in the 

first stage and determine the factors that affect technical efficiency in the second stage.  

3.9.1.  First Stage of DEA 

Technical efficiency is estimated using a double bootstrapped conditional DEA. To determine the 

extent of bias from ignoring the potential differences between the market and shadow price of 

agricultural output, we estimate technical efficiency twice: once using unconditional DEA (naïve) 

and conditional DEA conditioned on sales index. We calculate efficiency ratios by driving 

conditional efficiency scores by the naive technical efficiency scores. If efficiency of a farmer is 

the same using conditional and naive DEA, then the ratio is equal to 1. A ratio of unity on average 

across the sample implies that factors that drive a price wedge have no role in the calculated 

efficiency level of farmers. If measured efficiency is higher under conditional DEA relative to 

unconditional, then the ratio is larger than 1. A ratio greater than one, implies that the conditioning 

variable of price wedges do in fact impact efficiency measurement. In the case analyzed here, a 

ratio greater than one indicates that estimating efficiency without accounting for the price wedge, 

possibly underestimates the efficiency of farmers with high price wedges. 

Figure 3.1 plots the efficiency ratios of conditional over unconditional DEA with the efficiency 

ratio on the vertical axis and sales index on the horizontal axis. We estimate the relationship 

between the efficiency ratio and sales index using a local-linear non-parametric estimator. The 

effect of sales index on the efficiency ratio is about -4.34 and statistically significant (Table 2). 
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This shows that the efficiency ratio decreases as we move from a lower sales index to large sales 

index, which is evidenced by the fact that efficiency ratios are larger than two at lower levels of 

sales index and eventually approach one when we move toward higher levels of sales index. Thus, 

estimating efficiency without accounting for sales index (price wedges) understates the efficiency 

score of lower sales index farmers (i.e. subsistence and semi-subsistence farmers). 

Underestimation of technical efficiency decreases as we move toward higher values of sales index, 

that is, toward more commercial producers.  We learned that conditional efficiency is larger than 

the unconditional efficiency for subsistence and semi-subsistence, while it is relatively the same 

for commercial farmers. This implies that we fail to reject the hypothesis that unconditional 

efficiency estimation understates the technical efficiency of subsistence and semi-subsistence 

farmers. 

We assume that wealthier farmers have similar price wedges as poorer farmers and simply have 

larger sales index due to large production.  If these wealthier farmers with larger sales index are 

technically more efficient, estimating efficiency of these poorer farmers with lower sales index 

separately may increase their technical efficiency unnecessarily. To account for these issues, we 

test if using another variable correlated with land size or wealth, but not necessarily with the sales 

index impacts efficiency estimation. We use value of a households’ radio and television as a 

variable to test our proposition. The correlation between land size and value of radio and television 

is 0.56. However, the correlation between radio and television and sales index is about 0.07, which 

is very weak. The assumption is that if efficiency estimates conditioned on sales index and value 

of radio and television, show the same pattern of underestimation, that would cast doubt on our 

interpretation that the results in figure 3.1, stem from failing to account for the price wedge in 
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household optimality conditions. Instead, we may simply be artificially inducing the pattern by 

grouping households according to a variable, like wealth, correlated with true efficiency. 

We present the results calculating the efficiency ratio conditioning on the value of radio and 

television is in figure 3.2. The effect of radio and television index on efficiency ratio is -0.03 and 

statistically insignificant (Table 3.3). The efficiency ratio for lower value of radio and television 

farmers is below two and doesn’t decline when we move toward higher values of radios and 

television. Unlike the use of sales index as a condition variable, there is no clear pattern as the 

value of household assets increase. This suggests that the pattern of bias detected by conditioning 

on sales index is not induced by a spurious relationship with wealth, and is, instead, likely a result 

of price wedge factors. 

Unconditional and conditional on sales index mean efficiency estimates are reported in Table 3.4. 

The average efficiency using unconditional (naïve) and conditional DEA are 0.48 and 0.68, 

respectively. The average bias (conditional minus unconditional efficiency) across the sample is 

approximately 0.21 (Table 3.4).  The efficiency conditional on sales index is 44 percent more than 

the efficiency estimated using unconditional DEA. Efficiency estimation using unconditional DEA 

may be misleading for information based development programs such as extension programs that 

interpret the low efficiency score completely as management shortfall.  

Previous studies that measure farm technical efficiency using unconditional DEA (Mugabe and 

Etienne 2016; Ghebru and Holden 2015; Peterman et al. 2011: Balcombe et al. 2008; Chavas, 

Petrie and Roth, 2005; Rahman, 2003; Wang, Cramer and Wailes, 1996 etc) likely underestimate 

the efficiency of subsistence farmers which could lead to biased inferences. Conditional DEA to 

measure efficiency has been applied in other areas such as health science (Halkos and Tzeremes 

2011), environmental sciences (Halkos and Tzeremes 2014) and public services (Zschille 2015). 
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For instances, Halkos and Tzeremes (2014) examined the impact of Kyoto protocol agreement on 

countries environmental efficiency using conditional DEA. They found that unconditional 

efficiency was biased as high as 24 percent in some countries. 

3.9.2.  Second Stage of DEA 

To examine factors that affect efficiency in the second stage, we whitened the conditional 

efficiency as suggested by Badin, Daraio and Simar (2012). Whitened technical efficiency is 

calculated using equations (35) and (36). Examining the effect of factors on the whitened technical 

efficiency gives more correct inferences (Daraio and Simar 2007; Simar and Wilson 2007). We 

present factors that affect unconditional efficiency (Table 3.5) and conditional efficiency (Table 

3.6). However, we interpret only factors that affect whitened technical efficiency (estimated from 

conditional efficiency) as our unconditional technical efficiency is biased. Results indicate that 

factors that affect whitened technical efficiency at a 5 percent level of significance are gender, 

extension program use and region of residence (Table 3.6).  Gender and Extension have a positive 

effect on whitened technical efficiency. Male farmers are technically more efficient than female 

farmers. Farmers who visit extension services are technically more efficiency than farmers who 

don’t visit. Region 2 has a negative effect on technical efficiency, implies that farmers located in 

region 2 are less efficient than other regions.  

3.10. Summary and Conclusion 

Factors such as transaction costs, crop quality (e.g. color, taste, softness of dough, and suitability 

for certain dishes) and other household characteristics drive price wedges between market and 

shadow prices for crops produced for home consumption. Price wedges are heterogeneous across 

farmers and appear in the optimality conditions associated with the farm household’s choice of 
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cash and marketed versus home-consumed crops. Consideration of price wedges is important for 

measuring efficiency such as technical efficiency.  

The standard approach to measure efficiency is that farm households face homogenous prices 

wedges that lead to homogenous production and profit frontiers.  However, heterogeneous price 

wedges lead to heterogeneous profit and production frontiers. Subsistence, semi-subsistence and 

relatively commercial farmers face difference price wedges and have different profitability and 

productivity frontiers. Failing to account for this heterogeneity due to price wedges across 

subsistence, semi-subsistence and commercial farmers can lead to biased efficiency estimation and 

misleading conclusions. 

In this paper, we explicitly model the potential impact of price wedges on optimal crop choices for 

utility maximizing farm households. We show that the existence of price wedges discourages 

production of cash crops and encourages production of home consumed crops. With the increase 

of price wedges, a utility maximizing farm household, more typically subsistence farmers, 

withdraws inputs from cash crops and allocates them toward home consumed crop production. 

Because of significant price wedges, use of modern technologies, and production of high values 

crops may be unprofitable for subsistence and some of the semi-subsistence farmers.  

Modeling farm productivity that accounts the price wedge helps to have better understanding about 

the lack of use of modern agricultural inputs and producing cash (high value) crops by subsistence 

farmers. Many development programs may invest in teaching farmers such as subsistence and 

semi-subsistence farmers as if they have a lack of knowledge about the modern agricultural inputs 

and high value crops. However, higher price wedges could be the reason behind farmers’ low use 

of modern agricultural inputs and producing cash crops.  
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We measure technical efficiency using unconditional (naïve) and conditional Data Envelopment 

Analysis (DEA). Conditional DEA helps account for heterogeneity due to price wedges when 

estimating technical efficiency of farmers. In Uganda, we find that naïve estimates of technical 

efficiency understate the efficiency scores of subsistence and semi-subsistence farmers. This is 

important for development programs, such as extension and other information-based programs to 

identify the actual efficiency loss due to managerial inefficiency. Moreover, this helps on 

designing appropriate extension programs such as teaching about the most profitable inputs 

(modern or traditional) and crops (cash versus food) to the farmers. This also in turn increase the 

effectiveness of the extension program. Under high price wedges, designing development policies 

that consider price wedges is important for the overall effectiveness of the programs. E.g. 

development programs such as extension programs should consider the transaction costs such as 

cost of finding best prices for inputs and outputs, transportation costs, commission costs and etc. 

that drive price wedges when advising farmers to produce cash crops. 
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3.12. Tables and Figures 

Table 3.1: Summary Statistics of Sample Households’ Characteristics (N=1388) 
Variable  Definitions Mean Stand error 

Age Age of head of household in years 56.27 14.56 

Family size Number of household size 8.66 3.43 

Gender  1 if head of household male, 0 otherwise 0.67 0.43 

Nonfarm income  Amount of nonfarm income in dollar 919,449.2 2,956,320.30 

Father Education 1 if farmer completed elementary and 0 otherwise 0.22 0.40 

Rice   Revenue from rice  41,551.21 443,162.3 

Soybean  Revenue from soybean  5,808.476 29,634.71 

Maize   Revenue from maize  210,735.1 451,398.5 

Beans  Revenue from beans  142,810.3 207,651.2 

Cassava   Revenue from cassava  156,769.7 302,190.1 

Coffee  Revenue from coffee  83,830.29 294,418.40 

Millet   Revenue from millet  41,576.44 109,496.20 

Banana home consumed   Revenue from banana home consumed  124,531.40 352,141.00 

Sweet Potato    Revenue from sweet potato  85,743.03 135,266.50 

Groundnut   Revenue from groundnut   95,865.24 226,057.1 

Sorghum  Revenue from sorghum    12,571.16 32,888.79 

Fertilizer  Total cost of fertilizer 44,853.53  187,096.00 

Pesticide  Total cost of pesticide 5,764.87 22,350.99 

Hired labor Total cost of hired labor 59,263.29 111,715.50 

Family labor  Total number of family labor in hours 219.88 119.40 

Machinery  Total machinery cost 2,169.85 8,206.92   

Land Land owned in acres  4.01 3.37 

Livestock  1 if farmer own it, 0 otherwise 0.97 0.16 

Extension  1 if farmer visited extension, 0 otherwise 0.36 0.48 

Sales Percent of production sold to the market  0.27 0.31 

observations 1388 

Monetary values are per year in Ugandan Shilling. 
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Table 3.2: Association of Efficiency Ratio and Sales using Kernel Local-Linear Estimator 

 coefficients Std.error P-values 

Constant  2.07 0.03 0.00 

Sales index -4.34 0.12 0.00 

R2    0.05 

 

Table 3.3: Association of Efficiency Ratio and Radio using Kernel Local-Linear Estimator 

 coefficients Std.error P-values 

Constant  1.57 0.02 0.00 

Radio and television  -0.03 0.32 0.10 

R2    0.06 

 

Table 3.4: Technical Efficiency (TE) of Farm Households 

Type of farms Technical efficiency 

Unconditional  0.48 

Conditional  0.68 

Average bias (conditional-unconditional) 0.21 
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Table 3.5: Factors that Affect Naive Technical Efficiency Estimated using Tobit Model 

Variable Mean St. Error P-Value 

Constant 0.358 0.090 0.000 

Age -0.001 0.001 0.729 

Family size 0.014 0.002 0.000 

Gender  0.065 0.019 0.001 

Father education -0.030 0.023 0.200 

Extension  0.082 0.019 0.000 

Livestock ownership 0.049 0.079 0.540 

Region1 -0.073 0.025 0.004 

Region2 -0.125 0.024 0.000 

Region3  -0.147 0.024 0.000 

 

Table 3.6: Factors that Affect Conditional Technical Efficiency using Tobit Model 

Variable Mean St. Error P-Value 

Constant 0.223 0.033 0.000 

Age -0.001 0.001 0.796 

Family size -0.001 0.001 0.191 

Gender  0.016 0.007 0.033 

Father education 0.006 0.008 0.474 

Extension  0.015 0.007 0.045 

Livestock ownership -0.037 0.029 0.203 

Region1 -0.009 0.009 0.336 

Region2 -0.026 0.009 0.004 

Region3  -0.006 0.009 0.485 
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Figure 3.1: Plotting Efficiency Ratios versus Sales using Local Polynomial Smoothing3  
 

 

  

                                                           
3 Blue line indicates the non-parametric relationship between efficiency ratio and sales index, and Red line 
indicates efficiency ratio equal to 1. 
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Figure 3.2: Plotting Efficiency Ratios versus Radio using Local Polynomial Smoothing4  

 

 

 

  

                                                           
4 Blue line indicates the non-parametric relationship between efficiency ratio and sales index, and Red line 
indicates efficiency ratio equal to 1 
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3.13. Appendix 

The ith farm household’s optimization problem is modelled as follows: 

(1)      max
 𝑜𝑖; 𝑛𝑖; 𝑔𝑖;𝐴ℎ𝑖,𝐴𝑚𝑖 

U = (𝑜𝑖; 𝑛𝑖 ; 𝑍𝑢𝑖) 

s.t: 

(2) (𝑝𝑚𝑖 − 𝑡𝑚𝑖)𝑚𝑖 + (𝑝𝑔𝑖 − 𝑡𝑔𝑖)𝑔𝑖 − (𝑝𝑛𝑖 + 𝑡𝑛𝑖) 𝑛𝑖 + 𝑇𝑖 = 0 

(3)  𝑓(𝐴ℎ𝑖;  𝑧ℎ𝑖) = ℎ𝑖       

(4) ℎ𝑖 = 𝑔𝑖 + 𝑜𝑖  

(5)  𝑓(𝐴𝑚𝑖;  𝑧𝑚𝑖) = 𝑚𝑖       

(6)  𝑄𝑖 = 𝑚𝑖 + ℎ𝑖 

 (7)  𝐴𝑚𝑖 + 𝐴ℎ𝑖 = 𝐴𝑖 

(8) 𝑜𝑖, 𝑔𝑖, 𝑚𝑖, 𝑛𝑖 ≥ 0,  

One can replace 𝑔𝑖 = ℎ𝑖 − 𝑜𝑖, i.e. food crops sold is equal to total food crops produced minus 

food crops used for home consumption. 

Substituting ℎ𝑖 = 𝑓(𝐴ℎ𝑖) and 𝑚𝑖 =  𝑓(𝐴𝑚𝑖
), we have the following Lagrangian function:   

 (9)  𝐿 = U(𝑜𝑖; 𝑛𝑖  ; 𝑍𝑢𝑖) + 𝜆𝑖[(𝑃𝑚𝑖
− 𝑡𝑚𝑖

) 𝑓(𝐴𝑚𝑖
) + (𝑃𝑔𝑖 − 𝑡𝑔𝑖) (𝑓(𝐴ℎ𝑖) − 𝑜𝑖) − (𝑝𝑛𝑖 + 𝑡𝑛𝑖) 𝑛𝑖 +

𝑇𝑖] + 𝑟𝑖[𝐴𝑖 − (𝐴𝑚𝑖
+ 𝐴ℎ𝑖)] 

The first order conditions (FOCs) for maximizing equation (9) are: 

(i) home consumed crops: optimal consumption of food crops is governed by:  
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(10)  
𝑑𝐿

𝑑𝑜𝑖
=

𝑑𝑢

𝑑𝑜𝑖
− 𝜆𝑖(𝑃𝑔𝑖 − 𝑡𝑔𝑖) = 0 ⇒ 𝑀𝑈𝑜𝑖 − 𝜆𝑖(𝑃𝑔𝑖 − 𝑡𝑔𝑖) = 0; 

If food crop is sold to the market (g), its price (𝑃𝑖) = 
𝑀𝑈𝑜𝑖

𝜆𝑖
= 𝑃𝑔𝑖 − 𝑡𝑔𝑖.  

Farmers are willing to sell the crop at a price of 𝑃𝑔𝑖 − 𝑡𝑔𝑖.  

However, if the food crop is consumed at home (o), its price (𝑃𝑖) = 
𝑀𝑈𝑜𝑖

𝜆𝑖
. 

 𝑃𝑖 = 
𝑀𝑈𝑜𝑖

𝜆𝑖
,  represents the shadow price for home consumed crop. 

(ii) purchased crops: optimal consumption of purchased crops is governed by: 

 (11)  
𝑑𝐿

𝑑𝑛𝑖
=  

𝑑𝑢

𝑑𝑛𝑖
− 𝜆𝑖(𝑝𝑛𝑖 + 𝑡𝑛𝑖) = 0 ⇒ 𝑀𝑈𝑛𝑖 − 𝜆𝑖(𝑝𝑛𝑖 + 𝑡𝑛𝑖) = 0; 

If food crop is purchased from the market (n), its price (𝑃𝑖) = 
𝑀𝑈𝑛𝑖

𝜆𝑖
= 𝑝𝑛𝑖 + 𝑡𝑛𝑖.  

Farmers are willing to buy the crop at a price of 𝑝𝑛𝑖 + 𝑡𝑛𝑖. 

 (iv) optimal sell of cash crops is governed by: 

(13) 
𝑑𝐿

𝑑𝑚𝑖
=  𝜆𝑖(𝑃𝑚𝑖

− 𝑡𝑚𝑖
) − 𝜔𝑖 = 0; where 𝜔𝑖 represents the marginal utility of producing cash 

crop. 

If cash crop is sold to the market (m), its price (𝑃𝑖) = 
𝜔𝑖

𝜆𝑖
= 𝑃𝑚𝑖

− 𝑡𝑚𝑖
.  

Farmers are willing to sell the crop at a price of 𝑃𝑚𝑖
− 𝑡𝑚𝑖

.  
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Chapter 4. Examining Effectiveness of Agricultural Extension Program in 

Armenia 

4.1. Abstract 

We evaluate the impact of a farm education and extension program on technical efficiency and 

farm productivity in Armenia. Farm productivity and technical efficiency can be used as an 

outcome measures to evaluate extension programs. Two previous studies, Fortson et al. 2012, and 

Schwab and Shanoyan (2016), examined the effect of a farm training program on farm income and 

found no robust farm training treatment effect. The purpose of this study is to examine the 

effectiveness of the farm training program using another complementary outcome variable such as 

farm technical efficiency and farm productivity. Controlling for other variables (e.g. non-farm 

income, education, etc.), the training program had a statistically significant and positive effect on 

catch-up (change in technical efficiency). However, results indicate that farm training had no effect 

on the frontier technical efficiency (innovation) and overall farm productivity (Malmquist index). 
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4.2. Introduction 

Armenia, a former Soviet Union Republic is a land locked country, located in the mountains of the 

Caucasus region between Europe and Asia. The topography of Armenia has a diversity of soil 

types and is fragmented by various systems of ravines. Climatic conditions are equally 

heterogeneous as a result of the level of the mountains. Climatic zones include: arid, semi-arid and 

temperate zones (Tumanian, 2001). Based on the Armenian economy report (2015), services 

contribute the most to GDP (51.9%), followed by industry (27.7%) and agriculture (19.4%). The 

Armenian economy has undergone a profound transformation after independence in 1991, which 

caused a sharp decline in GDP through the mid and late 90s (World Bank, 2001).  

After independence, significant privatization of the public economy took place. Many state-owned 

firms were sold to local buyers (FAO, 2000). State-owned agricultural land was distributed to 

individual farmers.  The government redistributed about 70 percent of farmland as small plots to 

private farmers and retained about 30 percent for state owned large scale farming operations 

(Fortson et al., 2012). However, after the transformation, economic progress did not proceed as 

expected. Firms frequently faced a shortage of capital needed to procure inputs and encountered 

market constraints to selling their output (Shanoyan et al., 2014). Agricultural land was often given 

to inexperienced and resource constrained farmers, which resulted in a dramatic decline in 

agricultural production. Through the 1990s and early 2000s, economic stability remained a key 

challenge in Armenia. To address the challenge, the government, supported by non-governmental 

agencies, initiated various development projects focusing on key investments in the country. One 

of the more recent and largest of these was the Millennium Challenge Corporation’s (MCC).  
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To enhance agricultural production and farmers’ income, MCC signed an agreement with Armenia 

in 2006. One aim of the project was to increase agricultural performance by offering farm training. 

The training offered by the program included: training on farm water management, high value 

agriculture production, post-harvest management, processing, marketing, and access to credit. 

Most of the targeted beneficiaries of the project were identified to have limited farming knowledge 

and poor irrigation systems (Fortson et al., 2012). By offering training to farmers, the project’s 

aim was to improve management practices, which in turn could increase farm efficiency and farm 

household income. A companion credit program did not develop past a small pilot during the 

evaluation period, and hence only a handful of farmers were provided access.   

Two previous studies examined the impact of the training program and found ambiguous effects.   

Fortson et al (2012), using an intention to treat (ITT) approach, found the program did not change 

average input use or yield, and found positive but not robust or precisely estimated effects on farm 

income and profits.  Schwab and Shanoyan (2016), using the same data, attempted to correct for 

two-sided non-compliance in the data by estimating local average treatment effects (LATE), using 

the randomization as an instrument.  They find similar results, though the positive impacts on farm 

profits are larger and slightly more precisely estimated (but not robust).  Overall, the evaluations 

using traditional outcome measures of output and income provide an ambiguous picture of the 

program, and do not provide persuasive evidence for a strong effect. However, for farmers who 

are beset by capital constraints such as credit, treatment effects using farm efficiency as outcome 

measure could be more revealing than the treatment effect using farm profit as an outcome 

measure. 

When farmers produce at input levels where marginal physical product (MPP) exceeds average 

physical product (APP), known as Stage 1 of production, treatment effects may produce a 
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commensurately large change in farm productivity as compared to farm profit (see chapter 1).  

While this stage of production is often ignored, as rational producers would not ‘choose’ to produce 

in this region, the population targeted by extension programs are often beset by binding constraints, 

such as credit, that prevent farmers from taking advantage of increasing returns to investment (Jack 

2011), that constrain them to this stage of production.  

In Armenia, firms frequently faced a shortage of capital needed to procure inputs and encountered 

market constraints to selling their output (Shanoyan et al., 2014). Schwab and Shanoyan (2016) 

note that credit was the most effective tool to attract farmers to the training participation in 

Armenia. This implies that farmers may potentially be beset by financial constraints and produce 

sub-optimally in stage 1 of production. Thus, an extension program targeting such farmers that 

shows no or little impact on profit may still have resulted in positive changes in terms of efficient 

production behavior.  As a result, using farm technical efficiency and productivity as an outcome 

measure may allow program evaluators to determine if the extension program provided no positive 

productive effects or if farmer efficiency improved, but was beset by other binding constraints 

reducing or failing to impact farm household income.  

Examining the impact of farm education and extension program on farm technical efficiency and 

farm productivity may help to identify program impacts that farm profit estimates may fail to 

detect. In this study, we assess whether or not the farm training program in Armenia increased 

farm technical efficiency and farm productivity. We use an Armenian panel survey data set 

collected in 2007/2008 and 2010/2011 by Millennium Challenge Corporation’s Compact, USIAD 

project. We investigate the effect of treatment on the catch-up effect (change in technical 

efficiency), frontier shift (change in technology) and Malmquist index (overall farm productivity) 
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using conditional DEA. We find that the training program had a significant effect on catch-up and 

no effect on the frontier technical efficiency and overall farm productivity. 

4.3. Theory  

We discussed the importance of using farm technical efficiency as outcome variables to assess the 

effectiveness of farm training and extension programs in chapter 2. We noted that farmers in 

developing countries face input constraints and as a result, operate sub-optimally in stage 1 of the 

production process. For farmers that operate in stage 1 of the production process, using farm 

technical efficiency directly as an outcome variable for evaluating extension programs may be 

more informative than farm income. In stage 1 of the production process, treatment effects (impact 

of extension program) on technical efficiency are likely larger than treatment effects on profit. 

Here, we are exploring whether or not a farm training program increases farm productivity in 

Armenia. 

The purpose of this paper is to assess the impact of farm training on changes in technical efficiency 

as an outcome variable. Training improves knowledge, which can make farmers technically more 

efficient and innovative. The most appropriate method to measure this potential gains from farm 

training is the Malmquist index (farm productivity). Farm productivity can be decomposed in to 

two components, a catch-up effect (capture change in technical efficiency) and a frontier shift 

effect (capture gain in innovation) (see Cooper, Seiford and Tone, 2007).  

To illustrate the linkage between farm training and technical efficiency of farm households, 

assume training improves farmer’s knowledge by providing new information. As noted by 

Appleton and Balihutan (1996) and Cotlear (1989), training may have two effects. The first is a 

cognitive effect where the training increases skills and proficiency of farmers through 

informational channels. With the increase in skill, farmers can become more creative and do things 
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with fewer resources and in shorter time.  The second is a non-cognitive effect, where attitudes, 

beliefs and habits change in ways that help farmers to adopt productive technology. The effect of 

farm training on technical efficiency is illustrated in figure1.   

Figure 4.1: Production performance of farmers in two time periods, before (Tb) and after 

(Tf) treatment. 

 

Farm households on the frontier such as A and C are fully efficient while farm households below 

the frontier such as B and D are less efficient.  The indices b and f on farm households B and D 

show technical efficiency before and after the training respectively. After the training, the technical 

efficiency of farmer B and D increases from Bb and Db to Bf and Df, respectivily . The two effects 

of treatment can be described by the differences before and after training in the figure:  

technological change, or the frontier shift, is embodied by the change in the frontier (moving from 

Tb to Tf), which is a result of the change in innovation. The second effect, technical efficiency 
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change, or catch-up effect, is embodied by the difference in efficiency before and after the program 

(e.g. Bf/Bb or Df/Db) (see Fare et al., 1994). The Malmquist Index measures the overall farm 

productivity change, which is the combination of catch-up and frontier shift effects. Overall farm 

productivity could be change due to efficiency and/or innovation. 

Empirical strategies: We aim to examine impact of farm training on technical efficiency and 

farm productivity in Armenia. There are two common methods to measure technical efficiency 

and farm productivity: Stochastic Frontier Analysis (SFA) and Data Envelopment Analysis 

(DEA). DEA is a non-parametric method that does not assume a functional form for the 

production process, and SFA is a parametric method that incorporates random noise. We choose 

to measure technical efficiency and farm productivity using the non-parametric, input oriented 

DEA approach. Since farm households in developing countries have heterogeneous price wedges 

(See chapter 3), we measure technical efficiency and farm productivity using conditional DEA. 

We apply conditional input-oriented DEA that accounts for the importance of price wedges on 

estimating technical efficiency and farm productivity, a method suggested by Daraio and Simar 

(2007) and Simar and Wilson (2007), who note that traditional DEA does not account for 

‘environmental variables’ that are not directly used in production but still affect the production 

decision of farmers. Price wedges driven by transaction costs and other farm household factors 

are such environmental variables. They are not inputs in the production process, but still affect 

the production decision of farmers (see chapter 3).  

Price wedges are often unobservable and are difficult to measure. Instead, we use the probability 

of sales as a proxy for price wedges. Probability of sales is used to measure the degree of 

relationship of farmers with the market. We assume that farmers who have low price wedges are 

highly likely to participate in the market (probability of sales is high) and vice-versa. We estimate 



76 
 

technical efficiency and farm productivity based on the production technology constructed from 

farmers with similar probability of sales. Farmers with similar probability of sales are assumed to 

face similar factors that drive price wedges, which leads to similar production frontiers. Hence, 

conditional DEA measures technical efficiency accounting for probability of sales, a proxy for 

price wedges. 

The empirical analysis is structured as follows. First, probability of sales, a proxy for price wedge 

is estimated. Second, we conduct a two stage Malmquist DEA analysis. The first stage estimates 

Malmquist farm productivity index using conditional DEA, where efficiency is conditioned on 

probability of sales. The second stage examines the impact of farm training on the Malmquist farm 

productivity index recovered from the DEA analysis. Details are outlined in the following 

subsections. 

4.3.1.  Predicting Probability of Sales using a Logit Model 

The objective here is to estimate technical efficiency and farm productivity conditional on the 

probability of sales, a proxy for factors that drive price wedges (see chapter 3). Probability of sales 

is predicted using a logit model as follows. 

(1) 𝑍𝑖   =
 α𝐷𝑖+ v𝑖,  𝑍𝑖 = {

1  𝑖𝑓 𝑓𝑎𝑟𝑚 𝑠𝑎𝑙𝑒𝑠 > 0
 0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

where 𝐷 is a vector of explanatory variables and 𝑣  is a mean zero, IID error term.  

Explanatory variables are assumed to be linearly related to the probability of sales. The explanatory 

variables include land, districts (farmer location) and farm household characteristics (gender, 

family members, age of head of farm household, etc). These variables were selected based on their 

perceived relationship to probability of sales as supported by economic theory and the applied 
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development literature (Stifel and Minten 2016; Chamberlin and Jayne 2013; Arslan 2011; Vakis, 

Sadoulet and Janvry 2003; Fafchamps 1992).  

4.3.2.  First Stage of Malmquist Data Envelopment Analysis (DEA)  

We use conditional DEA to estimate the Malmquist farm productivity indices. Consider a vectors 

of inputs A used to produce a vector of outputs Q. Let Z be the environmental variable that impacts 

the data driven frontier function. We assume that a frontier that can be estimated on the conditional 

DEA problem is 𝛹𝑧, which is given by: 

(5) 𝛹𝑧
𝐷𝐸𝐴 = {(𝐴, 𝑄)|𝑍 = 𝑧, 𝐴 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑄}  

The conditional input oriented DEA productivity measure is given by: 

(6)  𝜃𝑧(𝐴, 𝑄) = max{𝜃|(𝐴, 𝜃𝑄) 𝜖  𝛹𝑧
𝐷𝐸𝐴} 

Malmquist farm productivity index (MI) have four components.  𝜃𝑧(𝐴, 𝑄) can be any of the four 

MI components such as 𝑑𝑡(𝑄𝑡, 𝐴𝑡) (efficiency in second period with respect to frontier in the 

second period), 𝑑𝑠(𝑄𝑠, 𝐴𝑠) (efficiency in first period with respect to frontier in the first period), 

𝑑𝑠(𝑄𝑡, 𝐴𝑡) (efficiency in second period with respect to frontier in the first period) and 𝑑𝑡(𝐴𝑠, 𝐴𝑠) 

(efficiency in first period with respect to frontier in the second period), where t and s represents 

period first and second in the production. We maximize conditional (𝜃𝑧) productivity of a single-

output and multi-input farmer given input constraints, and production technology.  

  𝜃𝑧(𝐴, 𝑄) can be obtained using DEA linear programing (see Badin, Daraio and Simar 2012; 

Coelli and Perelman, 1996) as follows: 

𝑀𝑎𝑥𝜃𝑖|𝑍 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  
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∑𝑣𝑗𝑖

𝑛

𝑗=1

𝐴𝑟𝑗𝑖 ≤ 𝜃𝐴𝑟𝑖|Z      

  ∑𝑣𝑗𝑖

𝑛

𝑗=1

𝑄𝑠𝑗𝑖 ≤ 𝑄𝑠𝑖 |Z       

∑𝑣𝑗𝑖

𝑡

𝑡=1

= 1, 𝑣𝑗𝑖 ≥ 0       

where 𝑣 represents weights, r represents inputs, s represents outputs and i represents observation. 

To perform the conditional DEA, we first rank farmers from smallest to largest using the values 

of the environmental variable. Following Daraio and Simar (2007), Badin, Daraio and Simar 

(2012), and Simar and Wilson (1998), we estimate efficiency via grouping at intervals of about 

100 (10%) farms. The assumption is that farmers in the same groups have similar factors that drive 

price wedges. Efficiency is estimated based on the performance among these 100 farmers, 

bootstrapped 1,000 times. The distance from the frontier is interpreted solely as inefficiency. 

Bootstrap procedures help to overcome the bias that stems from uncertainty of sampling variations. 

The four components of MI are estimated using input oriented DEA conditional on probability of 

sales. Farm households are considered as decision making units.  

The MI can be decomposed in a frontier shift (FS) (technical change) and catch-up effect (CI) 

(technical efficiency change) (Fare et al., 1994). That is: 

(2) 𝑀𝐼|𝑍 =  
𝑑𝑡(𝑄𝑡,𝐴𝑡) |𝑍

𝑑𝑠(𝑄𝑠,𝐴𝑠) |𝑍
[
𝑑𝑠(𝑄𝑡,𝐴𝑡) |𝑍

𝑑𝑠(𝑄𝑠,𝐴𝑠)|𝑍

𝑑𝑡(𝑄𝑡,𝐴𝑡) |𝑍

𝑑𝑡(𝑄𝑠,𝐴𝑠)|𝑍
]
0.5

 

(3) 𝐶𝐼|𝑍 =  
𝑑𝑡(𝑄𝑡,𝐴𝑡) |𝑍

𝑑𝑠(𝑄𝑠,𝐴𝑠) |𝑍
 

(4) 𝐹𝑆|𝑍 =  [
𝑑𝑠(𝑄𝑡,𝐴𝑡) |𝑍

𝑑𝑠(𝑄𝑠,𝐴𝑠)|𝑍

𝑑𝑡(𝑄𝑡,𝐴𝑡) |𝑍

𝑑𝑡(𝑄𝑠,𝐴𝑠)|𝑍
]
0.5
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where Z- represents probability of sales. The Malmquist index, measures productivity changes 

between two periods, as a distance function that compares farm productivity at period 𝑡 relative to 

period s, representing the productivity change (change in the technical efficiency and frontier).  

4.3.3. Second Stage of Malmquist Data Envelopment Analysis (MDEA)  

In the second stage of DEA, we examine the impact of treatment on farm productivity (i.e. catch-

up effect, frontier shift and Malmquist index) using the following steps. First, we whiten the 

conditional productivity measures by removing the effect due to the environmental variable, i.e. 

probability of sales (See Badin, Daraio and Simar 2012). The whitened farm productivity indices 

such as MI, CI and FS are estimated using equations (7) and (8). 

(7)   𝛷 𝑧̂ = 𝜇(𝑍) + 𝜎(𝑍)𝛿   

(8) 𝛿  =
   𝜃

𝑧̂−𝜇(𝑍)

𝜎(𝑍)
 

where 𝛷 is MI, CI or FS, 𝜇(𝑍) is the average effect of probability of sales on the productivity 

measure, 𝜎(𝑍) is the dispersion of the productivity distribution due to probability of sales, and 𝛿 

is the unexplained productivity of the farm. Average effects of probability of sales on productivity, 

𝜇(𝑍) are measured by regressing probability of sales on productivity using local polynomial 

(nonparametric) regression as suggested by Badin, Daraio and Simar (2012). Similarly, dispersion, 

𝜎(𝑍) is measured by regressing the square of residuals from the equation (7) on probability of 

sales using local polynomial regression. Once, we get the estimates, 𝜇(𝑍) and 𝜎(𝑍), we estimate 

the whitened productivity using equation (8). 𝛿 is a continuous variable. Productive farmers have 

smaller 𝛿 values and the less productive farmers have larger 𝛿 values (see Daraio and Simar 2012; 

Badin, Daraio and Simar 2012).  
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Training was offered randomly to producers at the level of water use associations (WUA). We 

measured the impact of the training on farm productivity indices using the following equation.  

(9) 𝛿𝑖   =
 Π𝑡𝑇𝑖  + ε𝑡𝑖 

where T is the intention to treat for observation i, Π𝑡 are parameters, and ε𝑡𝑖 is mean 0, IID error 

term. 

However, our data indicate that some farmers from the treated WUA did not attend the training. 

On the other hand, some farmers from the control WUAs attended and completed the training. 

There also exists some missing values that can neither be categorized with treatment nor control. 

The training was completely on a voluntary basis. There was no enforcement to attend the training. 

To avoid biased results, we considered only those who completed the training. We use a training 

completion variable, where participants were asked whether or not they completed the training. 

However, training participation is a farmer specific decision that depends on many factors, which 

could be endogenous on the system. To overcome this endogeneity problem, an instrumental 

variable method is used. We use the random assignment of treated and control villages as an 

instrument for training completion. The IV estimation is implemented using a Two Stage Least 

Square method (2SLS). The first step involves fitting a binary response model (probit) for training 

completion (ℎ̂) on the instrument, intention to treat (T).  

(10) ℎ𝑖   =
 Π0 + Π1𝑇𝑖  + Π2𝐺𝑖 + 𝜂𝑖 

where ℎ𝑖 is the training completion, 𝐺𝑖 is a vector of control variables i.e. household characteristics, 

Π0, Π1, Π2 are parameters, and 𝜂𝑖 is mean 0, IID error term. 

We also include the results for treatment effect using the original treatment assignment.  



81 
 

The second steps follows by regressing farm productivity measures on ℎ̂ and control variables, i.e. 

household characteristics (G). The second stage is estimated using OLS as follows: 

(11) 𝛿𝑖   =
 α𝐺𝑖 + βℎ̂𝑖  + ε𝑖 

where  α and β is parameters, and ε𝑖 is the mean 0, IID error term. 

We test if the unconditional productivity index as compared to conditional productivity index give 

similar treatment effects. Simar and Wilson (2007) indicate that if environmental variables have 

significant effects on the production frontier then, unconditional productivity indices in the first 

stage of DEA leads to wrong inferences in the second stage and recommends that conditional 

productivity index as an appropriate method to use in the first stage.  

We consider non-farm income, age, family size, education, and gender as explanatory variables 

for the second stage.5 

4.4. Data 

We used an Armenian panel survey data set collected in 2007/2008 and 2010/2011 by Millennium 

Challenge Corporation. The sample was selected from 189 communities out of which 112 were in 

the treatment group and 77 were in the control group. Communities were randomly assigned to 

treatment and control groups. Training was offered to famers in the treatment groups, but not to 

farmers in the control group. The data includes non-farm income sources, household 

demographics, production, income, household expenditure and other agricultural information. 

                                                           
5 Factors such as non-farm income, age, family size, education, and gender associated to farm productivity ((see 

e.g.Tiruneh and Geta 2016; Muange et al. 2015; Abebe 2014; Karimov et al. 2014; Kitila and Alemu 2014; 

Thibbotuwa et al. 2013; Beshir et al. 2012; Makombe et al. 2011; Aye and Mungatana 2010; Speelman et al. 2008). 
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Inputs used are four types namely land (main input), irrigation (main target in the training), labor 

cost and other costs (total cost-irrigation cost – labor cost) and one output, total crop values.  

Table 4.1 presents the summary statistics of key variables for both treatment and control groups.  

Treatment and control group have similar average values on variables such as age, family size, 

gender, level of secondary education, irrigation cost, land, other costs, and livestock ownership. 

However, treatment and control group significantly differ on variables such as non-farm income, 

total values of crop and labor and equipment costs. Average treatment effect could be biased, when 

treatment and control group show significantly different baseline information. Instead, we use 

local treatment effect, measuring treatment effect using control variables. 

 The average age of the households is around 58 years old. The average number of family members 

in the household is 5. The percent of households are headed by female members is 14 percent for 

treated and 13 percent for control group. The number of farm households who completed 

secondary education is 41 percent for the treatment and 39 percent for the control groups. Irrigation 

and other costs respectively are 110 and 310 dollars for the control and 109 and 307 US dollars for 

the treatment group. The treatment group has slightly larger average land (1.51 acres) holdings 

than the control group (1.46 acres). The number of people from the treatment and control groups 

that own livestock are 64 and 61 percent, respectively.  

Regarding non-income per year, farm households in the treatment group earned higher income 

(1397 US dollars) than the control group (1246 US dollars). Similarly, farmers in the treatment 

have higher income from crops and higher labor costs compared to farmers in the control groups. 

The average crop income per year for farm households under the treatment group is 1520 US 

dollars as compared to 1379 US dollars for the control group. The average labor costs per year for 

the treatment and control groups is 281 and 265 US dollars, respectively. The total sample size 
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was 3,996. Due to many zeros across inputs and output, DEA couldn’t construct a frontier and 

estimate technical efficiency in the full sample. After we dropped values with zero total input costs 

and total value of crops, the sample size was reduced to 1554. Since, DEA is sensitive to outliers 

(Ahamed et al. 2015; Timmer 1971), we removed outliers that were 3 times the standard deviation 

above and below the mean. After we remove the outliers, we are left with 1227 number of 

households. Despite these changes, the proportion of treated and control farmers in the estimation 

sample mirrors the original sample (treatment, 61% and control, 39%).  

4.5. Results and Discussion 

We perform farm productivity analysis conditional on probability of sales, a proxy for price 

wedges. Results are structured as follows. First, estimation results for probability of sales, a proxy 

for price wedge is presented. Second, the first stage of the Malmquist DEA, for estimating farm 

productivity indicators such as catch-up (change in technical efficiency), frontier shift (change in 

technology) and Malmquist index conditional probability of sales are presented. Third, the second 

stage of Malmquist DEA for examining treatment impact on farm productivity measures are 

presented. Details are outlined in the following subsections. 

4.5.1.  Prediction Probability of Sales 

Probability of sales, the proxy for price wedges is presented in Table 4.2. It is estimated using a 

logit model. Results show that land size, and household size can be used to predict sales. Land has 

positive association with sales. This matches with Vakis, Sadoulet and Janvry (2003) and 

Fafchamps (1992) findings that farmers that have larger farm size can produce more output and 

can sell larger amounts than farmers with a smaller land size. Household size have negative impact 

on sales. Farm households that have larger households use more crops for consumption than farm 
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households with smaller households. This matches with the theory that as food consumption need 

increases, farm households allocate more of farm inputs for food crops production than for cash 

crops production.  

4.5.2.  First Stage of Malmquist Data Envelopment Analysis (MDEA)  

We first measure the correlation between farm productivity ratios and baseline probability of sales 

using local polynomial (non-parametric) regression (Table 4.3). The relationship between these 

ratios and probability of sales is significant, implying that probability of sales, a proxy for factors 

that drive price wedges matters when we measure farm productivity in Armenia. The baseline 

probability of sales has a positive association with catch-up (0.13) and Malmquist index (0.03) and 

negative association with frontier shift (-0.08).  This implies that catch-up and Malmquist index 

increase in probability of sales and frontier shift decreases in probability of sales. Catch-up and 

Malmquist index that measure change in efficiency and farm productivity is higher for commercial 

farmers (high probability of sales) than subsistence farmers (low probability of sales). However, 

the frontier shift that measures change in innovation is larger for subsistence farmers compared to 

commercial farmers. 

Unconditional and conditional farm productivity estimates are reported in Table 4.4. Probability 

of sales has a significant effect on farm productivity, implying that farm productivity measures 

based on unconditional DEA are biased. Hence, we interpret only the conditional farm productivity 

measures. The average catch-up (change in technical efficiency) using conditional DEA is 1.30. 

This implies that on average, farmers over the given period have improved their technical 

efficiency by about 30 percent. The average frontier-shift (technological shift) using conditional 

DEA is 1.50. This indicates that farmers over the given period have increased their technical 

efficiency by about 50 percent. Similarly, the average Malmquist index (change on overall 
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productivity) is about 1.71, which shows that farmers improved their overall farm productivity 

about 71 percent. This is mainly due to improvement in efficiency and innovation.  

The average catch-up, frontier shift and Malmquist index using unconditional DEA are 1.76, 0.67 

and 1.35. The difference between unconditional and conditional DEA farm productivity measures 

is substantial. The average bias, the difference between conditional and unconditional DEA for 

catch-up, frontier and Malmquist indexes is about 0.45, 0.83 and 0.52 respectively.  

4.5.3.  Second Stage of Malmquist Data Envelopment Analysis (MDEA)  

In order to examine the treatment effect in the second stage, we whitened the conditional farm 

productivity, as in Badin, Daraio and Simar (2012). Conditional farm productivity measures are 

calculated using equation (7) and (8). The whitened catch-up effect, frontier shift and Malmquist 

index are shown in figures (4.1), (4.2) and (4.3). The whitened farm productivity measures are 

drawn against probability of sales. The whitened farm productivity measures are presented on 

vertical axis and probability of sales on the horizontal axis. The highest whitened farm productivity 

value indicates low performance and lowest value shows best performance (see Badin, Daraio and 

Simar 2012 and Simar and Wilson 2007).  

The impact of probability of sales on whitened farm productivity measures is statistically 

insignificant (Table 4.5). The results agree with the Daraio and Simar (2007) findings, implying 

that whitened farm productivity measures should have no relationship or should be independent of 

the environmental variable (probability of sales). After, we remove the effect of probability of 

sales, a proxy for the price wedge, on farm productivity measures, we can then assess the impact 

of treatment (farm training) on the whitened farm productivity measures. Examining the effect of 

treatment on the whitened farm productivity measures provides more meaningful measure of the 

program’s impact (Daraio and Simar 2007; Simar and Wilson 2007). Unconditional farm 
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productivity measures are biased and inference based on these farm productivity measures is likely 

to be misleading.  

The results for the ITT impact estimates of training on unconditional and conditional DEA farm 

productivity indices is presented in table 4.6 and 4.7 respectively. The impact of training on 

unconditional farm productivity indices are small and insignificant. Conditional measures are 

similar, though the impact on the frontier shift is negative and significant at the 10 percent level. 

However, the ITT estimates potentially underestimates the treatment effect due to two-sided non-

compliance, which affected approximately 60 percent of the sample. To overcome this issue, we 

estimate the local average treatment (LATE) to examine the impact of the program. 

The LATE uses instrumental variables to calculate the impact based on the complying sample of 

farmers, or those in the treatment group that attended training and the control group that did not. 

In equation (10), training completion is fitted on the treatment assignment variable. The effect of 

treatment assignment on training completion is positive and statically significant (Table 4.8), 

implying that treatment assignment is a good instrument. We then estimate of the impact of training 

completion on the whitened farm productivity measures using equation (11). Results indicate that 

the LATE estimates on naïve or unconditional and whitened (conditional) farm productivity differ. 

The LATE across all types of naïve farm productivity is statistically insignificant (Table 4.9). 

However, the LATE under conditional farm productivity measure has a positive and significant 

effect on the catch-up effect and an insignificant effect on the frontier-shift (negative) and 

Malmquist index (positive) (Table 4.10). The Malmquist Index is the product of the catch-up and 

frontier shift effects. With a statistically insignificant effect of the extension program on the 

frontier-shift, the impact on productivity is likely to be insignificant as well, given the 

multiplicative nature of the Malmquist Index. It is likely that the farm training, while providing 
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knowledge to farmers, did not result in a significant adoption in technology to result in a shift in 

the frontier over the time period. Instead, farmers likely used the information to better allocate 

their inputs, improving technical efficiency (i.e. the positive catch-up effect), not resulting in an 

improvement in productivity over the time period.  

We find that unlike the naïve (unconditional), the conditional DEA indicates positive and 

statistically significant impact of agricultural extension program on catch-up effect. Unconditional 

DEA-based efficiency estimation could not detect the impact and would underestimate the 

effectiveness of the extension program. The positive and significant impact of agricultural 

extension program on catch-up effect implies that the training improved the productivity of the 

inefficient farmers and helps them to approach or equal in the productivity performance of the 

most efficient farmers. 

4.6. Conclusion  

With increasing demand and declining supply of development funds, the need for innovative and 

more rigorous impact evaluation methods is important for development programs such as 

extension programs. Examining the effectiveness of farm education and extension program using 

farm technical efficiency and innovation as an outcome variable instead of farm income helps to 

adequately capture the program impacts. Farm education and extension programs are thought to 

increase farm income through increase in farm technical and/or innovation. In this study, we 

analyzed the effect farm training on farm productivity of Armenian farmers. We investigate the 

effect of local treatment on catch-up efficiency, frontier shift and Malmquist index using 

conditional DEA. Controlling for other variables (e.g. non-farm income, education, etc.), the 

training program has a statistically significant and positive on catch-up effect and insignificant 

effect on the frontier shift and Malmquist index.  
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Fortson et al. (2012) and Schwab and Shanoyan (2016) examined the impact on farm income, and 

they found no persuasive positive effect. However, using farm productivity as an outcome variable, 

the training proved to provide a positive and significant effect on changes in technical efficiency 

over the treatment period. Using alternative methods to evaluate extension program such as using 

farm productivity instead of farm income as outcome variables helps to identify the impacts that 

would have gone undetected. Mismeasurement of the impact weaken the program unnecessarily 

and eventually leads to misallocation of development program funds.  

  



89 
 

4.7. References 

Abebe, G. G. (2014). Off-farm income and technical efficiency of smallholder farmers in Ethiopia. 

Appleton, S., & Balihuta, A. (1996). Education and agricultural productivity: evidence from 

Uganda. University of Oxford, Centre for the Study of African Economies. 

Arslan, A., & Taylor, J. E. (2009). Farmers’ subjective valuation of subsistence crops: The case of 

traditional maize in Mexico. American Journal of Agricultural Economics, 91(4), 956-972. 

Aye, G. C., & Mungatana, E. D. (2010). Technical efficiency of traditional and hybrid maize 

farmers in Nigeria: Comparison of alternative approaches.African Journal of Agricultural 

Research, 5(21), 2909-2917. 

Bădin, L., Daraio, C., & Simar, L. (2012). How to measure the impact of environmental factors in 

a nonparametric production model. European Journal of Operational Research, 223(3), 818-833.  

Beshir, H., Emana, B., Kassa, B., & Haji, J. (2012). Economic efficiency of mixed crop-livestock 

production system in the north eastern highlands of Ethiopia: the Stochastic frontier approach. J. 

Agricult. Econ. Dev, 1(1), 10-20. 

Chamberlin, J., & Jayne, T. S. (2013). Unpacking the meaning of ‘market access’: evidence from 

rural Kenya. World development, 41, 245-264. 

Coelli, T., & Perelman, S. (1996). Efficiency measurement, multiple-output technologie and 

distance functions: With application to European Railways (No. DP 1996/05). CREPP. 

Cooper, W. W., & Seiford, L. M. Tone., K. (2007). Data Envelopment Analysis A Comprehensive 

Text with Models, Applications, References and DEA-Solver Software. Springer, 

ISBN, 387452818, 490. 



90 
 

Cotlear, D. (1989). The effects of education on farm productivity. Journal of Development 

Planning. 

Dai, X., & Kuosmanen, T. (2014). Best-practice benchmarking using clustering methods: 

Application to energy regulation. Omega, 42(1), 179-188. 

Daraio, C., & Simar, L. (2007). Conditional nonparametric frontier models for convex and 

nonconvex technologies: a unifying approach. Journal of Productivity Analysis, 28(1), 13-32.  

FAO, 2000. Special Report: Armenia – 5 October 2000. Retrieved November 1, 2011, 

<http://www.fao.org/docrep/004/x8408e/x8408e00.htm>. 

Fafchamps, M. (1992). Cash crop production, food price volatility, and rural market integration in 

the third world. American journal of agricultural economics, 74(1), 90-99. 

Fortson, K., Rangarajan, A., Blair, R., Lee, J., & Gilbert, V. (2012). Evaluation of water-to-market 

training in Armenia (No. 8336f2393a7f4513b95947ee7face8b0). Mathematica Policy Research. 

Henning, C. H., & Henningsen, A. (2007). Modeling farm households' price responses in the 

presence of transaction costs and heterogeneity in labor markets. American Journal of Agricultural 

Economics, 89(3), 665-681. 

Jack, B. K. (2011). Constraints on the adoption of agricultural technologies in developing 

countries. White paper, Agricultural Technology Adoption Initiative, Boston: J-PAL (MIT) and 

Berkeley: CEGA (UC Berkeley). 

Jayne, T. S. (1994). Do high food marketing costs constrain cash crop production? Evidence from 

Zimbabwe. Economic Development and Cultural Change, 42(2), 387-402. 



91 
 

Karimov, A., Amoke Awotide, B., & Timothy Amos, T. (2014). Production and scale efficiency 

of maize farming households in South-Western Nigeria. International Journal of Social 

Economics, 41(11), 1087-1100. 

Key, N., Sadoulet, E., & de Janvry, A. D. (2000). Transactions costs and agricultural household 

supply response. American journal of agricultural economics, 82(2), 245-259. 

Kitila, G. M., & Alemu, B. A. (2014). Analysis of Technical Efficiency of Small Holder Maize 

Growing Farmers of Horo Guduru Wollega Zone, Ethiopia: A Stochastic Frontier 

Approach. Science, Technology and Arts Research Journal, 3(3), 204-212. 

Makombe, G., Namara, R., Hagos, F., Awulachew, S. B., Ayana, M., & Bossio, D. (2011). A 

comparative analysis of the technical efficiency of rain-fed and smallholder irrigation in 

Ethiopia (Vol. 143). IWMI. 

Masanjala, W. H. (2006). Cash crop liberalization and poverty alleviation in Africa: evidence from 

Malawi. Agricultural Economics, 35(2), 231-240. 

Muange, E. N., Godecke, T., & Schwarze, S. (2015, August). Effects of social networks on 

technical efficiency in smallholder agriculture: The case of cereal producers Tanzania. In 2015 

Conference, August 9-14, 2015, Milan, Italy (No. 230221). International Association of 

Agricultural Economists. 

Nehring, R., Fernandez-Cornejo, J., & Banker, D. (2005). Off-farm labour and the structure of US 

agriculture: the case of corn/soybean farms. Applied Economics, 37(6), 633-649. 



92 
 

Ojiem, J. O., De Ridder, N., Vanlauwe, B., & Giller, K. E. (2006). Socio-ecological niche: a 

conceptual framework for integration of legumes in smallholder farming systems. International 

Journal of Agricultural Sustainability, 4(1), 79-93. 

Schwab, B. & Shanoyan, A. (2016) “Deep-Dive Analysis Armenia Water-to-Market Training 

Program” Final Presentation of Findings, Millennium Challenge Corporation (Washington, DC). 

https://www.ageconomics.k-

state.edu/directory/faculty_directory/schwab/Schwab_CV_annual_evalformat.docx.pdf.        

(accessed on March 21, 2018). 

Shanoyan, A., Ross, R. B., Gow, H. R., & Peterson, H. C. (2014). Long-term sustainability of 

third-party facilitated market linkages: Evidence from the USDA marketing assistance program in 

the Armenian dairy industry. Food Policy, 46, 157-164. 

Simar, L., & Wilson, P. W. (2007). Estimation and inference in two-stage, semi-parametric models 

of production processes. Journal of econometrics, 136(1), 31-64. 

Simar, L., & Wilson, P. W. (1998). Sensitivity analysis of efficiency scores: How to bootstrap in 

nonparametric frontier models. Management science, 44(1), 49-61. 

Speelman, S., D’Haese, M., Buysse, J., & D’Haese, L. (2008). A measure for the efficiency of 

water use and its determinants, a case study of small-scale irrigation schemes in North-West 

Province, South Africa. Agricultural systems, 98(1), 31-39. 

Stifel, D. and Minten, B., 2008. Isolation and agricultural productivity. Agricultural 

Economics, 39(1), pp.1-15. 

https://www.ageconomics.k-state.edu/directory/faculty_directory/schwab/Schwab_CV_annual_evalformat.docx.pdf
https://www.ageconomics.k-state.edu/directory/faculty_directory/schwab/Schwab_CV_annual_evalformat.docx.pdf


93 
 

Suri, T. (2011). Selection and comparative advantage in technology 

adoption. Econometrica, 79(1), 159-209. 

Thibbotuwawa, M., Mugera, A., & White, B. (2013, February). Production efficiency and 

technology gap in irrigated and rain-fed rice farming systems in Sri Lanka: Non parametric 

approach. In 57th AARES Annual Conference, Sydney, Australia. 

Tiruneh, W. G., & Geta, E. (2016). Technical efficiency of smallholder wheat farmers: The case 

of Welmera district, Central Oromia, Ethiopia. Journal of Development and Agricultural 

Economics, 8(2), 39-51. 

Tittonell, P., Vanlauwe, B., Leffelaar, P. A., Shepherd, K. D., & Giller, K. E. (2005). Exploring 

diversity in soil fertility management of smallholder farms in western Kenya: II. Within-farm 

variability in resource allocation, nutrient flows and soil fertility status. Agriculture, ecosystems & 

environment,110 (3), 166-184. 

Tumanian R. (2001). Country pasture/Forage resource profile in Armenia. 

http://www.fao.org/ag/agp/agpc/doc/counprof/Armenia/Armenia.htm. (accessed on November 

11, 2016).  

Vakis, R., Sadoulet, E., & De Janvry, A. (2003). Measuring transactions costs from observed 

behavior: Market choices in Peru. 

World Bank, 2001. World Development Report 2002: Building Institutions for Markets. World 

Bank, Washington.  

http://www.fao.org/ag/agp/agpc/doc/counprof/Armenia/Armenia.htm
http://www.fao.org/ag/agp/agpc/doc/counprof/Armenia/Armenia.htm


94 
 

Zeller, M., Diagne, A., & Mataya, C. (1998). Market access by smallholder farmers in Malawi: 

Implications for technology adoption, agricultural productivity and crop income. Agricultural 

Economics, 19(1), 219-229. 

Zhao, J., & J. Barry, P. (2014). Effects of credit constraints on rural household technical efficiency: 

Evidence from a city in northern China. China Agricultural Economic Review, 6(4), 654-668. 

  



95 
 

4.8. Tables and Figures 

Table 4.1: Summary Statistics of Sample Households’ Characteristics 

Variable  Definitions Mean for each group 

  Treatment Control 

Age Age of head of household in years 57.36 57.83 

Family size Number of household size 5.21 5.20 

Gender  1 if head of household female, 0 otherwise 0.14 0.13 

Secondary education 1 if farmer completed high school and 0 

otherwise 

0.41 0.39 

Irrigation cost Amount irrigation cost per year in dollars 108.51 110.14 

Other costs  Amount of costs other than irrigation and 

labor in dollar 

306.92 310.19 

Land Land owned in acres  1.51 1.44 

Livestock  1 if farmer own it, 0 otherwise 0.64 0.61 

Nonfarm income  Amount of nonfarm income in dollars 1397.33 1246.42* 

Total value of crops  Total value of crops per year in dollars  1520.00* 1378.99 

Labor and equipment 

cost  

Amount of hired labor and equipment cost 

per year in dollars 

280.92* 264.54 

Zone 1 Number of farmers from zone 1 349 249 

Zone 2 Number of farmers from zone 2 291 168 

Zone 3 Number of farmers from zone 3 81 41 

Zone 4 Number of farmers from zone 4 7 8 

Total observations 1227 
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Table 4.2: Factors associated with crop sales to the market 

Variables Logit model for predicting sales 

 parameters 

 estimates Std. error P-value 

Land 0.25 0.05 0.02 

Gender 0.03 0.25 0.93 

Non-farm income 0.01 0.10 0.63 

Household size -0.10 0.10 0.07 

* District fixed effect variables are used in the estimation of the logit models and the specific 

results for these variables are not reported in the Table in the interest of space. There are 166 

districts included in the data from Armenia. 

 

Table 4.3: Association of Farm Productivity and Sales using Generalized Nonparametric 

Regression  

 Catch-up ratio Frontier shift ratio Malmquist index 

ratio 

Constant  0.76*** 1.28*** 1.00 *** 

Probability of sales 0.13*** -0.08*** 0.03*** 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 4.4: DEA Farm Productivity of Farm Households in Armenia 

Farm productivity Unconditional DEA 

Mean 

Conditional DEA 

Mean 

Bias  

(Cond. DEA-

Uncond. DEA) 

Catch-up 1.76 1.30 -0.45 

Frontier shift 0.67 1.50 0.83 

Malmquist Index 1.35 1.71 0.57 

 

Table 4.5: Association of Whitened Productivity and Sales using Nonparametric DEA 

Estimation 

 Catch-up  Frontier shift  Malmquist index  

Constant  0.05 -0.08*** 0.03 

Probability of sales -0.03 0.02 -0.08 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 4.6: Impact of Training on Unconditional DEA Farm Productivity using OLS 

 catch-up Frontier Malmquist index 

Constant  1.74*** 

(0.05) 

0.66*** 

(0.01) 

1.13*** 

(0.04) 

Treatment  0.02 

(0.07) 

0.01 

(0.01) 

0.01 

(0.05) 

    

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 4.7: Impact of Training (ITT) on Conditional DEA Farm Productivity using OLS 

 catch-up Frontier Malmquist index 

Constant  0.67 

(0.14) 

0.56 

(0.12) 

0.99 

(0.44) 

Treatment  0.15 

(0.15) 

-0.28* 

(0.16) 

-0.78 

(0.56) 

R2 0.003 0.003 0.003 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 4.8: Effect of Treatment Assignment on Training Completion using Probit Model 

(1st stage) 

 Training completion 

Constant  -1.68*** 

Intention to treat 1.53*** 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 

 

Table 4.9: Impact of Training (LATE) on Unconditional DEA Farm Productivity using 

2SLS  

 catch-up Frontier Malmquist index 

Constant  1.38*** 

(0.21) 

0.56*** 

(0.05) 

0.84*** 

(0.14) 

Treatment  -0.05 

(0.15) 

0.03 

(0.03) 

-0.01 

(0.07) 

nonfarm income -0.00 

(0.00) 

0.00 

(0.00) 

-0.00 

(0.00) 

family size 0.01 

(0.02) 

-0.01 

(0.01) 

-0.00 

(0.02) 

Livestock ownership  -0.09 

(0.08) 

0.08*** 

(0.01) 

0.18*** 

(0.05) 

Secondary education -0.14 

(0.09) 

-0.03** 

(0.01) 

-0.03 

(0.07) 

Age -0.00 

(0.04) 

-0.00 

(0.00) 

0.00 

(0.01) 

Gender  0.12 

(0.14) 

0.03 

(0.03) 

0.14** 

(0.12) 

R2 0.01 0.05 0.02 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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Table 4.10: Impact of Training (LATE) on Conditional DEA Farm Productivity using 

2SLS  

 catch-up Frontier Malmquist index 

Constant  0.32 

(0.47) 

8.74 

(18.74) 

1.25 

(3.16) 

Treatment  0.64** 

(0.34) 

-12.37 

(13.62) 

1.42 

(2.30) 

nonfarm income 0.00 

(0.00) 

0.00 

(0.00) 

0.00 

(0.00) 

Family size 0.03 

(0.05) 

0.65 

(2.02) 

0.46 

(0.34) 

Livestock ownership  -0.21 

(0.17) 

8.99 

(6.96) 

2.68*** 

(1.17) 

Secondary education -0.10 

(0.17) 

5.05 

(6.84) 

-0.71 

(1.15) 

Age -0.01 

(0.01) 

-0.07 

(0.30) 

0.00 

(0.05) 

Gender  -0.14 

(0.25) 

4.39 

(9.34) 

1.38 

(1.67) 

R2 0.01 0.01 0.01 

Standard errors in parentheses 

* p<0.10, ** p<0.05, *** p<0.01 
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Figure 4.2: Plotting Catchup using Local Polynomial Smoothing  

 

Figure 4.3: Plotting Frontier Shift using Local Polynomial Smoothing  

 

 

Figure 4.4: Plotting Malmquist using Local Polynomial Smoothing  
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Chapter 5. Overall Conclusion 

Examining whether or not farm education and extension program increases farm efficiency and/or 

innovation is important. Due to an increasingly limited availability of land, and continuous 

increases of world population, increasing agricultural production through increases in efficiency 

and/or innovation is crucial to alleviate future food security issues. Traditionally, the effect of 

extension program is evaluated using yield and farm profit, but farm efficiency could also be used 

as an outcome variable to evaluate the impact such programs.  

Using a simple model, we show how farm efficiency could be used as complementary outcome 

variable to evaluate extension programs. Extension programs are thought to increase income 

through increases in farm efficiency. An extension program that shows no or little impact on profit 

may still have resulted in more efficient production behavior for farmers, such as subsistence 

farmers, that are beset by credit constraints. We note that when farmers are capital constrained, 

extension programs can theoretically have a large efficiency effect despite a small or no change in 

farm profits.  

Assessing the program with alternative methods improves the ability to accurately and credibly 

evaluate the impact and results in a more efficient allocation of limited funds and resources. If the 

full impact of a development program is not adequately captured and some key benefits go 

undetected, the case for allocating funds for such programs may weaken unnecessarily. With 

increasing demand and declining supply of development funds, the need for innovative and more 

rigorous impact evaluation methods is becoming more critical for international development 

community in general and for extension and technology transfer programs in particular.  

However, if we are touse farm technical efficiency as outcome variable, then correct way of 

estimating the metric is crucial. Mismeasurement may counteract the advantages to incorporating 
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efficiency analysis if the analysis is done incorrectly. We demonstrate the measurement of farm 

efficiency for transaction costs and other factors heterogeneous farmers face in developing 

countries.  

The standard approach to measure productivity analysis such as efficiency assumes that farm 

households face homogenous prices that leads to homogenous sets of production and profit 

functions.  Transaction costs and crop qualities attributes create a price wedge between the market 

and shadow price of crops.  Transaction costs and other factors are heterogeneous and leads to 

heterogeneous price wedges among farmers such as subsistence, semi-subsistence and commercial 

farmers. Subsistence and semi-subsistence farmers who produce largely home consumed crops 

have potentially higher price wedges than commercial farmers. Failing to account for the 

heterogeneous set of price wedges that lead to varying profit and production frontiers is likely to 

lead to underestimation of the efficiency of subsistence and semi-subsistence farmers.  

In this paper, we explicitly model the potential impact of price wedges on optimal crop choices for 

profit maximizing farm household. We show that the existence of price wedges discourages 

production of cash crops and encourages production of home consumed crops. With the increase 

of price wedges, a profit maximizing farm household, more typically subsistence farmers, 

withdraws inputs from cash crops and allocates them toward home consumed crop production. 

Because of significant price wedges, use of modern technologies, and production of high values 

crops are unprofitable to subsistence and some of the semi-subsistence farmers. As a result, 

farmers use the traditional inputs and produce dominantly seemingly low value crops. On the other 

hand, commercial farmers use modern technologies and produce high value crops as it is still 

profitable to them at the given market prices.  
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We test whether or not traditional productivity analysis indeed underestimates the efficiency of 

subsistence and semi-subsistence farmers by employing a conditional Data Envelopment Analysis 

(DEA) model for household survey data in Uganda. Results confirm that naïve estimates of 

efficiency understate the efficiency scores of subsistence and semi-subsistence farmers.  The 

results cast doubt on policies, such as extension programs or other information treatments, based 

on interpreting low efficiency scores for subsistence and semi-subsistence farmers as a 

management shortfall. 

We examine the efficiency impacts of an extension program within the context of a cluster 

randomized control trial in Armenia. Fortson et al. (2012) and Schwab and Shanoyan (2016) 

examined this treatment effect on farm profit and find ambiguous results. We investigate the effect 

of treatment on catch-up efficiency, frontier shift and Malmquist index using conditional DEA.  

Controlling for other variables (e.g. non-farm income, education, etc.), the training program has 

statistically significant and positive impacts on catch-up. However, our results indicate treatment 

effect show no significant effect on innovation and Malmquist index. Overall, the demonstration 

suggests that increasing methods to evaluate extension program helps to identify the impacts that 

would have gone undetected.  
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